Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
Require Import BinPos BinNat. | |
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq bigop. | |
Set Implicit Arguments. | |
Unset Strict Implicit. | |
Unset Printing Implicit Defensive. | |
(************************************************************************) | |
(* Small Scale Rewriting using Associativity and Commutativity *) | |
(* *) | |
(* Rewriting with AC (not modulo AC), using a small scale command. *) | |
(* Replaces opA, opC, opAC, opCA, ... and any combinations of them *) | |
(* *) | |
(* Usage : *) | |
(* rewrite [pattern](AC patternshape reordering) *) | |
(* rewrite [pattern](ACl reordering) *) | |
(* rewrite [pattern](ACof reordering reordering) *) | |
(* rewrite [pattern]op.[AC patternshape reordering] *) | |
(* rewrite [pattern]op.[ACl reordering] *) | |
(* rewrite [pattern]op.[ACof reordering reordering] *) | |
(* *) | |
(* - if op is specified, the rule is specialized to op *) | |
(* otherwise, the head symbol is a generic comm_law *) | |
(* and the rewrite might be less efficient *) | |
(* NOTE because of a bug in Coq's notations coq/coq#8190 *) | |
(* op must not contain any hole. *) | |
(* *%R.[AC p s] currently does not work because of that *) | |
(* (@GRing.mul R).[AC p s] must be used instead *) | |
(* *) | |
(* - pattern is optional, as usual, but must be used to select the *) | |
(* appropriate operator in case of ambiguity such an operator must *) | |
(* have a canonical Monoid.com_law structure *) | |
(* (additions, multiplications, conjuction and disjunction do) *) | |
(* *) | |
(* - patternshape is expressed using the syntax *) | |
(* p := n | p * p' *) | |
(* where "*" is purely formal *) | |
(* and n > 0 is the number of left associated symbols *) | |
(* examples of pattern shapes: *) | |
(* + 4 represents (n * m * p * q) *) | |
(* + (1*2) represents (n * (m * p)) *) | |
(* *) | |
(* - reordering is expressed using the syntax *) | |
(* s := n | s * s' *) | |
(* where "*" is purely formal and n > 0 is the position in the LHS *) | |
(* positions start at 1 ! *) | |
(* *) | |
(* If the ACl variant is used, the patternshape defaults to the *) | |
(* pattern fully associated to the left i.e. n i.e (x * y * ...) *) | |
(* *) | |
(* Examples of reorderings: *) | |
(* - ACl ((1*2)*3) is the identity (and will fail with error message) *) | |
(* - opAC == op.[ACl (1*3)*2] == op.[AC 3 ((1*3)*2)] *) | |
(* - opCA == op.[AC (2*1) (1*2*3)] *) | |
(* - opACA == op.[AC (2*2) ((1*3)*(2*4))] *) | |
(* - rewrite opAC -opA == rewrite op.[ACl 1*(3*2)] *) | |
(* ... *) | |
(************************************************************************) | |
Declare Scope AC_scope. | |
Delimit Scope AC_scope with AC. | |
Definition change_type ty ty' (x : ty) (strategy : ty = ty') : ty' := | |
ecast ty ty strategy x. | |
Notation simplrefl := (ltac: (simpl; reflexivity)) (only parsing). | |
Notation cbvrefl := (ltac: (cbv; reflexivity)) (only parsing). | |
Notation vmrefl := (ltac: (vm_compute; reflexivity)) (only parsing). | |
Module AC. | |
Canonical positive_eqType := EqType positive (EqMixin Pos.eqb_spec). | |
Inductive syntax := Leaf of positive | Op of syntax & syntax. | |
Coercion serial := (fix loop (acc : seq positive) (s : syntax) := | |
match s with | |
| Leaf n => n :: acc | |
| Op s s' => (loop^~ s (loop^~ s' acc)) | |
end) [::]. | |
Lemma serial_Op s1 s2 : Op s1 s2 = s1 ++ s2 :> seq _. | |
Proof. | |
rewrite /serial; set loop := (X in X [::]); rewrite -/loop. | |
elim: s1 (loop [::] s2) => [n|s11 IHs1 s12 IHs2] //= l. | |
by rewrite IHs1 [in RHS]IHs1 IHs2 catA. | |
Qed. | |
Definition Leaf_of_nat n := Leaf ((pos_of_nat n n) - 1)%positive. | |
Module Import Syntax. | |
Bind Scope AC_scope with syntax. | |
Number Notation positive Pos.of_num_int Pos.to_num_uint : AC_scope. | |
Coercion Leaf : positive >-> syntax. | |
Coercion Leaf_of_nat : nat >-> syntax. | |
Notation "x * y" := (Op x%AC y%AC) : AC_scope. | |
End Syntax. | |
Definition pattern (s : syntax) := ((fix loop n s := | |
match s with | |
| Leaf 1%positive => (Leaf n, Pos.succ n) | |
| Leaf m => Pos.iter (fun oi => (Op oi.1 (Leaf oi.2), Pos.succ oi.2)) | |
(Leaf n, Pos.succ n) (m - 1)%positive | |
| Op s s' => let: (p, n') := loop n s in | |
let: (p', n'') := loop n' s' in | |
(Op p p', n'') | |
end) 1%positive s).1. | |
Section eval. | |
Variables (T : Type) (idx : T) (op : T -> T -> T). | |
Inductive env := Empty | ENode of T & env & env. | |
Definition pos := fix loop (e : env) p {struct e} := | |
match e, p with | |
| ENode t _ _, 1%positive => t | |
| ENode t e _, (p~0)%positive => loop e p | |
| ENode t _ e, (p~1)%positive => loop e p | |
| _, _ => idx | |
end. | |
Definition set_pos (f : T -> T) := fix loop e p {struct p} := | |
match e, p with | |
| ENode t e e', 1%positive => ENode (f t) e e' | |
| ENode t e e', (p~0)%positive => ENode t (loop e p) e' | |
| ENode t e e', (p~1)%positive => ENode t e (loop e' p) | |
| Empty, 1%positive => ENode (f idx) Empty Empty | |
| Empty, (p~0)%positive => ENode idx (loop Empty p) Empty | |
| Empty, (p~1)%positive => ENode idx Empty (loop Empty p) | |
end. | |
Lemma pos_set_pos (f : T -> T) e (p p' : positive) : | |
pos (set_pos f e p) p' = if p == p' then f (pos e p) else pos e p'. | |
Proof. by elim: p e p' => [p IHp|p IHp|] [|???] [?|?|]//=; rewrite IHp. Qed. | |
Fixpoint unzip z (e : env) : env := match z with | |
| [::] => e | |
| (x, inl e') :: z' => unzip z' (ENode x e' e) | |
| (x, inr e') :: z' => unzip z' (ENode x e e') | |
end. | |
Definition set_pos_trec (f : T -> T) := fix loop z e p {struct p} := | |
match e, p with | |
| ENode t e e', 1%positive => unzip z (ENode (f t) e e') | |
| ENode t e e', (p~0)%positive => loop ((t, inr e') :: z) e p | |
| ENode t e e', (p~1)%positive => loop ((t, inl e) :: z) e' p | |
| Empty, 1%positive => unzip z (ENode (f idx) Empty Empty) | |
| Empty, (p~0)%positive => loop ((idx, (inr Empty)) :: z) Empty p | |
| Empty, (p~1)%positive => loop ((idx, (inl Empty)) :: z) Empty p | |
end. | |
Lemma set_pos_trecE f z e p : set_pos_trec f z e p = unzip z (set_pos f e p). | |
Proof. by elim: p e z => [p IHp|p IHp|] [|???] [|[??]?] //=; rewrite ?IHp. Qed. | |
Definition eval (e : env) := fix loop (s : syntax) := | |
match s with | |
| Leaf n => pos e n | |
| Op s s' => op (loop s) (loop s') | |
end. | |
End eval. | |
Arguments Empty {T}. | |
Definition content := (fix loop (acc : env N) s := | |
match s with | |
| Leaf n => set_pos_trec 0%num N.succ [::] acc n | |
| Op s s' => loop (loop acc s') s | |
end) Empty. | |
Lemma count_memE x (t : syntax) : count_mem x t = pos 0%num (content t) x. | |
Proof. | |
rewrite /content; set loop := (X in X Empty); rewrite -/loop. | |
rewrite -[LHS]addn0; have <- : pos 0%num Empty x = 0 :> nat by elim: x. | |
elim: t Empty => [n|s IHs s' IHs'] e //=; last first. | |
by rewrite serial_Op count_cat -addnA IHs' IHs. | |
rewrite ?addn0 set_pos_trecE pos_set_pos; case: (altP eqP) => [->|] //=. | |
by rewrite -N.add_1_l nat_of_add_bin //=. | |
Qed. | |
Definition cforall N T : env N -> (env T -> Type) -> Type := env_rect (@^~ Empty) | |
(fun _ e IHe e' IHe' R => forall x, IHe (fun xe => IHe' (R \o ENode x xe))). | |
Lemma cforallP N T R : (forall e : env T, R e) -> forall (e : env N), cforall e R. | |
Proof. | |
move=> Re e; elim: e R Re => [|? e /= IHe e' IHe' ?? x] //=. | |
by apply: IHe => ?; apply: IHe' => /=. | |
Qed. | |
Section eq_eval. | |
Variables (T : Type) (idx : T) (op : Monoid.com_law idx). | |
Lemma proof (p s : syntax) : content p = content s -> | |
forall env, eval idx op env p = eval idx op env s. | |
Proof. | |
suff evalE env t : eval idx op env t = \big[op/idx]_(i <- t) (pos idx env i). | |
move=> cps e; rewrite !evalE; apply: perm_big. | |
by apply/allP => x _ /=; rewrite !count_memE cps. | |
elim: t => //= [n|t -> t' ->]; last by rewrite serial_Op big_cat. | |
by rewrite big_cons big_nil Monoid.mulm1. | |
Qed. | |
Definition direct p s ps := cforallP (@proof p s ps) (content p). | |
End eq_eval. | |
Module Exports. | |
Export AC.Syntax. | |
End Exports. | |
End AC. | |
Export AC.Exports. | |
Notation AC_check_pattern := | |
(ltac: (match goal with | |
|- AC.content ?pat = AC.content ?ord => | |
let pat' := fresh "pat" in let pat' := eval compute in pat in | |
tryif unify pat' ord then | |
fail 1 "AC: equality between" pat | |
"and" ord "is trivial, cannot progress" | |
else tryif vm_compute; reflexivity then idtac | |
else fail 2 "AC: mismatch between shape" pat "=" pat' "and reordering" ord | |
| |- ?G => fail 3 "AC: no pattern to check" G | |
end)) | |
(only parsing). | |
Notation opACof law p s := | |
((fun T idx op assoc lid rid comm => (change_type (@AC.direct T idx | |
(@Monoid.ComLaw _ _ (@Monoid.Law _ idx op assoc lid rid) comm) | |
p%AC s%AC AC_check_pattern) cbvrefl)) _ _ law | |
(Monoid.mulmA _) (Monoid.mul1m _) (Monoid.mulm1 _) (Monoid.mulmC _)) | |
(only parsing). | |
Notation opAC op p s := (opACof op (AC.pattern p%AC) s%AC) (only parsing). | |
Notation opACl op s := (opAC op (AC.Leaf_of_nat (size (AC.serial s%AC))) s%AC) | |
(only parsing). | |
Notation "op .[ 'ACof' p s ]" := (opACof op p%AC s%AC) | |
(at level 2, p at level 1, left associativity, only parsing). | |
Notation "op .[ 'AC' p s ]" := (opAC op p%AC s%AC) | |
(at level 2, p at level 1, left associativity, only parsing). | |
Notation "op .[ 'ACl' s ]" := (opACl op s%AC) | |
(at level 2, left associativity, only parsing). | |
Notation AC_strategy := | |
(ltac: (cbv -[Monoid.com_operator Monoid.operator]; reflexivity)) | |
(only parsing). | |
Notation ACof p s := (change_type | |
(@AC.direct _ _ _ p%AC s%AC AC_check_pattern) AC_strategy) | |
(only parsing). | |
Notation AC p s := (ACof (AC.pattern p%AC) s%AC) (only parsing). | |
Notation ACl s := (AC (AC.Leaf_of_nat (size (AC.serial s%AC))) s%AC) | |
(only parsing). | |