Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : rewrite_rules.ml *) | |
(* DESCRIPTION : Using axioms and lemmas as rewrite rules. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 14th May 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 15th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : 2008 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* is_permutative : term -> bool *) | |
(* *) | |
(* Determines whether or not an equation is permutative (the left-hand and *) | |
(* right-hand sides are instances of one another). A permutative equation may *) | |
(* cause looping when it is used for rewriting. *) | |
(*----------------------------------------------------------------------------*) | |
let is_permutative tm = | |
try (let (l,r) = dest_eq tm | |
in let bind1 = term_match [] l r | |
and bind2 = term_match [] r l | |
in true | |
) with Failure _ -> false;; | |
(*----------------------------------------------------------------------------*) | |
(* lex_smaller_term : term -> term -> bool *) | |
(* *) | |
(* Computes whether the first term is `alphabetically' smaller than the *) | |
(* second term. Used to avoid looping when rewriting with permutative rules. *) | |
(* *) | |
(* A constant is considered to be smaller than a variable which in turn is *) | |
(* considered to be smaller than an application. Two variables or two *) | |
(* constants are compared alphabetically by name. An application (f1 x1) is *) | |
(* considered to be smaller than another application (f2 x2) if either f1 is *) | |
(* smaller than f2, or f1 equals f2 and x1 is smaller than x2. *) | |
(*----------------------------------------------------------------------------*) | |
let rec lex_smaller_term tm1 tm2 = | |
try | |
(if (is_const tm1) then | |
(if (is_const tm2) | |
then let (name1,type1) = dest_const tm1 | |
and (name2,type2) = dest_const tm2 | |
in (if (type1 = type2) | |
then name1 < name2 | |
else failwith "" ) | |
else true) | |
else if (is_var tm1) then | |
(if (is_const tm2) then false | |
else if (is_var tm2) | |
then let (name1,type1) = dest_var tm1 | |
and (name2,type2) = dest_var tm2 | |
in (if (type1 = type2) | |
then name1 < name2 | |
else failwith "" ) | |
else true) | |
else if (is_comb tm1) then | |
(if (is_comb tm2) | |
then let (rator1,rand1) = dest_comb tm1 | |
and (rator2,rand2) = dest_comb tm2 | |
in (lex_smaller_term rator1 rator2) || | |
((rator1 = rator2) && (lex_smaller_term rand1 rand2)) | |
else false) | |
else failwith "" | |
) with Failure _ -> failwith "lex_smaller_term";; | |
(*----------------------------------------------------------------------------*) | |
(* inst_eq_thm : ((term # term) list # (type # type) list) -> thm -> thm *) | |
(* *) | |
(* Instantiates a theorem (possibly having hypotheses) with a binding. *) | |
(* Assumes the conclusion is an equality, so that discharging then undisching *) | |
(* cannot cause parts of the conclusion to be moved into the hypotheses. *) | |
(*----------------------------------------------------------------------------*) | |
let inst_eq_thm (tm_bind,ty_bind) th = | |
let (insts,vars) = List.split tm_bind | |
in (UNDISCH_ALL o (SPECL insts) o (GENL vars) o | |
(INST_TYPE ty_bind) o DISCH_ALL) th;; | |
(*----------------------------------------------------------------------------*) | |
(* applicable_rewrites : term -> thm list *) | |
(* *) | |
(* Returns the results of rewriting the term with those rewrite rules that *) | |
(* are applicable to it. A rewrite rule is not applicable if it's permutative *) | |
(* and the rewriting does not produce an alphabetically smaller term. *) | |
(*----------------------------------------------------------------------------*) | |
let applicable_rewrites tm = | |
let applicable_rewrite tm th = | |
let conc = concl th | |
in let (_,tm_bind,ty_bind) = term_match [] (lhs conc) tm | |
in let instth = inst_eq_thm (tm_bind,ty_bind) th | |
in if (is_permutative conc) | |
then (let (l,r) = dest_eq (concl instth) | |
in if (lex_smaller_term r l) | |
then instth | |
else failwith "") | |
else instth | |
in mapfilter ((applicable_rewrite tm) o snd) !system_rewrites;; | |
(*----------------------------------------------------------------------------*) | |
(* ARGS_CONV : conv -> conv *) | |
(* *) | |
(* Applies a conversion to every argument of an application of the form *) | |
(* "f x1 ... xn". *) | |
(*----------------------------------------------------------------------------*) | |
let rec ARGS_CONV conv tm = | |
try ( | |
((RATOR_CONV (ARGS_CONV conv)) THENC (RAND_CONV conv)) tm | |
) with Failure _ -> ALL_CONV tm;; | |
(*----------------------------------------------------------------------------*) | |
(* assump_inst_hyps : term list -> *) | |
(* term -> *) | |
(* term list -> *) | |
(* ((term # term) list # (type # type) list) *) | |
(* *) | |
(* Searches a list of hypotheses for one that matches the specified *) | |
(* assumption such that the variables instantiated are precisely those in the *) | |
(* list of variables given. If such a hypothesis is found, the binding *) | |
(* produced by the match is returned. *) | |
(*----------------------------------------------------------------------------*) | |
let rec assump_inst_hyps vars assump hyps = | |
try(let (_,tm_bind,ty_bind) = term_match [] (hd hyps) assump | |
in let bind = (tm_bind,ty_bind) | |
in if (set_eq vars (map snd (fst bind))) | |
then bind | |
else failwith "") | |
with Failure _ -> try (assump_inst_hyps vars assump (tl hyps)) | |
with Failure _ -> failwith "assump_inst_hyps";; | |
(*----------------------------------------------------------------------------*) | |
(* assumps_inst_hyps : term list -> *) | |
(* term list -> *) | |
(* term list -> *) | |
(* ((term # term) list # (type # type) list) *) | |
(* *) | |
(* Searches a list of hypotheses and a list of assumptions for a pairing that *) | |
(* match (the assumption is an instance of the hypothesis) such that the *) | |
(* variables instantiated are precisely those in the list of variables given. *) | |
(* If such a pair is found, the binding produced by the match is returned. *) | |
(*----------------------------------------------------------------------------*) | |
let rec assumps_inst_hyps vars assumps hyps = | |
try (assump_inst_hyps vars (hd assumps) hyps) | |
with Failure _ -> try (assumps_inst_hyps vars (tl assumps) hyps) | |
with Failure _ -> failwith "assumps_inst_hyps";; | |
(*----------------------------------------------------------------------------*) | |
(* inst_frees_in_hyps : term list -> thm -> thm *) | |
(* *) | |
(* Takes a theorem (possibly with hypotheses) and computes a list of *) | |
(* variables that are free in the hypotheses but not in the conclusion. *) | |
(* If this list of variables is empty the original theorem is returned. *) | |
(* The function also takes a list of assumptions as another argument. Once it *) | |
(* has the list of variables it searches for an assumption and a hypothesis *) | |
(* such that the hypothesis matches the assumption binding precisely those *) | |
(* variables in the list. If this is successful the original theorem is *) | |
(* returned having had the variables in the list instantiated. *) | |
(*----------------------------------------------------------------------------*) | |
let inst_frees_in_hyps assumps th = | |
try (let hyps = hyp th | |
in let hyp_frees = setify (flat (map frees hyps)) | |
in let vars = subtract hyp_frees (frees (concl th)) | |
in if (vars = []) | |
then th | |
else let bind = assumps_inst_hyps vars assumps hyps | |
in inst_eq_thm bind th | |
) with Failure _ -> failwith "inst_frees_in_hyps";; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_IMP_EQ_EQ_EQ_OR = |- (~x ==> (y = y')) = ((y \/ x) = (y' \/ x)) *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_IMP_EQ_EQ_EQ_OR = | |
prove | |
(`(~x ==> (y = y')) = ((y \/ x) = (y' \/ x))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `y':bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* IMP_EQ_EQ_EQ_OR_NOT = |- (x ==> (y = y')) = ((y \/ ~x) = (y' \/ ~x)) *) | |
(*----------------------------------------------------------------------------*) | |
let IMP_EQ_EQ_EQ_OR_NOT = | |
prove | |
(`(x ==> (y = y')) = ((y \/ ~x) = (y' \/ ~x))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `y':bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* NOT_IMP_EQ_OR_EQ_EQ_OR_OR = *) | |
(* |- (~x ==> ((y \/ t) = (y' \/ t))) = ((y \/ (x \/ t)) = (y' \/ (x \/ t))) *) | |
(*----------------------------------------------------------------------------*) | |
let NOT_IMP_EQ_OR_EQ_EQ_OR_OR = | |
prove | |
(`(~x ==> ((y \/ t) = (y' \/ t))) = ((y \/ (x \/ t)) = (y' \/ (x \/ t)))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `y':bool` THEN | |
BOOL_CASES_TAC `t:bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* IMP_EQ_OR_EQ_EQ_OR_NOT_OR = *) | |
(* |- (x ==> ((y \/ t) = (y' \/ t))) = ((y \/ (~x \/ t)) = (y' \/ (~x \/ t))) *) | |
(*----------------------------------------------------------------------------*) | |
let IMP_EQ_OR_EQ_EQ_OR_NOT_OR = | |
prove | |
(`(x ==> ((y \/ t) = (y' \/ t))) = ((y \/ (~x \/ t)) = (y' \/ (~x \/ t)))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `y':bool` THEN | |
BOOL_CASES_TAC `t:bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* IMP_EQ_EQ_EQ_NOT_OR = |- (x ==> (t = t')) = ((~x \/ t) = (~x \/ t')) *) | |
(*----------------------------------------------------------------------------*) | |
let IMP_EQ_EQ_EQ_NOT_OR = | |
prove | |
(`(x ==> (t = t')) = ((~x \/ t) = (~x \/ t'))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `t:bool` THEN | |
BOOL_CASES_TAC `t':bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* IMP_NOT_EQ_EQ_EQ_OR = |- (~x ==> (t = t')) = ((x \/ t) = (x \/ t')) *) | |
(*----------------------------------------------------------------------------*) | |
let IMP_NOT_EQ_EQ_EQ_OR = | |
prove | |
(`(~x ==> (t = t')) = ((x \/ t) = (x \/ t'))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `t:bool` THEN | |
BOOL_CASES_TAC `t':bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* T_OR = |- T \/ t = T *) | |
(* OR_T = |- t \/ T = T *) | |
(* F_OR = |- F \/ t = t *) | |
(* OR_F = |- t \/ F = t *) | |
(*----------------------------------------------------------------------------*) | |
let [T_OR;OR_T;F_OR;OR_F;_] = CONJUNCTS (SPEC_ALL OR_CLAUSES);; | |
(*----------------------------------------------------------------------------*) | |
(* UNDER_DISJ_DISCH : term -> thm -> thm *) | |
(* *) | |
(* A, ~x |- y \/ t = y' \/ t A, x |- y \/ t = y' \/ t *) | |
(* ------------------------------- --------------------------------- *) | |
(* A |- y \/ x \/ t = y' \/ x \/ t A |- y \/ ~x \/ t = y' \/ ~x \/ t *) | |
(* *) | |
(* A, ~x |- y = y' A, x |- y = y' *) | |
(* --------------------- ----------------------- *) | |
(* A |- y \/ x = y' \/ x A |- y \/ ~x = y' \/ ~x *) | |
(* *) | |
(* The function assumes that y is a literal, so it is valid to test the LHS *) | |
(* of the theorem to see if it is a disjunction in order to determine which *) | |
(* rule to use. *) | |
(*----------------------------------------------------------------------------*) | |
let UNDER_DISJ_DISCH tm th = | |
try | |
(let rewrite = | |
if (is_disj (lhs (concl th))) | |
then if (is_neg tm) | |
then NOT_IMP_EQ_OR_EQ_EQ_OR_OR | |
else IMP_EQ_OR_EQ_EQ_OR_NOT_OR | |
else if (is_neg tm) | |
then NOT_IMP_EQ_EQ_EQ_OR | |
else IMP_EQ_EQ_EQ_OR_NOT | |
in CONV_RULE (REWR_CONV rewrite) (DISCH tm th) | |
) with Failure _ -> failwith "UNDER_DISJ_DISCH";; | |
(*----------------------------------------------------------------------------*) | |
(* OVER_DISJ_DISCH : term -> thm -> thm *) | |
(* *) | |
(* A, ~x |- t = t' A, x |- t = t' *) | |
(* --------------------- ----------------------- *) | |
(* A |- x \/ t = x \/ t' A |- ~x \/ t = ~x \/ t' *) | |
(*----------------------------------------------------------------------------*) | |
let OVER_DISJ_DISCH tm th = | |
try (let rewrite = | |
if (is_neg tm) | |
then IMP_NOT_EQ_EQ_EQ_OR | |
else IMP_EQ_EQ_EQ_NOT_OR | |
in CONV_RULE (REWR_CONV rewrite) (DISCH tm th) | |
) with Failure _ -> failwith "OVER_DISJ_DISCH";; | |
(*----------------------------------------------------------------------------*) | |
(* MULTI_DISJ_DISCH : (term list # term list) -> thm -> thm *) | |
(* *) | |
(* Examples: *) | |
(* *) | |
(* MULTI_DISJ_DISCH (["x1"; "x2"],["~x3"; "x4"]) x1, ~x3, x4, x2 |- y = y' *) | |
(* ---> *) | |
(* |- ~x1 \/ ~x2 \/ y \/ x3 \/ ~x4 = ~x1 \/ ~x2 \/ y' \/ x3 \/ ~x4 *) | |
(* *) | |
(* *) | |
(* MULTI_DISJ_DISCH (["x1"; "x2"],["~x3"; "x4"]) x1, ~x3, x4, x2 |- y = F *) | |
(* ---> *) | |
(* |- ~x1 \/ ~x2 \/ y \/ x3 \/ ~x4 = ~x1 \/ ~x2 \/ x3 \/ ~x4 *) | |
(* *) | |
(* *) | |
(* MULTI_DISJ_DISCH (["x1"; "x2"],["~x3"; "x4"]) x1, ~x3, x4, x2 |- y = T *) | |
(* ---> *) | |
(* |- ~x1 \/ ~x2 \/ y \/ x3 \/ ~x4 = T *) | |
(*----------------------------------------------------------------------------*) | |
let MULTI_DISJ_DISCH (overs,unders) th = | |
try | |
(let th1 = itlist UNDER_DISJ_DISCH unders th | |
in let tm1 = rhs (concl th1) | |
in let th2 = | |
if (try(is_T (fst (dest_disj tm1))) with Failure _ -> false) then | |
(CONV_RULE (RAND_CONV (REWR_CONV T_OR)) th1) | |
else if (try(is_F (fst (dest_disj tm1))) with Failure _ -> false) then | |
(CONV_RULE (RAND_CONV (REWR_CONV F_OR)) th1) | |
else th1 | |
in let tm2 = rhs (concl th2) | |
in let rule = | |
if (is_T tm2) then CONV_RULE (RAND_CONV (REWR_CONV OR_T)) else I | |
in itlist (fun tm th -> rule (OVER_DISJ_DISCH tm th)) overs th2 | |
) with Failure _ -> failwith "MULTI_DISJ_DISCH";; | |