Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) | |
(* Distributed under the terms of CeCILL-B. *) | |
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path. | |
From mathcomp Require Import div fintype tuple finfun bigop prime finset. | |
(******************************************************************************) | |
(* This files contains the definition of: *) | |
(* 'C(n, m) == the binomial coefficient n choose m. *) | |
(* n ^_ m == the falling (or lower) factorial of n with m terms, i.e., *) | |
(* the product n * (n - 1) * ... * (n - m + 1). *) | |
(* Note that n ^_ m = 0 if m > n, and 'C(n, m) = n ^_ m %/ m`!. *) | |
(* *) | |
(* In additions to the properties of these functions, we prove a few seminal *) | |
(* results such as triangular_sum, Wilson and Pascal; their proofs are good *) | |
(* examples of how to manipulate expressions with bigops. *) | |
(******************************************************************************) | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
(** More properties of the factorial **) | |
Lemma fact_prod n : n`! = \prod_(1 <= i < n.+1) i. | |
Proof. | |
elim: n => [|n IHn] //; first by rewrite big_nil. | |
by apply/esym; rewrite factS IHn // !big_add1 big_nat_recr //= mulnC. | |
Qed. | |
Lemma fact_split n m : m <= n -> n`! = m`! * \prod_(m.+1 <= k < n.+1) k. | |
Proof. by move=> leq_mn; rewrite !fact_prod -big_cat_nat. Qed. | |
Lemma logn_fact p n : prime p -> logn p n`! = \sum_(1 <= k < n.+1) n %/ p ^ k. | |
Proof. | |
move=> p_prime; transitivity (\sum_(1 <= i < n.+1) logn p i). | |
rewrite big_add1; elim: n => /= [|n IHn]; first by rewrite logn1 big_geq. | |
by rewrite big_nat_recr // -IHn /= factS mulnC lognM ?fact_gt0. | |
transitivity (\sum_(1 <= i < n.+1) \sum_(1 <= k < n.+1) (p ^ k %| i)). | |
apply: eq_big_nat => i /andP[i_gt0 le_i_n]; rewrite logn_count_dvd //. | |
rewrite -!big_mkcond (big_nat_widen _ _ n.+1) 1?ltnW //; apply: eq_bigl => k. | |
by apply: andb_idr => /dvdn_leq/(leq_trans (ltn_expl _ (prime_gt1 _)))->. | |
by rewrite exchange_big_nat; apply: eq_bigr => i _; rewrite divn_count_dvd. | |
Qed. | |
Theorem Wilson p : p > 1 -> prime p = (p %| ((p.-1)`!).+1). | |
Proof. | |
have dFact n: 0 < n -> (n.-1)`! = \prod_(0 <= i < n | i != 0) i. | |
move=> n_gt0; rewrite -big_filter fact_prod; symmetry; apply: congr_big => //. | |
rewrite /index_iota subn1 -[n]prednK //=; apply/all_filterP. | |
by rewrite all_predC has_pred1 mem_iota. | |
move=> lt1p; have p_gt0 := ltnW lt1p. | |
apply/idP/idP=> [pr_p | dv_pF]; last first. | |
apply/primeP; split=> // d dv_dp; have: d <= p by apply: dvdn_leq. | |
rewrite orbC leq_eqVlt => /orP[-> // | ltdp]. | |
have:= dvdn_trans dv_dp dv_pF; rewrite dFact // big_mkord. | |
rewrite (bigD1 (Ordinal ltdp)) /=; last by rewrite -lt0n (dvdn_gt0 p_gt0). | |
by rewrite orbC -addn1 dvdn_addr ?dvdn_mulr // dvdn1 => ->. | |
pose Fp1 := Ordinal lt1p; pose Fp0 := Ordinal p_gt0. | |
have ltp1p: p.-1 < p by [rewrite prednK]; pose Fpn1 := Ordinal ltp1p. | |
case eqF1n1: (Fp1 == Fpn1); first by rewrite -{1}[p]prednK -1?((1 =P p.-1) _). | |
have toFpP m: m %% p < p by rewrite ltn_mod. | |
pose toFp := Ordinal (toFpP _); pose mFp (i j : 'I_p) := toFp (i * j). | |
have Fp_mod (i : 'I_p) : i %% p = i by apply: modn_small. | |
have mFpA: associative mFp. | |
by move=> i j k; apply: val_inj; rewrite /= modnMml modnMmr mulnA. | |
have mFpC: commutative mFp by move=> i j; apply: val_inj; rewrite /= mulnC. | |
have mFp1: left_id Fp1 mFp by move=> i; apply: val_inj; rewrite /= mul1n. | |
have mFp1r: right_id Fp1 mFp by move=> i; apply: val_inj; rewrite /= muln1. | |
pose mFpLaw := Monoid.Law mFpA mFp1 mFp1r. | |
pose mFpM := Monoid.operator (@Monoid.ComLaw _ _ mFpLaw mFpC). | |
pose vFp (i : 'I_p) := toFp (egcdn i p).1. | |
have vFpV i: i != Fp0 -> mFp (vFp i) i = Fp1. | |
rewrite -val_eqE /= -lt0n => i_gt0; apply: val_inj => /=. | |
rewrite modnMml; case: egcdnP => //= _ km -> _; rewrite {km}modnMDl. | |
suffices: coprime i p by move/eqnP->; rewrite modn_small. | |
rewrite coprime_sym prime_coprime //; apply/negP=> /(dvdn_leq i_gt0). | |
by rewrite leqNgt ltn_ord. | |
have vFp0 i: i != Fp0 -> vFp i != Fp0. | |
by move/vFpV; apply/contra_eq_neq => ->; rewrite -val_eqE /= mul0n mod0n. | |
have vFpK: {in predC1 Fp0, involutive vFp}. | |
move=> i n0i; rewrite /= -[vFp _]mFp1r -(vFpV _ n0i) mFpA. | |
by rewrite vFpV (vFp0, mFp1). | |
have le_pmFp (i : 'I_p) m: i <= p + m. | |
by apply: leq_trans (ltnW _) (leq_addr _ _). | |
have eqFp (i j : 'I_p): (i == j) = (p %| p + i - j). | |
by rewrite -eqn_mod_dvd ?(modnDl, Fp_mod). | |
have vFpId i: (vFp i == i :> nat) = xpred2 Fp1 Fpn1 i. | |
have [->{i} | ni0] := eqVneq i Fp0. | |
by rewrite -!val_eqE /= egcd0n modn_small //= -(subnKC lt1p). | |
rewrite 2!eqFp -Euclid_dvdM // -[_ - p.-1]subSS prednK //. | |
have lt0i: 0 < i by rewrite lt0n. | |
rewrite -addnS addKn -addnBA // mulnDl -{2}(addn1 i) -subn_sqr. | |
rewrite addnBA ?leq_sqr // mulnS -addnA -mulnn -mulnDl. | |
rewrite -(subnK (le_pmFp (vFp i) i)) mulnDl addnCA. | |
rewrite -[1 ^ 2]/(Fp1 : nat) -addnBA // dvdn_addl. | |
by rewrite Euclid_dvdM // -eqFp eq_sym orbC /dvdn Fp_mod eqn0Ngt lt0i. | |
by rewrite -eqn_mod_dvd // Fp_mod modnDl -(vFpV _ ni0). | |
suffices [mod_fact]: toFp (p.-1)`! = Fpn1. | |
by rewrite /dvdn -addn1 -modnDml mod_fact addn1 prednK // modnn. | |
rewrite dFact //; rewrite ((big_morph toFp) Fp1 mFpM) //; first last. | |
- by apply: val_inj; rewrite /= modn_small. | |
- by move=> i j; apply: val_inj; rewrite /= modnMm. | |
rewrite big_mkord (eq_bigr id) => [|i _]; last by apply: val_inj => /=. | |
pose ltv i := vFp i < i; rewrite (bigID ltv) -/mFpM [mFpM _ _]mFpC. | |
rewrite (bigD1 Fp1) -/mFpM; last by rewrite [ltv _]ltn_neqAle vFpId. | |
rewrite [mFpM _ _]mFp1 (bigD1 Fpn1) -?mFpA -/mFpM; last first. | |
rewrite -lt0n -ltnS prednK // lt1p. | |
by rewrite [ltv _]ltn_neqAle vFpId eqxx orbT eq_sym eqF1n1. | |
rewrite (reindex_onto vFp vFp) -/mFpM => [|i]; last by do 3!case/andP; auto. | |
rewrite (eq_bigl (xpredD1 ltv Fp0)) => [|i]; last first. | |
rewrite andbC -!andbA -2!negb_or -vFpId orbC -leq_eqVlt -ltnNge. | |
have [->|ni0] := eqVneq i; last by rewrite vFpK // eqxx vFp0. | |
by case: eqP => // ->; rewrite !andbF. | |
rewrite -{2}[mFp]/mFpM -[mFpM _ _]big_split -/mFpM. | |
by rewrite big1 ?mFp1r //= => i /andP [/vFpV]. | |
Qed. | |
(** The falling factorial *) | |
Fixpoint ffact_rec n m := if m is m'.+1 then n * ffact_rec n.-1 m' else 1. | |
Definition falling_factorial := nosimpl ffact_rec. | |
Notation "n ^_ m" := (falling_factorial n m) | |
(at level 30, right associativity) : nat_scope. | |
Lemma ffactE : falling_factorial = ffact_rec. Proof. by []. Qed. | |
Lemma ffactn0 n : n ^_ 0 = 1. Proof. by []. Qed. | |
Lemma ffact0n m : 0 ^_ m = (m == 0). Proof. by case: m. Qed. | |
Lemma ffactnS n m : n ^_ m.+1 = n * n.-1 ^_ m. Proof. by []. Qed. | |
Lemma ffactSS n m : n.+1 ^_ m.+1 = n.+1 * n ^_ m. Proof. by []. Qed. | |
Lemma ffactn1 n : n ^_ 1 = n. Proof. exact: muln1. Qed. | |
Lemma ffactnSr n m : n ^_ m.+1 = n ^_ m * (n - m). | |
Proof. | |
elim: n m => [|n IHn] [|m] //=; first by rewrite ffactn1 mul1n. | |
by rewrite !ffactSS IHn mulnA. | |
Qed. | |
Lemma ffact_prod n m : n ^_ m = \prod_(i < m) (n - i). | |
Proof. | |
elim: m n => [n | m IH [|n] //]; first by rewrite ffactn0 big_ord0. | |
by rewrite big_ord_recr /= sub0n muln0. | |
by rewrite ffactSS IH big_ord_recl subn0. | |
Qed. | |
Lemma ffact_gt0 n m : (0 < n ^_ m) = (m <= n). | |
Proof. by elim: n m => [|n IHn] [|m] //=; rewrite ffactSS muln_gt0 IHn. Qed. | |
Lemma ffact_small n m : n < m -> n ^_ m = 0. | |
Proof. by rewrite ltnNge -ffact_gt0; case: posnP. Qed. | |
Lemma ffactnn n : n ^_ n = n`!. | |
Proof. by elim: n => [|n IHn] //; rewrite ffactnS IHn. Qed. | |
Lemma ffact_fact n m : m <= n -> n ^_ m * (n - m)`! = n`!. | |
Proof. | |
by elim: n m => [|n IHn] [|m] //= le_m_n; rewrite ?mul1n // -mulnA IHn. | |
Qed. | |
Lemma ffact_factd n m : m <= n -> n ^_ m = n`! %/ (n - m)`!. | |
Proof. by move/ffact_fact <-; rewrite mulnK ?fact_gt0. Qed. | |
(** Binomial coefficients *) | |
Fixpoint binomial_rec n m := | |
match n, m with | |
| n'.+1, m'.+1 => binomial_rec n' m + binomial_rec n' m' | |
| _, 0 => 1 | |
| 0, _.+1 => 0 | |
end. | |
Arguments binomial_rec : simpl nomatch. | |
Definition binomial := nosimpl binomial_rec. | |
Notation "''C' ( n , m )" := (binomial n m) | |
(at level 8, format "''C' ( n , m )") : nat_scope. | |
Lemma binE : binomial = binomial_rec. Proof. by []. Qed. | |
Lemma bin0 n : 'C(n, 0) = 1. Proof. by case: n. Qed. | |
Lemma bin0n m : 'C(0, m) = (m == 0). Proof. by case: m. Qed. | |
Lemma binS n m : 'C(n.+1, m.+1) = 'C(n, m.+1) + 'C(n, m). Proof. by []. Qed. | |
Lemma bin1 n : 'C(n, 1) = n. | |
Proof. by elim: n => //= n IHn; rewrite binS bin0 IHn addn1. Qed. | |
Lemma bin_gt0 n m : (0 < 'C(n, m)) = (m <= n). | |
Proof. | |
by elim: n m => [|n IHn] [|m] //; rewrite addn_gt0 !IHn orbC ltn_neqAle andKb. | |
Qed. | |
Lemma leq_bin2l n1 n2 m : n1 <= n2 -> 'C(n1, m) <= 'C(n2, m). | |
Proof. | |
by elim: n1 n2 m => [|n1 IHn] [|n2] [|n] le_n12 //; rewrite leq_add ?IHn. | |
Qed. | |
Lemma bin_small n m : n < m -> 'C(n, m) = 0. | |
Proof. by rewrite ltnNge -bin_gt0; case: posnP. Qed. | |
Lemma binn n : 'C(n, n) = 1. | |
Proof. by elim: n => [|n IHn] //; rewrite binS bin_small. Qed. | |
(* Multiply to move diagonally down and right in the Pascal triangle. *) | |
Lemma mul_bin_diag n m : n * 'C(n.-1, m) = m.+1 * 'C(n, m.+1). | |
Proof. | |
rewrite [RHS]mulnC; elim: n m => [|[|n] IHn] [|m] //=; first by rewrite bin1. | |
by rewrite mulSn [in _ * _]binS mulnDr addnCA !IHn -mulnS -mulnDl -binS. | |
Qed. | |
Lemma bin_fact n m : m <= n -> 'C(n, m) * (m`! * (n - m)`!) = n`!. | |
Proof. | |
elim: n m => [|n IHn] [|m] // le_m_n; first by rewrite bin0 !mul1n. | |
by rewrite !factS -!mulnA mulnCA mulnA -mul_bin_diag -mulnA IHn. | |
Qed. | |
(* In fact the only exception for bin_factd is n = 0 and m = 1 *) | |
Lemma bin_factd n m : 0 < n -> 'C(n, m) = n`! %/ (m`! * (n - m)`!). | |
Proof. | |
have [/bin_fact<-|*] := leqP m n; first by rewrite mulnK ?muln_gt0 ?fact_gt0. | |
by rewrite divnMA bin_small ?divn_small ?fact_gt0 ?ltn_fact. | |
Qed. | |
Lemma bin_ffact n m : 'C(n, m) * m`! = n ^_ m. | |
Proof. | |
have [lt_n_m | le_m_n] := ltnP n m; first by rewrite bin_small ?ffact_small. | |
by rewrite ffact_factd // -(bin_fact le_m_n) mulnA mulnK ?fact_gt0. | |
Qed. | |
Lemma bin_ffactd n m : 'C(n, m) = n ^_ m %/ m`!. | |
Proof. by rewrite -bin_ffact mulnK ?fact_gt0. Qed. | |
Lemma bin_sub n m : m <= n -> 'C(n, n - m) = 'C(n, m). | |
Proof. | |
by move=> le_m_n; rewrite !bin_ffactd !ffact_factd ?leq_subr // divnAC subKn. | |
Qed. | |
(* Multiply to move down in the Pascal triangle. *) | |
Lemma mul_bin_down n m : n * 'C(n.-1, m) = (n - m) * 'C(n, m). | |
Proof. | |
case: n => //= n; have [lt_n_m | le_m_n] := ltnP n m. | |
by rewrite (eqnP lt_n_m) mulnC bin_small. | |
by rewrite -!['C(_, m)]bin_sub ?leqW ?subSn ?mul_bin_diag. | |
Qed. | |
(* Multiply to move left in the Pascal triangle. *) | |
Lemma mul_bin_left n m : m.+1 * 'C(n, m.+1) = (n - m) * 'C(n, m). | |
Proof. by rewrite -mul_bin_diag mul_bin_down. Qed. | |
Lemma binSn n : 'C(n.+1, n) = n.+1. | |
Proof. by rewrite -bin_sub ?leqnSn // subSnn bin1. Qed. | |
Lemma bin2 n : 'C(n, 2) = (n * n.-1)./2. | |
Proof. by rewrite -[n.-1]bin1 mul_bin_diag -divn2 mulKn. Qed. | |
Lemma bin2odd n : odd n -> 'C(n, 2) = n * n.-1./2. | |
Proof. by case: n => // n oddn; rewrite bin2 -!divn2 muln_divA ?dvdn2. Qed. | |
Lemma prime_dvd_bin k p : prime p -> 0 < k < p -> p %| 'C(p, k). | |
Proof. | |
move=> p_pr /andP[k_gt0 lt_k_p]. | |
suffices /Gauss_dvdr<-: coprime p (p - k) by rewrite -mul_bin_down dvdn_mulr. | |
by rewrite prime_coprime // dvdn_subr 1?ltnW // gtnNdvd. | |
Qed. | |
Lemma triangular_sum n : \sum_(0 <= i < n) i = 'C(n, 2). | |
Proof. | |
elim: n => [|n IHn]; first by rewrite big_geq. | |
by rewrite big_nat_recr // IHn binS bin1. | |
Qed. | |
Lemma textbook_triangular_sum n : \sum_(0 <= i < n) i = 'C(n, 2). | |
Proof. | |
rewrite bin2; apply: canRL half_double _. | |
rewrite -addnn {1}big_nat_rev -big_split big_mkord /= ?add0n. | |
rewrite (eq_bigr (fun _ => n.-1)); first by rewrite sum_nat_const card_ord. | |
by case: n => [|n] [i le_i_n] //=; rewrite subSS subnK. | |
Qed. | |
Theorem Pascal a b n : | |
(a + b) ^ n = \sum_(i < n.+1) 'C(n, i) * (a ^ (n - i) * b ^ i). | |
Proof. | |
elim: n => [|n IHn]; rewrite big_ord_recl muln1 ?big_ord0 //. | |
rewrite expnS {}IHn /= mulnDl !big_distrr /= big_ord_recl muln1 subn0. | |
rewrite !big_ord_recr /= !binn !subnn bin0 !subn0 !mul1n -!expnS -addnA. | |
congr (_ + _); rewrite addnA -big_split /=; congr (_ + _). | |
apply: eq_bigr => i _; rewrite mulnCA (mulnA a) -expnS subnSK //=. | |
by rewrite (mulnC b) -2!mulnA -expnSr -mulnDl. | |
Qed. | |
Definition expnDn := Pascal. | |
Lemma Vandermonde k l i : | |
\sum_(j < i.+1) 'C(k, j) * 'C(l, i - j) = 'C(k + l , i). | |
Proof. | |
pose f k i := \sum_(j < i.+1) 'C(k, j) * 'C(l, i - j). | |
suffices{k i} fxx k i: f k.+1 i.+1 = f k i.+1 + f k i. | |
elim: k i => [i | k IHk [|i]]; last by rewrite -/(f _ _) fxx /f !IHk -binS. | |
by rewrite big_ord_recl big1_eq addn0 mul1n subn0. | |
by rewrite big_ord_recl big_ord0 addn0 !bin0 muln1. | |
rewrite {}/f big_ord_recl (big_ord_recl (i.+1)) !bin0 !mul1n. | |
rewrite -addnA -big_split /=; congr (_ + _). | |
by apply: eq_bigr => j _; rewrite -mulnDl. | |
Qed. | |
Lemma subn_exp m n k : | |
m ^ k - n ^ k = (m - n) * (\sum_(i < k) m ^ (k.-1 -i) * n ^ i). | |
Proof. | |
case: k => [|k]; first by rewrite big_ord0 muln0. | |
rewrite mulnBl !big_distrr big_ord_recl big_ord_recr /= subn0 muln1. | |
rewrite subnn mul1n -!expnS subnDA; congr (_ - _); apply: canRL (addnK _) _. | |
congr (_ + _); apply: eq_bigr => i _. | |
by rewrite (mulnCA n) -expnS mulnA -expnS subnSK /=. | |
Qed. | |
Lemma predn_exp m k : (m ^ k).-1 = m.-1 * (\sum_(i < k) m ^ i). | |
Proof. | |
rewrite -!subn1 -[in LHS](exp1n k) subn_exp; congr (_ * _). | |
symmetry; rewrite (reindex_inj rev_ord_inj); apply: eq_bigr => i _ /=. | |
by rewrite -subn1 -subnDA exp1n muln1. | |
Qed. | |
Lemma dvdn_pred_predX n e : (n.-1 %| (n ^ e).-1)%N. | |
Proof. by rewrite predn_exp dvdn_mulr. Qed. | |
Lemma modn_summ I r (P : pred I) F d : | |
\sum_(i <- r | P i) F i %% d = \sum_(i <- r | P i) F i %[mod d]. | |
Proof. | |
by apply/eqP; elim/big_rec2: _ => // i m n _; rewrite modnDml eqn_modDl. | |
Qed. | |
Lemma prime_modn_expSn p n : prime p -> n.+1 ^ p = (n ^ p).+1 %[mod p]. | |
Proof. | |
case: p => // p pP. | |
rewrite -[(_ ^ _).+1]addn0 (expnDn 1) big_ord_recr big_ord_recl /=. | |
rewrite subnn binn exp1n !mul1n addnAC -modnDmr; congr ((_ + _) %% _). | |
apply/eqP/dvdn_sum => -[i ?] _; exact/dvdn_mulr/prime_dvd_bin. | |
Qed. | |
Lemma fermat_little a p : prime p -> a ^ p = a %[mod p]. | |
Proof. | |
move=> pP. | |
elim: a => [|a IH]; first by rewrite exp0n // prime_gt0. | |
by rewrite prime_modn_expSn // -addn1 -modnDml IH modnDml addn1. | |
Qed. | |
(* Combinatorial characterizations. *) | |
Section Combinations. | |
Implicit Types T D : finType. | |
Lemma card_uniq_tuples T n (A : pred T) : | |
#|[set t : n.-tuple T | all A t & uniq t]| = #|A| ^_ n. | |
Proof. | |
elim: n A => [|n IHn] A. | |
by rewrite (@eq_card1 _ [tuple]) // => t; rewrite [t]tuple0 inE. | |
rewrite -sum1dep_card (partition_big (@thead _ _) A) /= => [|t]; last first. | |
by case/tupleP: t => x t; do 2!case/andP. | |
rewrite ffactnS -sum_nat_const; apply: eq_bigr => x Ax. | |
rewrite (cardD1 x) [x \in A]Ax /= -(IHn [predD1 A & x]) -sum1dep_card. | |
rewrite (reindex (fun t : n.-tuple T => [tuple of x :: t])) /=; last first. | |
pose ttail (t : n.+1.-tuple T) := [tuple of behead t]. | |
exists ttail => [t _ | t /andP[_ /eqP <-]]; first exact: val_inj. | |
by rewrite -tuple_eta. | |
apply: eq_bigl=> t; rewrite Ax theadE eqxx andbT /= andbA; congr (_ && _). | |
by rewrite all_predI all_predC has_pred1 andbC. | |
Qed. | |
Lemma card_inj_ffuns_on D T (R : pred T) : | |
#|[set f : {ffun D -> T} in ffun_on R | injectiveb f]| = #|R| ^_ #|D|. | |
Proof. | |
rewrite -card_uniq_tuples. | |
have bijFF: {on (_ : pred _), bijective (@Finfun D T)}. | |
by exists fgraph => x _; [apply: FinfunK | apply: fgraphK]. | |
rewrite -(on_card_preimset (bijFF _)); apply: eq_card => /= t. | |
rewrite !inE -(big_andE predT) -big_image /= big_all. | |
by rewrite -[t in RHS]FinfunK -codom_ffun. | |
Qed. | |
Lemma card_inj_ffuns D T : | |
#|[set f : {ffun D -> T} | injectiveb f]| = #|T| ^_ #|D|. | |
Proof. | |
rewrite -card_inj_ffuns_on; apply: eq_card => f. | |
by rewrite 2!inE; case: ffun_onP. | |
Qed. | |
Lemma cards_draws T (B : {set T}) k : | |
#|[set A : {set T} | A \subset B & #|A| == k]| = 'C(#|B|, k). | |
Proof. | |
have [ltTk | lekT] := ltnP #|B| k. | |
rewrite bin_small // eq_card0 // => A. | |
rewrite inE eqn_leq [k <= _]leqNgt. | |
have [AsubB /=|//] := boolP (A \subset B). | |
by rewrite (leq_ltn_trans (subset_leq_card AsubB)) ?andbF. | |
apply/eqP; rewrite -(eqn_pmul2r (fact_gt0 k)) bin_ffact // eq_sym. | |
rewrite -sum_nat_cond_const -{1 3}(card_ord k). | |
rewrite -card_inj_ffuns_on -sum1dep_card. | |
pose imIk (f : {ffun 'I_k -> T}) := f @: 'I_k. | |
rewrite (partition_big imIk (fun A => (A \subset B) && (#|A| == k))) /= | |
=> [|f]; last first. | |
move=> /andP [/ffun_onP f_ffun /injectiveP inj_f]. | |
rewrite card_imset ?card_ord // eqxx andbT. | |
by apply/subsetP => x /imsetP [i _ ->]; rewrite f_ffun. | |
apply/eqP; apply: eq_bigr => A /andP [AsubB /eqP cardAk]. | |
have [f0 inj_f0 im_f0]: exists2 f, injective f & f @: 'I_k = A. | |
rewrite -cardAk; exists enum_val; first exact: enum_val_inj. | |
apply/setP=> a; apply/imsetP/idP=> [[i _ ->] | Aa]; first exact: enum_valP. | |
by exists (enum_rank_in Aa a); rewrite ?enum_rankK_in. | |
rewrite (reindex (fun p : {ffun _} => [ffun i => f0 (p i)])) /=; last first. | |
pose ff0' f i := odflt i [pick j | f i == f0 j]. | |
exists (fun f => [ffun i => ff0' f i]) => [p _ | f]. | |
apply/ffunP=> i; rewrite ffunE /ff0'; case: pickP => [j | /(_ (p i))]. | |
by rewrite ffunE (inj_eq inj_f0) => /eqP. | |
by rewrite ffunE eqxx. | |
rewrite -im_f0 => /andP[/andP[/ffun_onP f_ffun /injectiveP injf] /eqP im_f]. | |
apply/ffunP=> i; rewrite !ffunE /ff0'; case: pickP => [y /eqP //|]. | |
have /imsetP[j _ eq_f0j_fi]: f i \in f0 @: 'I_k by rewrite -im_f imset_f. | |
by move/(_ j)/eqP. | |
rewrite -ffactnn -card_inj_ffuns -sum1dep_card; apply: eq_bigl => p. | |
rewrite -andbA. | |
apply/and3P/injectiveP=> [[_ /injectiveP inj_f0p _] i j eq_pij | inj_p]. | |
by apply: inj_f0p; rewrite !ffunE eq_pij. | |
set f := finfun _. | |
have injf: injective f by move=> i j /[!ffunE] /inj_f0; apply: inj_p. | |
have imIkf : imIk f == A. | |
rewrite eqEcard card_imset // cardAk card_ord leqnn andbT -im_f0. | |
by apply/subsetP=> x /imsetP[i _ ->]; rewrite ffunE imset_f. | |
split; [|exact/injectiveP|exact: imIkf]. | |
by apply/ffun_onP => x; apply: (subsetP AsubB); rewrite -(eqP imIkf) imset_f. | |
Qed. | |
Lemma card_draws T k : #|[set A : {set T} | #|A| == k]| = 'C(#|T|, k). | |
Proof. | |
by rewrite -cardsT -cards_draws; apply: eq_card => A; rewrite !inE subsetT. | |
Qed. | |
Lemma card_ltn_sorted_tuples m n : | |
#|[set t : m.-tuple 'I_n | sorted ltn (map val t)]| = 'C(n, m). | |
Proof. | |
have [-> | n_gt0] := posnP n; last pose i0 := Ordinal n_gt0. | |
case: m => [|m]; last by apply: eq_card0; case/tupleP=> [[]]. | |
by apply: (@eq_card1 _ [tuple]) => t; rewrite [t]tuple0 inE. | |
rewrite -[n in RHS]card_ord -card_draws. | |
pose f_t (t : m.-tuple 'I_n) := [set i in t]. | |
pose f_A (A : {set 'I_n}) := [tuple of mkseq (nth i0 (enum A)) m]. | |
have val_fA (A : {set 'I_n}) : #|A| = m -> val (f_A A) = enum A. | |
by move=> Am; rewrite -[enum _](mkseq_nth i0) -cardE Am. | |
have inc_A (A : {set 'I_n}) : sorted ltn (map val (enum A)). | |
rewrite -[enum _](eq_filter (mem_enum _)). | |
rewrite -(eq_filter (mem_map val_inj _)) -filter_map. | |
by rewrite (sorted_filter ltn_trans) // unlock val_ord_enum iota_ltn_sorted. | |
rewrite -!sum1dep_card (reindex_onto f_t f_A) /= => [|A]; last first. | |
by move/eqP=> cardAm; apply/setP=> x; rewrite inE -(mem_enum (mem A)) -val_fA. | |
apply: eq_bigl => t. | |
apply/idP/idP => [inc_t|/andP [/eqP t_m /eqP <-]]; last by rewrite val_fA. | |
have ft_m: #|f_t t| = m. | |
rewrite cardsE (card_uniqP _) ?size_tuple // -(map_inj_uniq val_inj). | |
exact: (sorted_uniq ltn_trans ltnn). | |
rewrite ft_m eqxx -val_eqE val_fA // -(inj_eq (inj_map val_inj)) /=. | |
apply/eqP/(irr_sorted_eq ltn_trans ltnn) => // y. | |
by apply/mapP/mapP=> [] [x t_x ->]; exists x; rewrite // mem_enum inE in t_x *. | |
Qed. | |
Lemma card_sorted_tuples m n : | |
#|[set t : m.-tuple 'I_n.+1 | sorted leq (map val t)]| = 'C(m + n, m). | |
Proof. | |
set In1 := 'I_n.+1; pose x0 : In1 := ord0. | |
have add_mnP (i : 'I_m) (x : In1) : i + x < m + n. | |
by rewrite -ltnS -addSn -!addnS leq_add. | |
pose add_mn t i := Ordinal (add_mnP i (tnth t i)). | |
pose add_mn_nat (t : m.-tuple In1) i := i + nth x0 t i. | |
have add_mnC t: val \o add_mn t =1 add_mn_nat t \o val. | |
by move=> i; rewrite /= (tnth_nth x0). | |
pose f_add t := [tuple of map (add_mn t) (ord_tuple m)]. | |
rewrite -card_ltn_sorted_tuples -!sum1dep_card (reindex f_add) /=. | |
apply: eq_bigl => t; rewrite -map_comp (eq_map (add_mnC t)) map_comp. | |
rewrite enumT unlock val_ord_enum -[in LHS](drop0 t). | |
have [m0 | m_gt0] := posnP m. | |
by rewrite {2}m0 /= drop_oversize // size_tuple m0. | |
have def_m := subnK m_gt0; rewrite -{2}def_m addn1 /= {1}/add_mn_nat. | |
move: 0 (m - 1) def_m => i k; rewrite -[in RHS](size_tuple t) => def_m. | |
rewrite (drop_nth x0) /=; last by rewrite -def_m leq_addl. | |
elim: k i (nth x0 t i) def_m => [|k IHk] i x /=. | |
by rewrite add0n => ->; rewrite drop_size. | |
rewrite addSnnS => def_m; rewrite -addSn leq_add2l -IHk //. | |
by rewrite (drop_nth x0) // -def_m leq_addl. | |
pose sub_mn (t : m.-tuple 'I_(m + n)) i : In1 := inord (tnth t i - i). | |
exists (fun t => [tuple of map (sub_mn t) (ord_tuple m)]) => [t _ | t]. | |
apply: eq_from_tnth => i; apply: val_inj. | |
by rewrite /sub_mn !(tnth_ord_tuple, tnth_map) addKn inord_val. | |
rewrite inE /= => inc_t; apply: eq_from_tnth => i; apply: val_inj. | |
rewrite tnth_map tnth_ord_tuple /= tnth_map tnth_ord_tuple. | |
suffices [le_i_ti le_ti_ni]: i <= tnth t i /\ tnth t i <= i + n. | |
by rewrite /sub_mn inordK ?subnKC // ltnS leq_subLR. | |
pose y0 := tnth t i; rewrite (tnth_nth y0) -(nth_map _ (val i)) ?size_tuple //. | |
case def_e: (map _ _) => [|x e] /=; first by rewrite nth_nil ?leq_addr. | |
set nth_i := nth (i : nat); rewrite def_e in inc_t; split. | |
have: i < size (x :: e) by rewrite -def_e size_map size_tuple ltn_ord. | |
elim: (val i) => //= j IHj lt_j_e. | |
by apply: leq_trans (pathP (val i) inc_t _ lt_j_e); rewrite ltnS IHj 1?ltnW. | |
move: (_ - _) (subnK (valP i)) => k /=. | |
elim: k (val i) => /= [|k IHk] j; rewrite -ltnS -addSn ?add0n => def_m. | |
by rewrite def_m -def_e /nth_i (nth_map y0) ?ltn_ord // size_tuple -def_m. | |
rewrite (leq_trans _ (IHk _ _)) -1?addSnnS //; apply: (pathP _ inc_t). | |
rewrite -ltnS (leq_trans (leq_addl k _)) // -addSnnS def_m. | |
by rewrite -(size_tuple t) -(size_map val) def_e. | |
Qed. | |
Lemma card_partial_ord_partitions m n : | |
#|[set t : m.-tuple 'I_n.+1 | \sum_(i <- t) i <= n]| = 'C(m + n, m). | |
Proof. | |
symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. | |
pose add_mn (i j : In1) : In1 := inord (i + j). | |
pose f_add (t : m.-tuple In1) := [tuple of scanl add_mn x0 t]. | |
rewrite -card_sorted_tuples -!sum1dep_card (reindex f_add) /=. | |
apply: eq_bigl => t; rewrite -[\sum_(i <- t) i]add0n. | |
transitivity (path leq x0 (map val (f_add t))) => /=; first by case: map. | |
rewrite -{1 2}[0]/(val x0); elim: {t}(val t) (x0) => /= [|x t IHt] s. | |
by rewrite big_nil addn0 -ltnS ltn_ord. | |
rewrite big_cons addnA IHt /= val_insubd ltnS. | |
have [_ | ltn_n_sx] := leqP (s + x) n; first by rewrite leq_addr. | |
rewrite -(leq_add2r x) leqNgt (leq_trans (valP x)) //=. | |
by rewrite leqNgt (leq_trans ltn_n_sx) ?leq_addr. | |
pose sub_mn (i j : In1) := Ordinal (leq_ltn_trans (leq_subr i j) (valP j)). | |
exists (fun t : m.-tuple In1 => [tuple of pairmap sub_mn x0 t]) => /= t inc_t. | |
apply: val_inj => /=; have{inc_t}: path leq x0 (map val (f_add t)). | |
by move: inc_t; rewrite inE /=; case: map. | |
rewrite [map _ _]/=; elim: {t}(val t) (x0) => //= x t IHt s. | |
case/andP=> le_s_sx /IHt->; congr (_ :: _); apply: val_inj => /=. | |
move: le_s_sx; rewrite val_insubd. | |
case le_sx_n: (_ < n.+1); first by rewrite addKn. | |
by case: (val s) le_sx_n; rewrite ?ltn_ord. | |
apply: val_inj => /=; have{inc_t}: path leq x0 (map val t). | |
by move: inc_t; rewrite inE /=; case: map. | |
elim: {t}(val t) (x0) => //= x t IHt s /andP[le_s_sx inc_t]. | |
suffices ->: add_mn s (sub_mn s x) = x by rewrite IHt. | |
by apply: val_inj; rewrite /add_mn /= subnKC ?inord_val. | |
Qed. | |
Lemma card_ord_partitions m n : | |
#|[set t : m.+1.-tuple 'I_n.+1 | \sum_(i <- t) i == n]| = 'C(m + n, m). | |
Proof. | |
symmetry; set In1 := 'I_n.+1; pose x0 : In1 := ord0. | |
pose f_add (t : m.-tuple In1) := [tuple of sub_ord (\sum_(x <- t) x) :: t]. | |
rewrite -card_partial_ord_partitions -!sum1dep_card (reindex f_add) /=. | |
by apply: eq_bigl => t; rewrite big_cons /= addnC (sameP maxn_idPr eqP) maxnE. | |
exists (fun t : m.+1.-tuple In1 => [tuple of behead t]) => [t _|]. | |
exact: val_inj. | |
case/tupleP=> x t /[!(inE, big_cons)] /eqP def_n. | |
by apply: val_inj; congr (_ :: _); apply: val_inj; rewrite /= -{1}def_n addnK. | |
Qed. | |
End Combinations. | |