Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
28.9 kB
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path.
From mathcomp Require Import choice fintype tuple finfun bigop finset binomial.
From mathcomp Require Import fingroup morphism.
(******************************************************************************)
(* This file contains the definition and properties associated to the group *)
(* of permutations of an arbitrary finite type. *)
(* {perm T} == the type of permutations of a finite type T, i.e., *)
(* injective (finite) functions from T to T. Permutations *)
(* coerce to CiC functions. *)
(* 'S_n == the set of all permutations of 'I_n, i.e., of *)
(* {0,.., n-1} *)
(* perm_on A u == u is a permutation with support A, i.e., u only *)
(* displaces elements of A (u x != x implies x \in A). *)
(* tperm x y == the transposition of x, y. *)
(* aperm x s == the image of x under the action of the permutation s. *)
(* := s x *)
(* cast_perm Emn s == the 'S_m permutation cast as a 'S_n permutation using *)
(* Emn : m = n *)
(* porbit s x == the set of all elements that are in the same cycle of *)
(* the permutation s as x, i.e., {x, s x, (s ^+ 2) x, ...}.*)
(* porbits s == the set of all the cycles of the permutation s. *)
(* (s : bool) == s is an odd permutation (the coercion is called *)
(* odd_perm). *)
(* dpair u == u is a pair (x, y) of distinct objects (i.e., x != y). *)
(* Sym S == the set of permutations with support S *)
(* lift_perm i j s == the permutation obtained by lifting s : 'S_n.-1 over *)
(* (i |-> j), that maps i to j and lift i k to *)
(* lift j (s k). *)
(* Canonical structures are defined allowing permutations to be an eqType, *)
(* choiceType, countType, finType, subType, finGroupType; permutations with *)
(* composition form a group, therefore inherit all generic group notations: *)
(* 1 == identity permutation, * == composition, ^-1 == inverse permutation. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Import GroupScope.
Section PermDefSection.
Variable T : finType.
Inductive perm_type : predArgType :=
Perm (pval : {ffun T -> T}) & injectiveb pval.
Definition pval p := let: Perm f _ := p in f.
Definition perm_of of phant T := perm_type.
Identity Coercion type_of_perm : perm_of >-> perm_type.
Notation pT := (perm_of (Phant T)).
Canonical perm_subType := Eval hnf in [subType for pval].
Definition perm_eqMixin := Eval hnf in [eqMixin of perm_type by <:].
Canonical perm_eqType := Eval hnf in EqType perm_type perm_eqMixin.
Definition perm_choiceMixin := [choiceMixin of perm_type by <:].
Canonical perm_choiceType := Eval hnf in ChoiceType perm_type perm_choiceMixin.
Definition perm_countMixin := [countMixin of perm_type by <:].
Canonical perm_countType := Eval hnf in CountType perm_type perm_countMixin.
Canonical perm_subCountType := Eval hnf in [subCountType of perm_type].
Definition perm_finMixin := [finMixin of perm_type by <:].
Canonical perm_finType := Eval hnf in FinType perm_type perm_finMixin.
Canonical perm_subFinType := Eval hnf in [subFinType of perm_type].
Canonical perm_for_subType := Eval hnf in [subType of pT].
Canonical perm_for_eqType := Eval hnf in [eqType of pT].
Canonical perm_for_choiceType := Eval hnf in [choiceType of pT].
Canonical perm_for_countType := Eval hnf in [countType of pT].
Canonical perm_for_subCountType := Eval hnf in [subCountType of pT].
Canonical perm_for_finType := Eval hnf in [finType of pT].
Canonical perm_for_subFinType := Eval hnf in [subFinType of pT].
Lemma perm_proof (f : T -> T) : injective f -> injectiveb (finfun f).
Proof.
by move=> f_inj; apply/injectiveP; apply: eq_inj f_inj _ => x; rewrite ffunE.
Qed.
End PermDefSection.
Notation "{ 'perm' T }" := (perm_of (Phant T))
(at level 0, format "{ 'perm' T }") : type_scope.
Arguments pval _ _%g.
Bind Scope group_scope with perm_type.
Bind Scope group_scope with perm_of.
Notation "''S_' n" := {perm 'I_n}
(at level 8, n at level 2, format "''S_' n").
Local Notation fun_of_perm_def := (fun T (u : perm_type T) => val u : T -> T).
Local Notation perm_def := (fun T f injf => Perm (@perm_proof T f injf)).
Module Type PermDefSig.
Parameter fun_of_perm : forall T, perm_type T -> T -> T.
Parameter perm : forall (T : finType) (f : T -> T), injective f -> {perm T}.
Axiom fun_of_permE : fun_of_perm = fun_of_perm_def.
Axiom permE : perm = perm_def.
End PermDefSig.
Module PermDef : PermDefSig.
Definition fun_of_perm := fun_of_perm_def.
Definition perm := perm_def.
Lemma fun_of_permE : fun_of_perm = fun_of_perm_def. Proof. by []. Qed.
Lemma permE : perm = perm_def. Proof. by []. Qed.
End PermDef.
Notation fun_of_perm := PermDef.fun_of_perm.
Notation "@ 'perm'" := (@PermDef.perm) (at level 10, format "@ 'perm'").
Notation perm := (@PermDef.perm _ _).
Canonical fun_of_perm_unlock := Unlockable PermDef.fun_of_permE.
Canonical perm_unlock := Unlockable PermDef.permE.
Coercion fun_of_perm : perm_type >-> Funclass.
Section Theory.
Variable T : finType.
Implicit Types (x y : T) (s t : {perm T}) (S : {set T}).
Lemma permP s t : s =1 t <-> s = t.
Proof. by split=> [| -> //]; rewrite unlock => eq_sv; apply/val_inj/ffunP. Qed.
Lemma pvalE s : pval s = s :> (T -> T).
Proof. by rewrite [@fun_of_perm]unlock. Qed.
Lemma permE f f_inj : @perm T f f_inj =1 f.
Proof. by move=> x; rewrite -pvalE [@perm]unlock ffunE. Qed.
Lemma perm_inj {s} : injective s.
Proof. by rewrite -!pvalE; apply: (injectiveP _ (valP s)). Qed.
Hint Resolve perm_inj : core.
Lemma perm_onto s : codom s =i predT.
Proof. by apply/subset_cardP; rewrite ?card_codom ?subset_predT. Qed.
Definition perm_one := perm (@inj_id T).
Lemma perm_invK s : cancel (fun x => iinv (perm_onto s x)) s.
Proof. by move=> x /=; rewrite f_iinv. Qed.
Definition perm_inv s := perm (can_inj (perm_invK s)).
Definition perm_mul s t := perm (inj_comp (@perm_inj t) (@perm_inj s)).
Lemma perm_oneP : left_id perm_one perm_mul.
Proof. by move=> s; apply/permP => x; rewrite permE /= permE. Qed.
Lemma perm_invP : left_inverse perm_one perm_inv perm_mul.
Proof. by move=> s; apply/permP=> x; rewrite !permE /= permE f_iinv. Qed.
Lemma perm_mulP : associative perm_mul.
Proof. by move=> s t u; apply/permP=> x; do !rewrite permE /=. Qed.
Definition perm_of_baseFinGroupMixin : FinGroup.mixin_of (perm_type T) :=
FinGroup.Mixin perm_mulP perm_oneP perm_invP.
Canonical perm_baseFinGroupType :=
Eval hnf in BaseFinGroupType (perm_type T) perm_of_baseFinGroupMixin.
Canonical perm_finGroupType := @FinGroupType perm_baseFinGroupType perm_invP.
Canonical perm_of_baseFinGroupType :=
Eval hnf in [baseFinGroupType of {perm T}].
Canonical perm_of_finGroupType := Eval hnf in [finGroupType of {perm T} ].
Lemma perm1 x : (1 : {perm T}) x = x.
Proof. by rewrite permE. Qed.
Lemma permM s t x : (s * t) x = t (s x).
Proof. by rewrite permE. Qed.
Lemma permK s : cancel s s^-1.
Proof. by move=> x; rewrite -permM mulgV perm1. Qed.
Lemma permKV s : cancel s^-1 s.
Proof. by have:= permK s^-1; rewrite invgK. Qed.
Lemma permJ s t x : (s ^ t) (t x) = t (s x).
Proof. by rewrite !permM permK. Qed.
Lemma permX s x n : (s ^+ n) x = iter n s x.
Proof. by elim: n => [|n /= <-]; rewrite ?perm1 // -permM expgSr. Qed.
Lemma permX_fix s x n : s x = x -> (s ^+ n) x = x.
Proof.
move=> Hs; elim: n => [|n IHn]; first by rewrite expg0 perm1.
by rewrite expgS permM Hs.
Qed.
Lemma im_permV s S : s^-1 @: S = s @^-1: S.
Proof. exact: can2_imset_pre (permKV s) (permK s). Qed.
Lemma preim_permV s S : s^-1 @^-1: S = s @: S.
Proof. by rewrite -im_permV invgK. Qed.
Definition perm_on S : pred {perm T} := fun s => [pred x | s x != x] \subset S.
Lemma perm_closed S s x : perm_on S s -> (s x \in S) = (x \in S).
Proof.
move/subsetP=> s_on_S; have [-> // | nfix_s_x] := eqVneq (s x) x.
by rewrite !s_on_S // inE /= ?(inj_eq perm_inj).
Qed.
Lemma perm_on1 H : perm_on H 1.
Proof. by apply/subsetP=> x; rewrite inE /= perm1 eqxx. Qed.
Lemma perm_onM H s t : perm_on H s -> perm_on H t -> perm_on H (s * t).
Proof.
move/subsetP=> sH /subsetP tH; apply/subsetP => x; rewrite inE /= permM.
by have [-> /tH | /sH] := eqVneq (s x) x.
Qed.
Lemma perm_onV H s : perm_on H s -> perm_on H s^-1.
Proof.
move=> /subsetP sH; apply/subsetP => i /[!inE] sVi; apply: sH; rewrite inE.
by apply: contra_neq sVi => si_id; rewrite -[in LHS]si_id permK.
Qed.
Lemma out_perm S u x : perm_on S u -> x \notin S -> u x = x.
Proof. by move=> uS; apply: contraNeq (subsetP uS x). Qed.
Lemma im_perm_on u S : perm_on S u -> u @: S = S.
Proof.
move=> Su; rewrite -preim_permV; apply/setP=> x.
by rewrite !inE -(perm_closed _ Su) permKV.
Qed.
Lemma imset_perm1 (S : {set T}) : [set (1 : {perm T}) x | x in S] = S.
Proof. apply: im_perm_on; exact: perm_on1. Qed.
Lemma tperm_proof x y : involutive [fun z => z with x |-> y, y |-> x].
Proof.
move=> z /=; case: (z =P x) => [-> | ne_zx]; first by rewrite eqxx; case: eqP.
by case: (z =P y) => [->| ne_zy]; [rewrite eqxx | do 2?case: eqP].
Qed.
Definition tperm x y := perm (can_inj (tperm_proof x y)).
Variant tperm_spec x y z : T -> Type :=
| TpermFirst of z = x : tperm_spec x y z y
| TpermSecond of z = y : tperm_spec x y z x
| TpermNone of z <> x & z <> y : tperm_spec x y z z.
Lemma tpermP x y z : tperm_spec x y z (tperm x y z).
Proof. by rewrite permE /=; do 2?[case: eqP => /=]; constructor; auto. Qed.
Lemma tpermL x y : tperm x y x = y.
Proof. by case: tpermP. Qed.
Lemma tpermR x y : tperm x y y = x.
Proof. by case: tpermP. Qed.
Lemma tpermD x y z : x != z -> y != z -> tperm x y z = z.
Proof. by case: tpermP => // ->; rewrite eqxx. Qed.
Lemma tpermC x y : tperm x y = tperm y x.
Proof. by apply/permP => z; do 2![case: tpermP => //] => ->. Qed.
Lemma tperm1 x : tperm x x = 1.
Proof. by apply/permP => z; rewrite perm1; case: tpermP. Qed.
Lemma tpermK x y : involutive (tperm x y).
Proof. by move=> z; rewrite !permE tperm_proof. Qed.
Lemma tpermKg x y : involutive (mulg (tperm x y)).
Proof. by move=> s; apply/permP=> z; rewrite !permM tpermK. Qed.
Lemma tpermV x y : (tperm x y)^-1 = tperm x y.
Proof. by set t := tperm x y; rewrite -{2}(mulgK t t) -mulgA tpermKg. Qed.
Lemma tperm2 x y : tperm x y * tperm x y = 1.
Proof. by rewrite -{1}tpermV mulVg. Qed.
Lemma card_perm A : #|perm_on A| = (#|A|)`!.
Proof.
pose ffA := {ffun {x | x \in A} -> T}.
rewrite -ffactnn -{2}(card_sig (mem A)) /= -card_inj_ffuns_on.
pose fT (f : ffA) := [ffun x => oapp f x (insub x)].
pose pfT f := insubd (1 : {perm T}) (fT f).
pose fA s : ffA := [ffun u => s (val u)].
rewrite -!sum1dep_card -sum1_card (reindex_onto fA pfT) => [|f].
apply: eq_bigl => p; rewrite andbC; apply/idP/and3P=> [onA | []]; first split.
- apply/eqP; suffices fTAp: fT (fA p) = pval p.
by apply/permP=> x; rewrite -!pvalE insubdK fTAp //; apply: (valP p).
apply/ffunP=> x; rewrite ffunE pvalE.
by case: insubP => [u _ <- | /out_perm->] //=; rewrite ffunE.
- by apply/forallP=> [[x Ax]]; rewrite ffunE /= perm_closed.
- by apply/injectiveP=> u v; rewrite !ffunE => /perm_inj; apply: val_inj.
move/eqP=> <- _ _; apply/subsetP=> x; rewrite !inE -pvalE val_insubd fun_if.
by rewrite if_arg ffunE; case: insubP; rewrite // pvalE perm1 if_same eqxx.
case/andP=> /forallP-onA /injectiveP-f_inj.
apply/ffunP=> u; rewrite ffunE -pvalE insubdK; first by rewrite ffunE valK.
apply/injectiveP=> {u} x y; rewrite !ffunE.
case: insubP => [u _ <-|]; case: insubP => [v _ <-|] //=; first by move/f_inj->.
by move=> Ay' def_y; rewrite -def_y [_ \in A]onA in Ay'.
by move=> Ax' def_x; rewrite def_x [_ \in A]onA in Ax'.
Qed.
End Theory.
Prenex Implicits tperm permK permKV tpermK.
Arguments perm_inj {T s} [x1 x2] eq_sx12.
(* Shorthand for using a permutation to reindex a bigop. *)
Notation reindex_perm s := (reindex_inj (@perm_inj _ s)).
Lemma inj_tperm (T T' : finType) (f : T -> T') x y z :
injective f -> f (tperm x y z) = tperm (f x) (f y) (f z).
Proof. by move=> injf; rewrite !permE /= !(inj_eq injf) !(fun_if f). Qed.
Lemma tpermJ (T : finType) x y (s : {perm T}) :
(tperm x y) ^ s = tperm (s x) (s y).
Proof.
by apply/permP => z; rewrite -(permKV s z) permJ; apply/inj_tperm/perm_inj.
Qed.
Lemma tuple_permP {T : eqType} {n} {s : seq T} {t : n.-tuple T} :
reflect (exists p : 'S_n, s = [tuple tnth t (p i) | i < n]) (perm_eq s t).
Proof.
apply: (iffP idP) => [|[p ->]]; last first.
rewrite /= (map_comp (tnth t)) -{1}(map_tnth_enum t) perm_map //.
apply: uniq_perm => [||i]; rewrite ?enum_uniq //.
by apply/injectiveP; apply: perm_inj.
by rewrite mem_enum -[i](permKV p) image_f.
case: n => [|n] in t *; last have x0 := tnth t ord0.
rewrite tuple0 => /perm_small_eq-> //.
by exists 1; rewrite [mktuple _]tuple0.
case/(perm_iotaP x0); rewrite size_tuple => Is eqIst ->{s}.
have uniqIs: uniq Is by rewrite (perm_uniq eqIst) iota_uniq.
have szIs: size Is == n.+1 by rewrite (perm_size eqIst) !size_tuple.
have pP i : tnth (Tuple szIs) i < n.+1.
by rewrite -[_ < _](mem_iota 0) -(perm_mem eqIst) mem_tnth.
have inj_p: injective (fun i => Ordinal (pP i)).
by apply/injectiveP/(@map_uniq _ _ val); rewrite -map_comp map_tnth_enum.
exists (perm inj_p); rewrite -[Is]/(tval (Tuple szIs)); congr (tval _).
by apply: eq_from_tnth => i; rewrite tnth_map tnth_mktuple permE (tnth_nth x0).
Qed.
Section PermutationParity.
Variable T : finType.
Implicit Types (s t u v : {perm T}) (x y z a b : T).
(* Note that porbit s x is the orbit of x by <[s]> under the action aperm. *)
(* Hence, the porbit lemmas below are special cases of more general lemmas *)
(* on orbits that will be stated in action.v. *)
(* Defining porbit directly here avoids a dependency of matrix.v on *)
(* action.v and hence morphism.v. *)
Definition aperm x s := s x.
Definition porbit s x := aperm x @: <[s]>.
Definition porbits s := porbit s @: T.
Definition odd_perm (s : perm_type T) := odd #|T| (+) odd #|porbits s|.
Lemma apermE x s : aperm x s = s x. Proof. by []. Qed.
Lemma mem_porbit s i x : (s ^+ i) x \in porbit s x.
Proof. by rewrite (imset_f (aperm x)) ?mem_cycle. Qed.
Lemma porbit_id s x : x \in porbit s x.
Proof. by rewrite -{1}[x]perm1 (mem_porbit s 0). Qed.
Lemma card_porbit_neq0 s x : #|porbit s x| != 0.
Proof.
by rewrite -lt0n card_gt0; apply/set0Pn; exists x; exact: porbit_id.
Qed.
Lemma uniq_traject_porbit s x : uniq (traject s x #|porbit s x|).
Proof.
case def_n: #|_| => // [n]; rewrite looping_uniq.
apply: contraL (card_size (traject s x n)) => /loopingP t_sx.
rewrite -ltnNge size_traject -def_n ?subset_leq_card //.
by apply/subsetP=> _ /imsetP[_ /cycleP[i ->] ->]; rewrite /aperm permX t_sx.
Qed.
Lemma porbit_traject s x : porbit s x =i traject s x #|porbit s x|.
Proof.
apply: fsym; apply/subset_cardP.
by rewrite (card_uniqP _) ?size_traject ?uniq_traject_porbit.
by apply/subsetP=> _ /trajectP[i _ ->]; rewrite -permX mem_porbit.
Qed.
Lemma iter_porbit s x : iter #|porbit s x| s x = x.
Proof.
case def_n: #|_| (uniq_traject_porbit s x) => [//|n] Ut.
have: looping s x n.+1.
by rewrite -def_n -[looping _ _ _]porbit_traject -permX mem_porbit.
rewrite /looping => /trajectP[[|i] //= lt_i_n /perm_inj eq_i_n_sx].
move: lt_i_n; rewrite ltnS ltn_neqAle andbC => /andP[le_i_n /negP[]].
by rewrite -(nth_uniq x _ _ Ut) ?size_traject ?nth_traject // eq_i_n_sx.
Qed.
Lemma eq_porbit_mem s x y : (porbit s x == porbit s y) = (x \in porbit s y).
Proof.
apply/eqP/idP=> [<- | /imsetP[si s_si ->]]; first exact: porbit_id.
apply/setP => z; apply/imsetP/imsetP=> [] [sj s_sj ->].
by exists (si * sj); rewrite ?groupM /aperm ?permM.
exists (si^-1 * sj); first by rewrite groupM ?groupV.
by rewrite /aperm permM permK.
Qed.
Lemma porbit_sym s x y : (x \in porbit s y) = (y \in porbit s x).
Proof. by rewrite -!eq_porbit_mem eq_sym. Qed.
Lemma porbit_perm s i x : porbit s ((s ^+ i) x) = porbit s x.
Proof. by apply/eqP; rewrite eq_porbit_mem mem_porbit. Qed.
Lemma porbitPmin s x y :
y \in porbit s x -> exists2 i, i < #[s] & y = (s ^+ i) x.
Proof. by move=> /imsetP [z /cyclePmin[ i Hi ->{z}] ->{y}]; exists i. Qed.
Lemma porbitP s x y :
reflect (exists i, y = (s ^+ i) x) (y \in porbit s x).
Proof.
apply (iffP idP) => [/porbitPmin [i _ ->]| [i ->]]; last exact: mem_porbit.
by exists i.
Qed.
Lemma porbitV s : porbit s^-1 =1 porbit s.
Proof.
move=> x; apply/setP => y; rewrite porbit_sym.
by apply/porbitP/porbitP => -[i ->]; exists i; rewrite expgVn ?permK ?permKV.
Qed.
Lemma porbitsV s : porbits s^-1 = porbits s.
Proof.
rewrite /porbits; apply/setP => y.
by apply/imsetP/imsetP => -[x _ ->{y}]; exists x; rewrite // porbitV.
Qed.
Lemma porbits_mul_tperm s x y : let t := tperm x y in
#|porbits (t * s)| + (x \notin porbit s y).*2 = #|porbits s| + (x != y).
Proof.
pose xf a b u := find (pred2 a b) (traject u (u a) #|porbit u a|).
have xf_size a b u: xf a b u <= #|porbit u a|.
by rewrite (leq_trans (find_size _ _)) ?size_traject.
have lt_xf a b u n : n < xf a b u -> ~~ pred2 a b ((u ^+ n.+1) a).
move=> lt_n; apply: contraFN (before_find (u a) lt_n).
by rewrite permX iterSr nth_traject // (leq_trans lt_n).
pose t a b u := tperm a b * u.
have tC a b u : t a b u = t b a u by rewrite /t tpermC.
have tK a b: involutive (t a b) by move=> u; apply: tpermKg.
have tXC a b u n: n <= xf a b u -> (t a b u ^+ n.+1) b = (u ^+ n.+1) a.
elim: n => [|n IHn] lt_n_f; first by rewrite permM tpermR.
rewrite !(expgSr _ n.+1) !permM {}IHn 1?ltnW //; congr (u _).
by case/lt_xf/norP: lt_n_f => ne_a ne_b; rewrite tpermD // eq_sym.
have eq_xf a b u: pred2 a b ((u ^+ (xf a b u).+1) a).
have ua_a: a \in porbit u (u a) by rewrite porbit_sym (mem_porbit _ 1).
have has_f: has (pred2 a b) (traject u (u a) #|porbit u (u a)|).
by apply/hasP; exists a; rewrite /= ?eqxx -?porbit_traject.
have:= nth_find (u a) has_f; rewrite has_find size_traject in has_f.
rewrite -eq_porbit_mem in ua_a.
by rewrite nth_traject // -iterSr -permX -(eqP ua_a).
have xfC a b u: xf b a (t a b u) = xf a b u.
without loss lt_a: a b u / xf b a (t a b u) < xf a b u.
move=> IHab; set m := xf b a _; set n := xf a b u.
by case: (ltngtP m n) => // ltx; [apply: IHab | rewrite -[m]IHab tC tK].
by move/lt_xf: (lt_a); rewrite -(tXC a b) 1?ltnW //= orbC [_ || _]eq_xf.
pose ts := t x y s; rewrite /= -[_ * s]/ts.
pose dp u := #|porbits u :\ porbit u y :\ porbit u x|.
rewrite !(addnC #|_|) (cardsD1 (porbit ts y)) imset_f ?inE //.
rewrite (cardsD1 (porbit ts x)) inE imset_f ?inE //= -/(dp ts) {}/ts.
rewrite (cardsD1 (porbit s y)) (cardsD1 (porbit s x)) !(imset_f, inE) //.
rewrite -/(dp s) !addnA !eq_porbit_mem andbT; congr (_ + _); last first.
wlog suffices: s / dp s <= dp (t x y s).
by move=> IHs; apply/eqP; rewrite eqn_leq -{2}(tK x y s) !IHs.
apply/subset_leq_card/subsetP=> {dp} C.
rewrite !inE andbA andbC !(eq_sym C) => /and3P[/imsetP[z _ ->{C}]].
rewrite 2!eq_porbit_mem => sxz syz.
suffices ts_z: porbit (t x y s) z = porbit s z.
by rewrite -ts_z !eq_porbit_mem {1 2}ts_z sxz syz imset_f ?inE.
suffices exp_id n: ((t x y s) ^+ n) z = (s ^+ n) z.
apply/setP=> u; apply/idP/idP=> /imsetP[_ /cycleP[i ->] ->].
by rewrite /aperm exp_id mem_porbit.
by rewrite /aperm -exp_id mem_porbit.
elim: n => // n IHn; rewrite !expgSr !permM {}IHn tpermD //.
by apply: contraNneq sxz => ->; apply: mem_porbit.
by apply: contraNneq syz => ->; apply: mem_porbit.
case: eqP {dp} => [<- | ne_xy]; first by rewrite /t tperm1 mul1g porbit_id.
suff ->: (x \in porbit (t x y s) y) = (x \notin porbit s y) by case: (x \in _).
without loss xf_x: s x y ne_xy / (s ^+ (xf x y s).+1) x = x.
move=> IHs; have ne_yx := nesym ne_xy; have:= eq_xf x y s; set n := xf x y s.
case/pred2P=> [|snx]; first exact: IHs.
by rewrite -[x \in _]negbK ![x \in _]porbit_sym -{}IHs ?xfC ?tXC // tC tK.
rewrite -{1}xf_x -(tXC _ _ _ _ (leqnn _)) mem_porbit; symmetry.
rewrite -eq_porbit_mem eq_sym eq_porbit_mem porbit_traject.
apply/trajectP=> [[n _ snx]].
have: looping s x (xf x y s).+1 by rewrite /looping -permX xf_x inE eqxx.
move/loopingP/(_ n); rewrite -{n}snx.
case/trajectP=> [[_|i]]; first exact: nesym; rewrite ltnS -permX => lt_i def_y.
by move/lt_xf: lt_i; rewrite def_y /= eqxx orbT.
Qed.
Lemma odd_perm1 : odd_perm 1 = false.
Proof.
rewrite /odd_perm card_imset ?addbb // => x y; move/eqP.
by rewrite eq_porbit_mem /porbit cycle1 imset_set1 /aperm perm1; move/set1P.
Qed.
Lemma odd_mul_tperm x y s : odd_perm (tperm x y * s) = (x != y) (+) odd_perm s.
Proof.
rewrite addbC -addbA -[~~ _]oddb -oddD -porbits_mul_tperm.
by rewrite oddD odd_double addbF.
Qed.
Lemma odd_tperm x y : odd_perm (tperm x y) = (x != y).
Proof. by rewrite -[_ y]mulg1 odd_mul_tperm odd_perm1 addbF. Qed.
Definition dpair (eT : eqType) := [pred t | t.1 != t.2 :> eT].
Arguments dpair {eT}.
Lemma prod_tpermP s :
{ts : seq (T * T) | s = \prod_(t <- ts) tperm t.1 t.2 & all dpair ts}.
Proof.
have [n] := ubnP #|[pred x | s x != x]|; elim: n s => // n IHn s /ltnSE-le_s_n.
case: (pickP (fun x => s x != x)) => [x s_x | s_id]; last first.
exists nil; rewrite // big_nil; apply/permP=> x.
by apply/eqP/idPn; rewrite perm1 s_id.
have [|ts def_s ne_ts] := IHn (tperm x (s^-1 x) * s); last first.
exists ((x, s^-1 x) :: ts); last by rewrite /= -(canF_eq (permK _)) s_x.
by rewrite big_cons -def_s mulgA tperm2 mul1g.
rewrite (cardD1 x) !inE s_x in le_s_n; apply: leq_ltn_trans le_s_n.
apply: subset_leq_card; apply/subsetP=> y.
rewrite !inE permM permE /= -(canF_eq (permK _)).
have [-> | ne_yx] := eqVneq y x; first by rewrite permKV eqxx.
by case: (s y =P x) => // -> _; rewrite eq_sym.
Qed.
Lemma odd_perm_prod ts :
all dpair ts -> odd_perm (\prod_(t <- ts) tperm t.1 t.2) = odd (size ts).
Proof.
elim: ts => [_|t ts IHts] /=; first by rewrite big_nil odd_perm1.
by case/andP=> dt12 dts; rewrite big_cons odd_mul_tperm dt12 IHts.
Qed.
Lemma odd_permM : {morph odd_perm : s1 s2 / s1 * s2 >-> s1 (+) s2}.
Proof.
move=> s1 s2; case: (prod_tpermP s1) => ts1 ->{s1} dts1.
case: (prod_tpermP s2) => ts2 ->{s2} dts2.
by rewrite -big_cat !odd_perm_prod ?all_cat ?dts1 // size_cat oddD.
Qed.
Lemma odd_permV s : odd_perm s^-1 = odd_perm s.
Proof. by rewrite -{2}(mulgK s s) !odd_permM -addbA addKb. Qed.
Lemma odd_permJ s1 s2 : odd_perm (s1 ^ s2) = odd_perm s1.
Proof. by rewrite !odd_permM odd_permV addbC addbK. Qed.
End PermutationParity.
Coercion odd_perm : perm_type >-> bool.
Arguments dpair {eT}.
Prenex Implicits porbit dpair porbits aperm.
Section Symmetry.
Variables (T : finType) (S : {set T}).
Definition Sym : {set {perm T}} := [set s | perm_on S s].
Lemma Sym_group_set : group_set Sym.
Proof.
apply/group_setP; split => [|s t] /[!inE]; [exact: perm_on1 | exact: perm_onM].
Qed.
Canonical Sym_group : {group {perm T}} := Group Sym_group_set.
Lemma card_Sym : #|Sym| = #|S|`!.
Proof. by rewrite cardsE /= card_perm. Qed.
End Symmetry.
Section LiftPerm.
(* Somewhat more specialised constructs for permutations on ordinals. *)
Variable n : nat.
Implicit Types i j : 'I_n.+1.
Implicit Types s t : 'S_n.
Lemma card_Sn : #|'S_(n)| = n`!.
Proof.
rewrite (eq_card (B := perm_on [set : 'I_n])).
by rewrite card_perm /= cardsE /= card_ord.
move=> p; rewrite inE unfold_in /perm_on /=.
by apply/esym/subsetP => i _; rewrite in_set.
Qed.
Definition lift_perm_fun i j s k :=
if unlift i k is Some k' then lift j (s k') else j.
Lemma lift_permK i j s :
cancel (lift_perm_fun i j s) (lift_perm_fun j i s^-1).
Proof.
rewrite /lift_perm_fun => k.
by case: (unliftP i k) => [j'|] ->; rewrite (liftK, unlift_none) ?permK.
Qed.
Definition lift_perm i j s := perm (can_inj (lift_permK i j s)).
Lemma lift_perm_id i j s : lift_perm i j s i = j.
Proof. by rewrite permE /lift_perm_fun unlift_none. Qed.
Lemma lift_perm_lift i j s k' :
lift_perm i j s (lift i k') = lift j (s k') :> 'I_n.+1.
Proof. by rewrite permE /lift_perm_fun liftK. Qed.
Lemma lift_permM i j k s t :
lift_perm i j s * lift_perm j k t = lift_perm i k (s * t).
Proof.
apply/permP=> i1; case: (unliftP i i1) => [i2|] ->{i1}.
by rewrite !(permM, lift_perm_lift).
by rewrite permM !lift_perm_id.
Qed.
Lemma lift_perm1 i : lift_perm i i 1 = 1.
Proof. by apply: (mulgI (lift_perm i i 1)); rewrite lift_permM !mulg1. Qed.
Lemma lift_permV i j s : (lift_perm i j s)^-1 = lift_perm j i s^-1.
Proof. by apply/eqP; rewrite eq_invg_mul lift_permM mulgV lift_perm1. Qed.
Lemma odd_lift_perm i j s : lift_perm i j s = odd i (+) odd j (+) s :> bool.
Proof.
rewrite -{1}(mul1g s) -(lift_permM _ j) odd_permM.
congr (_ (+) _); last first.
case: (prod_tpermP s) => ts ->{s} _.
elim: ts => [|t ts IHts] /=; first by rewrite big_nil lift_perm1 !odd_perm1.
rewrite big_cons odd_mul_tperm -(lift_permM _ j) odd_permM {}IHts //.
congr (_ (+) _); transitivity (tperm (lift j t.1) (lift j t.2)); last first.
by rewrite odd_tperm (inj_eq (pcan_inj (liftK j))).
congr odd_perm; apply/permP=> k; case: (unliftP j k) => [k'|] ->.
by rewrite lift_perm_lift inj_tperm //; apply: lift_inj.
by rewrite lift_perm_id tpermD // eq_sym neq_lift.
suff{i j s} odd_lift0 (k : 'I_n.+1): lift_perm ord0 k 1 = odd k :> bool.
rewrite -!odd_lift0 -{2}invg1 -lift_permV odd_permV -odd_permM.
by rewrite lift_permM mulg1.
elim: {k}(k : nat) {1 3}k (erefl (k : nat)) => [|m IHm] k def_k.
by rewrite (_ : k = ord0) ?lift_perm1 ?odd_perm1 //; apply: val_inj.
have le_mn: m < n.+1 by [rewrite -def_k ltnW]; pose j := Ordinal le_mn.
rewrite -(mulg1 1)%g -(lift_permM _ j) odd_permM {}IHm // addbC.
rewrite (_ : _ 1 = tperm j k); first by rewrite odd_tperm neq_ltn def_k leqnn.
apply/permP=> i; case: (unliftP j i) => [i'|] ->; last first.
by rewrite lift_perm_id tpermL.
apply: ord_inj; rewrite lift_perm_lift !permE /= eq_sym -if_neg neq_lift.
rewrite fun_if -val_eqE /= def_k /bump ltn_neqAle andbC.
case: leqP => [_ | lt_i'm] /=; last by rewrite -if_neg neq_ltn leqW.
by rewrite add1n eqSS; case: eqVneq.
Qed.
End LiftPerm.
Prenex Implicits lift_perm lift_permK.
Lemma permS0 : all_equal_to (1 : 'S_0).
Proof. by move=> g; apply/permP; case. Qed.
Lemma permS1 : all_equal_to (1 : 'S_1).
Proof. by move=> g; apply/permP => i; rewrite !ord1. Qed.
Lemma permS01 n : n <= 1 -> all_equal_to (1 : 'S_n).
Proof. by case: n => [|[|]//=] _ g; rewrite (permS0, permS1). Qed.
Section CastSn.
Definition cast_perm m n (eq_mn : m = n) (s : 'S_m) :=
let: erefl in _ = n := eq_mn return 'S_n in s.
Lemma cast_perm_id n eq_n s : cast_perm eq_n s = s :> 'S_n.
Proof. by apply/permP => i; rewrite /cast_perm /= eq_axiomK. Qed.
Lemma cast_ord_permE m n eq_m_n (s : 'S_m) i :
@cast_ord m n eq_m_n (s i) = (cast_perm eq_m_n s) (cast_ord eq_m_n i).
Proof. by subst m; rewrite cast_perm_id !cast_ord_id. Qed.
Lemma cast_permE m n (eq_m_n : m = n) (s : 'S_m) (i : 'I_n) :
cast_perm eq_m_n s i = cast_ord eq_m_n (s (cast_ord (esym eq_m_n) i)).
Proof. by rewrite cast_ord_permE cast_ordKV. Qed.
Lemma cast_perm_comp m n p (eq_m_n : m = n) (eq_n_p : n = p) s :
cast_perm eq_n_p (cast_perm eq_m_n s) = cast_perm (etrans eq_m_n eq_n_p) s.
Proof. by case: _ / eq_n_p. Qed.
Lemma cast_permK m n eq_m_n :
cancel (@cast_perm m n eq_m_n) (cast_perm (esym eq_m_n)).
Proof. by subst m. Qed.
Lemma cast_permKV m n eq_m_n :
cancel (cast_perm (esym eq_m_n)) (@cast_perm m n eq_m_n).
Proof. by subst m. Qed.
Lemma cast_perm_sym m n (eq_m_n : m = n) s t :
s = cast_perm eq_m_n t -> t = cast_perm (esym eq_m_n) s.
Proof. by move/(canLR (cast_permK _)). Qed.
Lemma cast_perm_inj m n eq_m_n : injective (@cast_perm m n eq_m_n).
Proof. exact: can_inj (cast_permK eq_m_n). Qed.
Lemma cast_perm_morphM m n eq_m_n :
{morph @cast_perm m n eq_m_n : x y / x * y >-> x * y}.
Proof. by subst m. Qed.
Canonical morph_of_cast_perm m n eq_m_n :=
@Morphism _ _ setT (cast_perm eq_m_n) (in2W (@cast_perm_morphM m n eq_m_n)).
Lemma isom_cast_perm m n eq_m_n : isom setT setT (@cast_perm m n eq_m_n).
Proof.
case: {n} _ / eq_m_n; apply/isomP; split.
exact/injmP/(in2W (@cast_perm_inj _ _ _)).
by apply/setP => /= s /[!inE]; apply/imsetP; exists s; rewrite ?inE.
Qed.
End CastSn.