Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
From mathcomp Require Import all_ssreflect all_algebra all_field. | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
Import GRing.Theory. | |
Local Open Scope ring_scope. | |
Local Notation has_char0 L := ([char L] =i pred0). | |
Section Char0MorphismsIdomain. | |
Variable (R : idomainType). | |
Hypothesis charR0 : has_char0 R. | |
Implicit Type z : int. | |
Lemma char0_intr_eq0 (z : int) : ((z%:~R : R) == 0) = (z == 0). | |
Proof. | |
suff hPos (m : nat) : (m%:~R == 0 :> R) = (Posz m == 0). | |
by case: z => [m | m] => //; rewrite NegzE rmorphN /= !oppr_eq0. | |
by rewrite [m%:~R]/(m%:R); move/charf0P: (charR0)->. | |
Qed. | |
Lemma char0_intr_inj : injective (fun i => i%:~R : R). | |
Proof. | |
move=> i j /eqP; rewrite -subr_eq0 -rmorphB /= char0_intr_eq0 subr_eq0. | |
by move/eqP. | |
Qed. | |
End Char0MorphismsIdomain. | |
Definition char0_ratr (F : fieldType) (charF0 : has_char0 F) := (@ratr F). | |
Lemma char0_ratrE (F : fieldType) (charF0 : has_char0 F) : | |
char0_ratr charF0 = ratr. | |
Proof. by []. Qed. | |
Section Char0MorphismsField. | |
Variable (F : fieldType). | |
Hypothesis charF0 : has_char0 F. | |
Local Notation ratrF := (char0_ratr charF0). | |
Fact char0_ratr_is_rmorphism : rmorphism ratrF. | |
Proof. | |
rewrite /char0_ratr. | |
have injZtoQ: @injective rat int intr by apply: intr_inj. | |
have nz_den x: (denq x)%:~R != 0 :> F by rewrite char0_intr_eq0 // denq_eq0. | |
do 2?split; rewrite /ratr ?divr1 // => x y; last first. | |
rewrite mulrC mulrAC; apply: canLR (mulKf (nz_den _)) _; rewrite !mulrA. | |
do 2!apply: canRL (mulfK (nz_den _)) _; rewrite -!rmorphM; congr _%:~R. | |
apply: injZtoQ; rewrite !rmorphM [x * y]lock /= !numqE -lock. | |
by rewrite -!mulrA mulrA mulrCA -!mulrA (mulrCA y). | |
apply: (canLR (mulfK (nz_den _))); apply: (mulIf (nz_den x)). | |
rewrite mulrAC mulrBl divfK ?nz_den // mulrAC -!rmorphM. | |
apply: (mulIf (nz_den y)); rewrite mulrAC mulrBl divfK ?nz_den //. | |
rewrite -!(rmorphM, rmorphB); congr _%:~R; apply: injZtoQ. | |
rewrite !(rmorphM, rmorphB) [_ - _]lock /= -lock !numqE. | |
by rewrite (mulrAC y) -!mulrBl -mulrA mulrAC !mulrA. | |
Qed. | |
Canonical char0_ratr_additive := Additive char0_ratr_is_rmorphism. | |
Canonical char0_ratr_rmorphism := RMorphism char0_ratr_is_rmorphism. | |
End Char0MorphismsField. | |
Section NumberFieldsProps. | |
Variable (L : fieldExtType rat). | |
Lemma char_ext : has_char0 L. (* this works more generally for `lalgType rat` *) | |
Proof. by move=> x; rewrite char_lalg Num.Theory.char_num. Qed. | |
Hint Resolve char_ext : core. | |
Lemma rat_extratr0 : ratr 0 = 0 :> L. | |
(* watch out: no // to discharge charL as it is in Prop :) *) | |
Proof. by rewrite -char0_ratrE raddf0. Qed. | |
Notation ratrL := (char0_ratr char_ext). | |
Lemma char0_ratrN : {morph ratrL : x / - x}. Proof. exact: raddfN. Qed. | |
Lemma char0_ratrD : {morph ratrL : x y / x + y}. Proof. exact: raddfD. Qed. | |
Lemma char0_ratrB : {morph ratrL : x y / x - y}. Proof. exact: raddfB. Qed. | |
Lemma char0_ratrMn n : {morph ratrL : x / x *+ n}. Proof. exact: raddfMn. Qed. | |
Lemma char0_ratrMNn n : {morph ratrL : x / x *- n}. Proof. exact: raddfMNn. Qed. | |
Lemma char0_ratr_sum I r (P : pred I) E : | |
ratrL (\sum_(i <- r | P i) E i) = \sum_(i <- r | P i) ratrL (E i). | |
Proof. exact: raddf_sum. Qed. | |
Lemma char0_ratrMsign n : {morph ratrL : x / (- 1) ^+ n * x}. | |
Proof. exact: raddfMsign. Qed. | |
Lemma char0_ratr1 : ratrL 1 = 1. Proof. by exact: rmorph1. Qed. | |
Lemma char0_ratrM : {morph ratrL : x y / x * y}. Proof. by exact: rmorphM. Qed. | |
Lemma char0_ratr_prod I r (P : pred I) E : | |
ratrL (\prod_(i <- r | P i) E i) = \prod_(i <- r | P i) ratrL (E i). | |
Proof. exact: rmorph_prod. Qed. | |
Lemma char0_ratrX n : {morph ratrL : x / x ^+ n}. | |
Proof. exact: rmorphX. Qed. | |
Lemma char0_nat n : ratrL n%:R = n%:R. Proof. exact: ratr_nat. Qed. | |
Lemma char0_ratrN1 : ratrL (- 1) = (- 1). Proof. exact: rmorphN1. Qed. | |
Lemma char0_ratr_sign n : ratrL ((- 1) ^+ n) = (- 1) ^+ n. | |
Proof. by exact: rmorph_sign. Qed. | |
Lemma char0_ratr_inj : injective ratrL. | |
Proof. | |
suff inj0 z : ratrL z = 0 -> z = 0. | |
move=> x y /eqP; rewrite -subr_eq0 -char0_ratrB => /eqP /inj0 /eqP. | |
by rewrite subr_eq0 => /eqP. | |
rewrite /ratrL /ratr; move/eqP; rewrite mulf_eq0 invr_eq0 orbC. | |
have /negPf-> /= : (denq z)%:~R != 0 :> L by rewrite char0_intr_eq0 // denq_eq0. | |
by rewrite char0_intr_eq0 // numq_eq0 => /eqP. | |
Qed. | |
Lemma char0_rmorph_int z : ratrL z%:~R = z%:~R. Proof. exact: rmorph_int. Qed. | |
(* Are these two necessary? *) | |
Lemma char0_ratr_eq_nat x n : (ratrL x == n%:R) = (x == n%:R). | |
Proof. apply: rmorph_eq_nat; exact: char0_ratr_inj. Qed. | |
Lemma char0_ratr_eq1 x : (ratrL x == 1) = (x == 1). | |
Proof. exact: char0_ratr_eq_nat 1%N. Qed. | |
End NumberFieldsProps. | |
(* Field extensions in characteristic 0 are always separable *) | |
Section FieldExtChar0. | |
Variables (F0 : fieldType) (L : splittingFieldType F0). | |
Variables (charL : has_char0 L). | |
Implicit Types (E F : {subfield L}) (p : {poly L}) (x : L). | |
(** Ok **) | |
Lemma root_make_separable p x : root p x = root (p %/ gcdp p p^`()) x. | |
Proof. | |
have [->|p_neq0] := eqVneq p 0; first by rewrite div0p root0. | |
have := dvdp_gcdl p p^`(); rewrite dvdp_eq => /eqP p_eq_pDgMg. | |
apply/idP/idP => [rpx|]; last first. | |
move=> dx_eq0; rewrite p_eq_pDgMg. | |
by rewrite /root hornerM mulf_eq0 (eqP dx_eq0) eqxx. | |
have [[|m] [q]] := multiplicity_XsubC p x; rewrite p_neq0/= => rNqx p_eq. | |
by rewrite p_eq mulr1 (negPf rNqx) in rpx. | |
have q_neq0 : q != 0; first by apply: contra_eq_neq p_eq => ->; rewrite mul0r. | |
rewrite p_eq; set f := ('X - _). | |
have f_neq0 : f != 0 by rewrite polyXsubC_eq0. | |
rewrite -dvdp_XsubCl derivM deriv_exp/= derivXsubC mul1r. | |
rewrite -mulr_natl exprS !mulrA -mulrDl. | |
set r := (_ * f + _)%R. | |
have Nrx : ~~ root r x. | |
rewrite /root !hornerE subrr mulr0 add0r mulf_neq0//. | |
have -> : m.+1%:R = m.+1%:R%:P :> {poly L} by rewrite !raddfMn. | |
rewrite hornerC natf_neq0/= (eq_pnat _ (eq_negn charL))/=. | |
by apply/andP; split => //; apply/allP. | |
rewrite (eqp_dvdr _ (eqp_divr _ (gcdp_mul2r _ _ _))). | |
rewrite divp_pmul2r//; last 2 first. | |
- by rewrite ?expf_neq0 ?polyXsubC_eq0. | |
- by rewrite ?gcdp_eq0 negb_and ?mulf_neq0. | |
rewrite mulrC -divp_mulA ?dvdp_mulr//. | |
have := dvdp_gcdl (f * q) r; rewrite Gauss_dvdpr//. | |
by rewrite coprimep_XsubC root_gcd (negPf Nrx) andbF. | |
Qed. | |
Lemma char0_minPoly_separable x E : separable_poly (minPoly E x). | |
Proof. | |
have pE := minPolyOver E x; set p := minPoly E x. | |
suff /eqp_separable-> : p %= p %/ gcdp p p^`(). | |
by rewrite make_separable ?monic_neq0 ?monic_minPoly. | |
rewrite /eqp divp_dvd ?dvdp_gcdl// andbT. | |
rewrite minPoly_dvdp ?divp_polyOver ?gcdp_polyOver ?polyOver_deriv//. | |
by rewrite -root_make_separable// root_minPoly. | |
Qed. | |
Lemma char0_separable_element x E : separable_element E x. | |
Proof. exact: char0_minPoly_separable. Qed. | |
Lemma char0_separable E F : separable E F. | |
Proof. by apply/separableP => y _; apply: char0_separable_element. Qed. | |
Lemma char0_galois E F : (E <= F)%VS -> normalField E F -> galois E F. | |
Proof. by move=> sEF nEF; apply/and3P; split=> //; apply: char0_separable. Qed. | |
End FieldExtChar0. | |