Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.8 kB
Require Import BinPos BinNat.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq bigop.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(************************************************************************)
(* Small Scale Rewriting using Associativity and Commutativity *)
(* *)
(* Rewriting with AC (not modulo AC), using a small scale command. *)
(* Replaces opA, opC, opAC, opCA, ... and any combinations of them *)
(* *)
(* Usage : *)
(* rewrite [pattern](AC patternshape reordering) *)
(* rewrite [pattern](ACl reordering) *)
(* rewrite [pattern](ACof reordering reordering) *)
(* rewrite [pattern]op.[AC patternshape reordering] *)
(* rewrite [pattern]op.[ACl reordering] *)
(* rewrite [pattern]op.[ACof reordering reordering] *)
(* *)
(* - if op is specified, the rule is specialized to op *)
(* otherwise, the head symbol is a generic comm_law *)
(* and the rewrite might be less efficient *)
(* NOTE because of a bug in Coq's notations coq/coq#8190 *)
(* op must not contain any hole. *)
(* *%R.[AC p s] currently does not work because of that *)
(* (@GRing.mul R).[AC p s] must be used instead *)
(* *)
(* - pattern is optional, as usual, but must be used to select the *)
(* appropriate operator in case of ambiguity such an operator must *)
(* have a canonical Monoid.com_law structure *)
(* (additions, multiplications, conjuction and disjunction do) *)
(* *)
(* - patternshape is expressed using the syntax *)
(* p := n | p * p' *)
(* where "*" is purely formal *)
(* and n > 0 is the number of left associated symbols *)
(* examples of pattern shapes: *)
(* + 4 represents (n * m * p * q) *)
(* + (1*2) represents (n * (m * p)) *)
(* *)
(* - reordering is expressed using the syntax *)
(* s := n | s * s' *)
(* where "*" is purely formal and n > 0 is the position in the LHS *)
(* positions start at 1 ! *)
(* *)
(* If the ACl variant is used, the patternshape defaults to the *)
(* pattern fully associated to the left i.e. n i.e (x * y * ...) *)
(* *)
(* Examples of reorderings: *)
(* - ACl ((1*2)*3) is the identity (and will fail with error message) *)
(* - opAC == op.[ACl (1*3)*2] == op.[AC 3 ((1*3)*2)] *)
(* - opCA == op.[AC (2*1) (1*2*3)] *)
(* - opACA == op.[AC (2*2) ((1*3)*(2*4))] *)
(* - rewrite opAC -opA == rewrite op.[ACl 1*(3*2)] *)
(* ... *)
(************************************************************************)
Declare Scope AC_scope.
Delimit Scope AC_scope with AC.
Definition change_type ty ty' (x : ty) (strategy : ty = ty') : ty' :=
ecast ty ty strategy x.
Notation simplrefl := (ltac: (simpl; reflexivity)) (only parsing).
Notation cbvrefl := (ltac: (cbv; reflexivity)) (only parsing).
Notation vmrefl := (ltac: (vm_compute; reflexivity)) (only parsing).
Module AC.
Canonical positive_eqType := EqType positive (EqMixin Pos.eqb_spec).
Inductive syntax := Leaf of positive | Op of syntax & syntax.
Coercion serial := (fix loop (acc : seq positive) (s : syntax) :=
match s with
| Leaf n => n :: acc
| Op s s' => (loop^~ s (loop^~ s' acc))
end) [::].
Lemma serial_Op s1 s2 : Op s1 s2 = s1 ++ s2 :> seq _.
Proof.
rewrite /serial; set loop := (X in X [::]); rewrite -/loop.
elim: s1 (loop [::] s2) => [n|s11 IHs1 s12 IHs2] //= l.
by rewrite IHs1 [in RHS]IHs1 IHs2 catA.
Qed.
Definition Leaf_of_nat n := Leaf ((pos_of_nat n n) - 1)%positive.
Module Import Syntax.
Bind Scope AC_scope with syntax.
Number Notation positive Pos.of_num_int Pos.to_num_uint : AC_scope.
Coercion Leaf : positive >-> syntax.
Coercion Leaf_of_nat : nat >-> syntax.
Notation "x * y" := (Op x%AC y%AC) : AC_scope.
End Syntax.
Definition pattern (s : syntax) := ((fix loop n s :=
match s with
| Leaf 1%positive => (Leaf n, Pos.succ n)
| Leaf m => Pos.iter (fun oi => (Op oi.1 (Leaf oi.2), Pos.succ oi.2))
(Leaf n, Pos.succ n) (m - 1)%positive
| Op s s' => let: (p, n') := loop n s in
let: (p', n'') := loop n' s' in
(Op p p', n'')
end) 1%positive s).1.
Section eval.
Variables (T : Type) (idx : T) (op : T -> T -> T).
Inductive env := Empty | ENode of T & env & env.
Definition pos := fix loop (e : env) p {struct e} :=
match e, p with
| ENode t _ _, 1%positive => t
| ENode t e _, (p~0)%positive => loop e p
| ENode t _ e, (p~1)%positive => loop e p
| _, _ => idx
end.
Definition set_pos (f : T -> T) := fix loop e p {struct p} :=
match e, p with
| ENode t e e', 1%positive => ENode (f t) e e'
| ENode t e e', (p~0)%positive => ENode t (loop e p) e'
| ENode t e e', (p~1)%positive => ENode t e (loop e' p)
| Empty, 1%positive => ENode (f idx) Empty Empty
| Empty, (p~0)%positive => ENode idx (loop Empty p) Empty
| Empty, (p~1)%positive => ENode idx Empty (loop Empty p)
end.
Lemma pos_set_pos (f : T -> T) e (p p' : positive) :
pos (set_pos f e p) p' = if p == p' then f (pos e p) else pos e p'.
Proof. by elim: p e p' => [p IHp|p IHp|] [|???] [?|?|]//=; rewrite IHp. Qed.
Fixpoint unzip z (e : env) : env := match z with
| [::] => e
| (x, inl e') :: z' => unzip z' (ENode x e' e)
| (x, inr e') :: z' => unzip z' (ENode x e e')
end.
Definition set_pos_trec (f : T -> T) := fix loop z e p {struct p} :=
match e, p with
| ENode t e e', 1%positive => unzip z (ENode (f t) e e')
| ENode t e e', (p~0)%positive => loop ((t, inr e') :: z) e p
| ENode t e e', (p~1)%positive => loop ((t, inl e) :: z) e' p
| Empty, 1%positive => unzip z (ENode (f idx) Empty Empty)
| Empty, (p~0)%positive => loop ((idx, (inr Empty)) :: z) Empty p
| Empty, (p~1)%positive => loop ((idx, (inl Empty)) :: z) Empty p
end.
Lemma set_pos_trecE f z e p : set_pos_trec f z e p = unzip z (set_pos f e p).
Proof. by elim: p e z => [p IHp|p IHp|] [|???] [|[??]?] //=; rewrite ?IHp. Qed.
Definition eval (e : env) := fix loop (s : syntax) :=
match s with
| Leaf n => pos e n
| Op s s' => op (loop s) (loop s')
end.
End eval.
Arguments Empty {T}.
Definition content := (fix loop (acc : env N) s :=
match s with
| Leaf n => set_pos_trec 0%num N.succ [::] acc n
| Op s s' => loop (loop acc s') s
end) Empty.
Lemma count_memE x (t : syntax) : count_mem x t = pos 0%num (content t) x.
Proof.
rewrite /content; set loop := (X in X Empty); rewrite -/loop.
rewrite -[LHS]addn0; have <- : pos 0%num Empty x = 0 :> nat by elim: x.
elim: t Empty => [n|s IHs s' IHs'] e //=; last first.
by rewrite serial_Op count_cat -addnA IHs' IHs.
rewrite ?addn0 set_pos_trecE pos_set_pos; case: (altP eqP) => [->|] //=.
by rewrite -N.add_1_l nat_of_add_bin //=.
Qed.
Definition cforall N T : env N -> (env T -> Type) -> Type := env_rect (@^~ Empty)
(fun _ e IHe e' IHe' R => forall x, IHe (fun xe => IHe' (R \o ENode x xe))).
Lemma cforallP N T R : (forall e : env T, R e) -> forall (e : env N), cforall e R.
Proof.
move=> Re e; elim: e R Re => [|? e /= IHe e' IHe' ?? x] //=.
by apply: IHe => ?; apply: IHe' => /=.
Qed.
Section eq_eval.
Variables (T : Type) (idx : T) (op : Monoid.com_law idx).
Lemma proof (p s : syntax) : content p = content s ->
forall env, eval idx op env p = eval idx op env s.
Proof.
suff evalE env t : eval idx op env t = \big[op/idx]_(i <- t) (pos idx env i).
move=> cps e; rewrite !evalE; apply: perm_big.
by apply/allP => x _ /=; rewrite !count_memE cps.
elim: t => //= [n|t -> t' ->]; last by rewrite serial_Op big_cat.
by rewrite big_cons big_nil Monoid.mulm1.
Qed.
Definition direct p s ps := cforallP (@proof p s ps) (content p).
End eq_eval.
Module Exports.
Export AC.Syntax.
End Exports.
End AC.
Export AC.Exports.
Notation AC_check_pattern :=
(ltac: (match goal with
|- AC.content ?pat = AC.content ?ord =>
let pat' := fresh "pat" in let pat' := eval compute in pat in
tryif unify pat' ord then
fail 1 "AC: equality between" pat
"and" ord "is trivial, cannot progress"
else tryif vm_compute; reflexivity then idtac
else fail 2 "AC: mismatch between shape" pat "=" pat' "and reordering" ord
| |- ?G => fail 3 "AC: no pattern to check" G
end))
(only parsing).
Notation opACof law p s :=
((fun T idx op assoc lid rid comm => (change_type (@AC.direct T idx
(@Monoid.ComLaw _ _ (@Monoid.Law _ idx op assoc lid rid) comm)
p%AC s%AC AC_check_pattern) cbvrefl)) _ _ law
(Monoid.mulmA _) (Monoid.mul1m _) (Monoid.mulm1 _) (Monoid.mulmC _))
(only parsing).
Notation opAC op p s := (opACof op (AC.pattern p%AC) s%AC) (only parsing).
Notation opACl op s := (opAC op (AC.Leaf_of_nat (size (AC.serial s%AC))) s%AC)
(only parsing).
Notation "op .[ 'ACof' p s ]" := (opACof op p%AC s%AC)
(at level 2, p at level 1, left associativity, only parsing).
Notation "op .[ 'AC' p s ]" := (opAC op p%AC s%AC)
(at level 2, p at level 1, left associativity, only parsing).
Notation "op .[ 'ACl' s ]" := (opACl op s%AC)
(at level 2, left associativity, only parsing).
Notation AC_strategy :=
(ltac: (cbv -[Monoid.com_operator Monoid.operator]; reflexivity))
(only parsing).
Notation ACof p s := (change_type
(@AC.direct _ _ _ p%AC s%AC AC_check_pattern) AC_strategy)
(only parsing).
Notation AC p s := (ACof (AC.pattern p%AC) s%AC) (only parsing).
Notation ACl s := (AC (AC.Leaf_of_nat (size (AC.serial s%AC))) s%AC)
(only parsing).