Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : clausal_form.ml *) | |
(* DESCRIPTION : Functions for putting a formula into clausal form. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 13th May 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 12th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : 2008 *) | |
(******************************************************************************) | |
let IMP_DISJ_THM = TAUT `!t1 t2. t1 ==> t2 <=> ~t1 \/ t2`;; | |
let RIGHT_OR_OVER_AND = TAUT `!t1 t2 t3. t2 /\ t3 \/ t1 <=> (t2 \/ t1) /\ (t3 \/ t1)`;; | |
let LEFT_OR_OVER_AND = TAUT `!t1 t2 t3. t1 \/ t2 /\ t3 <=> (t1 \/ t2) /\ (t1 \/ t3)`;; | |
(*============================================================================*) | |
(* Theorems for normalizing Boolean terms *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* EQ_EXPAND = |- (x = y) = ((~x \/ y) /\ (~y \/ x)) *) | |
(*----------------------------------------------------------------------------*) | |
let EQ_EXPAND = | |
prove | |
(`(x = y) = ((~x \/ y) /\ (~y \/ x))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* IMP_EXPAND = |- (x ==> y) = (~x \/ y) *) | |
(*----------------------------------------------------------------------------*) | |
let IMP_EXPAND = SPEC `y:bool` (SPEC `x:bool` IMP_DISJ_THM);; | |
(*----------------------------------------------------------------------------*) | |
(* COND_EXPAND = |- (x => y | z) = ((~x \/ y) /\ (x \/ z)) *) | |
(*----------------------------------------------------------------------------*) | |
let COND_EXPAND = | |
prove | |
(`(if x then y else z) = ((~x \/ y) /\ (x \/ z))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `z:bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_NOT_NORM = |- ~~x = x *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_NOT_NORM = SPEC `x:bool` (CONJUNCT1 NOT_CLAUSES);; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_CONJ_NORM = |- ~(x /\ y) = (~x \/ ~y) *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_CONJ_NORM = CONJUNCT1 (SPEC `y:bool` (SPEC `x:bool` DE_MORGAN_THM));; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_DISJ_NORM = |- ~(x \/ y) = (~x /\ ~y) *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_DISJ_NORM = CONJUNCT2 (SPEC `y:bool` (SPEC `x:bool` DE_MORGAN_THM));; | |
(*----------------------------------------------------------------------------*) | |
(* LEFT_DIST_NORM = |- x \/ (y /\ z) = (x \/ y) /\ (x \/ z) *) | |
(*----------------------------------------------------------------------------*) | |
let LEFT_DIST_NORM = | |
SPEC `z:bool` (SPEC `y:bool` (SPEC `x:bool` LEFT_OR_OVER_AND));; | |
(*----------------------------------------------------------------------------*) | |
(* RIGHT_DIST_NORM = |- (x /\ y) \/ z = (x \/ z) /\ (y \/ z) *) | |
(*----------------------------------------------------------------------------*) | |
let RIGHT_DIST_NORM = | |
SPEC `y:bool` (SPEC `x:bool` (SPEC `z:bool` RIGHT_OR_OVER_AND));; | |
(*----------------------------------------------------------------------------*) | |
(* CONJ_ASSOC_NORM = |- (x /\ y) /\ z = x /\ (y /\ z) *) | |
(*----------------------------------------------------------------------------*) | |
let CONJ_ASSOC_NORM = | |
SYM (SPEC `z:bool` (SPEC `y:bool` (SPEC `x:bool` CONJ_ASSOC)));; | |
(*----------------------------------------------------------------------------*) | |
(* DISJ_ASSOC_NORM = |- (x \/ y) \/ z = x \/ (y \/ z) *) | |
(*----------------------------------------------------------------------------*) | |
let DISJ_ASSOC_NORM = | |
SYM (SPEC `z:bool` (SPEC `y:bool` (SPEC `x:bool` DISJ_ASSOC)));; | |
(*============================================================================*) | |
(* Conversions for rewriting Boolean terms *) | |
(*============================================================================*) | |
let COND_EXPAND_CONV = REWR_CONV COND_EXPAND;; | |
let CONJ_ASSOC_NORM_CONV = REWR_CONV CONJ_ASSOC_NORM;; | |
let DISJ_ASSOC_NORM_CONV = REWR_CONV DISJ_ASSOC_NORM;; | |
let EQ_EXPAND_CONV = REWR_CONV EQ_EXPAND;; | |
let IMP_EXPAND_CONV = REWR_CONV IMP_EXPAND;; | |
let LEFT_DIST_NORM_CONV = REWR_CONV LEFT_DIST_NORM;; | |
let NOT_CONJ_NORM_CONV = REWR_CONV NOT_CONJ_NORM;; | |
let NOT_DISJ_NORM_CONV = REWR_CONV NOT_DISJ_NORM;; | |
let NOT_NOT_NORM_CONV = REWR_CONV NOT_NOT_NORM;; | |
let RIGHT_DIST_NORM_CONV = REWR_CONV RIGHT_DIST_NORM;; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_CONV : conv *) | |
(* *) | |
(* |- !t. ~~t = t *) | |
(* |- ~T = F *) | |
(* |- ~F = T *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_CONV = | |
try ( | |
let [th1;th2;th3] = CONJUNCTS NOT_CLAUSES | |
in fun tm -> | |
(let arg = dest_neg tm | |
in if (is_T arg) then th2 | |
else if (is_F arg) then th3 | |
else SPEC (dest_neg arg) th1 | |
) | |
) with Failure _ -> failwith "NOT_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* AND_CONV : conv *) | |
(* *) | |
(* |- T /\ t = t *) | |
(* |- t /\ T = t *) | |
(* |- F /\ t = F *) | |
(* |- t /\ F = F *) | |
(* |- t /\ t = t *) | |
(*----------------------------------------------------------------------------*) | |
let AND_CONV = | |
try ( | |
let [th1;th2;th3;th4;th5] = map GEN_ALL (CONJUNCTS (SPEC_ALL AND_CLAUSES)) | |
in fun tm -> | |
(let (arg1,arg2) = dest_conj tm | |
in if (is_T arg1) then SPEC arg2 th1 | |
else if (is_T arg2) then SPEC arg1 th2 | |
else if (is_F arg1) then SPEC arg2 th3 | |
else if (is_F arg2) then SPEC arg1 th4 | |
else if (arg1 = arg2) then SPEC arg1 th5 | |
else failwith "" | |
) | |
) with Failure _ -> failwith "AND_CONV" ;; | |
(*----------------------------------------------------------------------------*) | |
(* OR_CONV : conv *) | |
(* *) | |
(* |- T \/ t = T *) | |
(* |- t \/ T = T *) | |
(* |- F \/ t = t *) | |
(* |- t \/ F = t *) | |
(* |- t \/ t = t *) | |
(*----------------------------------------------------------------------------*) | |
let OR_CONV = | |
try ( | |
let [th1;th2;th3;th4;th5] = map GEN_ALL (CONJUNCTS (SPEC_ALL OR_CLAUSES)) | |
in fun tm -> | |
(let (arg1,arg2) = dest_disj tm | |
in if (is_T arg1) then SPEC arg2 th1 | |
else if (is_T arg2) then SPEC arg1 th2 | |
else if (is_F arg1) then SPEC arg2 th3 | |
else if (is_F arg2) then SPEC arg1 th4 | |
else if (arg1 = arg2) then SPEC arg1 th5 | |
else failwith "" | |
) | |
) with Failure _ -> failwith "OR_CONV";; | |
(*============================================================================*) | |
(* Conversions for obtaining `clausal' form *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* EQ_IMP_COND_ELIM_CONV : (term -> bool) -> conv *) | |
(* *) | |
(* Eliminates Boolean equalities, Boolean conditionals, and implications from *) | |
(* terms consisting of =,==>,COND,/\,\/,~ and atoms. The atoms are specified *) | |
(* by the predicate that the conversion takes as its first argument. *) | |
(*----------------------------------------------------------------------------*) | |
let rec EQ_IMP_COND_ELIM_CONV is_atom tm = | |
try | |
(if (is_atom tm) then ALL_CONV tm | |
else if (is_neg tm) then (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom)) tm | |
else if (is_eq tm) then | |
((RATOR_CONV (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom))) THENC | |
(RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom)) THENC | |
EQ_EXPAND_CONV) tm | |
else if (is_imp tm) then | |
((RATOR_CONV (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom))) THENC | |
(RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom)) THENC | |
IMP_EXPAND_CONV) tm | |
else if (is_cond tm) then | |
((RATOR_CONV | |
(RATOR_CONV (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom)))) THENC | |
(RATOR_CONV (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom))) THENC | |
(RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom)) THENC | |
COND_EXPAND_CONV) tm | |
else ((RATOR_CONV (RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom))) THENC | |
(RAND_CONV (EQ_IMP_COND_ELIM_CONV is_atom))) tm | |
) with Failure _ -> failwith "EQ_IMP_COND_ELIM_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* MOVE_NOT_DOWN_CONV : (term -> bool) -> conv -> conv *) | |
(* *) | |
(* Moves negations down through a term consisting of /\,\/,~ and atoms. The *) | |
(* atoms are specified by a predicate (first argument). When a negation has *) | |
(* reached an atom, the conversion `conv' (second argument) is applied to the *) | |
(* negation of the atom. `conv' is also applied to any non-negated atoms *) | |
(* encountered. T and F are eliminated. *) | |
(*----------------------------------------------------------------------------*) | |
let rec MOVE_NOT_DOWN_CONV is_atom conv tm = | |
try | |
(if (is_atom tm) then (conv tm) | |
else if (is_neg tm) | |
then ((let tm' = rand tm | |
in if (is_atom tm') then ((conv THENC (TRY_CONV NOT_CONV)) tm) | |
else if (is_neg tm') then (NOT_NOT_NORM_CONV THENC | |
(MOVE_NOT_DOWN_CONV is_atom conv)) tm | |
else if (is_conj tm') then | |
(NOT_CONJ_NORM_CONV THENC | |
(RATOR_CONV (RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv))) | |
THENC | |
(RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv)) THENC | |
(TRY_CONV AND_CONV)) tm | |
else if (is_disj tm') then | |
(NOT_DISJ_NORM_CONV THENC | |
(RATOR_CONV (RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv))) | |
THENC | |
(RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv)) THENC | |
(TRY_CONV OR_CONV)) tm | |
else failwith "")) | |
else if (is_conj tm) then | |
((RATOR_CONV (RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv))) THENC | |
(RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv)) THENC | |
(TRY_CONV AND_CONV)) tm | |
else if (is_disj tm) then | |
((RATOR_CONV (RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv))) THENC | |
(RAND_CONV (MOVE_NOT_DOWN_CONV is_atom conv)) THENC | |
(TRY_CONV OR_CONV)) tm | |
else failwith "" | |
) with Failure _ -> failwith "MOVE_NOT_DOWN_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* CONJ_LINEAR_CONV : conv *) | |
(* *) | |
(* Linearizes conjuncts using the following conversion applied recursively: *) | |
(* *) | |
(* "(x /\ y) /\ z" *) | |
(* ================================ *) | |
(* |- (x /\ y) /\ z = x /\ (y /\ z) *) | |
(*----------------------------------------------------------------------------*) | |
let rec CONJ_LINEAR_CONV tm = | |
try | |
(if ((is_conj tm) && (is_conj (rand (rator tm)))) | |
then (CONJ_ASSOC_NORM_CONV THENC | |
(RAND_CONV (TRY_CONV CONJ_LINEAR_CONV)) THENC | |
(TRY_CONV CONJ_LINEAR_CONV)) tm | |
else failwith "" | |
) with Failure _ -> failwith "CONJ_LINEAR_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* CONJ_NORM_FORM_CONV : conv *) | |
(* *) | |
(* Puts a term involving /\ and \/ into conjunctive normal form. Anything *) | |
(* other than /\ and \/ is taken to be an atom and is not processed. *) | |
(* *) | |
(* The conjunction returned is linear, i.e. the conjunctions are associated *) | |
(* to the right. Each conjunct is a linear disjunction. *) | |
(*----------------------------------------------------------------------------*) | |
let rec CONJ_NORM_FORM_CONV tm = | |
try | |
(if (is_disj tm) then | |
(if (is_conj (rand (rator tm))) then | |
((RATOR_CONV | |
(RAND_CONV ((RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV)))) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV) THENC | |
RIGHT_DIST_NORM_CONV THENC | |
(RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV) THENC | |
(TRY_CONV CONJ_LINEAR_CONV)) tm | |
else if (is_conj (rand tm)) then | |
((RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV ((RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV))) THENC | |
LEFT_DIST_NORM_CONV THENC | |
(RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV) THENC | |
(TRY_CONV CONJ_LINEAR_CONV)) tm | |
else if (is_disj (rand (rator tm))) then | |
(DISJ_ASSOC_NORM_CONV THENC CONJ_NORM_FORM_CONV) tm | |
else (let th = RAND_CONV CONJ_NORM_FORM_CONV tm | |
in let tm' = rhs (concl th) | |
in if (is_conj (rand tm')) | |
then (TRANS th (CONJ_NORM_FORM_CONV tm')) | |
else th)) | |
else if (is_conj tm) then | |
((RATOR_CONV (RAND_CONV CONJ_NORM_FORM_CONV)) THENC | |
(RAND_CONV CONJ_NORM_FORM_CONV) THENC | |
(TRY_CONV CONJ_LINEAR_CONV)) tm | |
else ALL_CONV tm | |
) with Failure _ -> failwith "CONJ_NORM_FORM_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* has_boolean_args_and_result : term -> bool *) | |
(* *) | |
(* Yields true if and only if the term is of type ":bool", and if it is a *) | |
(* function application, all the arguments are of type ":bool". *) | |
(*----------------------------------------------------------------------------*) | |
let has_boolean_args_and_result tm = | |
try | |
(let args = snd (strip_comb tm) | |
in let types = (type_of tm)::(map type_of args) | |
in (subtract (setify types) [`:bool`]) = [] ) | |
with Failure _ -> (type_of tm = `:bool`);; | |
(*----------------------------------------------------------------------------*) | |
(* CLAUSAL_FORM_CONV : conv *) | |
(* *) | |
(* Puts into clausal form terms consisting of =,==>,COND,/\,\/,~ and atoms. *) | |
(*----------------------------------------------------------------------------*) | |
let CLAUSAL_FORM_CONV tm = | |
try ( | |
let is_atom tm = | |
(not (has_boolean_args_and_result tm)) || (is_var tm) || (is_const tm) | |
in | |
((EQ_IMP_COND_ELIM_CONV is_atom) THENC | |
(MOVE_NOT_DOWN_CONV is_atom ALL_CONV) THENC | |
CONJ_NORM_FORM_CONV) tm | |
) with Failure _ -> failwith "CLAUSAL_FORM_CONV";; | |