Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.9 kB
(******************************************************************************)
(* FILE : shells.ml *)
(* DESCRIPTION : Vague approximation in ML to Boyer-Moore "shell" principle *)
(* *)
(* READS FILES : <none> *)
(* WRITES FILES : <none> *)
(* *)
(* AUTHOR : R.J.Boulton *)
(* DATE : 8th May 1991 *)
(* *)
(* LAST MODIFIED : R.J.Boulton *)
(* DATE : 12th October 1992 *)
(* *)
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *)
(* DATE : July 2009 *)
(******************************************************************************)
(*----------------------------------------------------------------------------*)
(* ML datatype for holding information about a recursive logical type. *)
(*----------------------------------------------------------------------------*)
type constructor_info =
string * (* Constructor name *)
hol_type list * (* Argument types *)
(string * thm) list;; (* Accessor functions *)
type shell_info =
{arg_types : hol_type list; (* Argument types for type constructor *)
constructors :
constructor_info list; (* Constructors for the type *)
(* axiom : thm; (* Type axiom *)*)
induct : thm; (* Induction theorem *)
cases : thm; (* Cases theorem *)
distinct : thm list; (* Constructors distinct *)
one_one : thm list; (* Constructors one-one *)
struct_conv : conv -> conv};;
type shell = Shell of string * shell_info;;
(*----------------------------------------------------------------------------*)
(* Reference variable holding the currently defined system shells. *)
(*----------------------------------------------------------------------------*)
let system_shells = ref ([]:shell list);;
(*----------------------------------------------------------------------------*)
(* Function to find the details of a named shell from a list of shells. *)
(*----------------------------------------------------------------------------*)
let rec shell_info (shl:shell list) name =
if (shl = [])
then failwith "shell_info"
else match (hd shl) with Shell (sh_name,info) ->
(if (sh_name = name)
then info
else shell_info (tl shl) name);;
(*----------------------------------------------------------------------------*)
(* Function to find the details of a named shell from the shells currently *)
(* defined in the system. *)
(*----------------------------------------------------------------------------*)
let sys_shell_info name = shell_info !system_shells name;;
(*----------------------------------------------------------------------------*)
(* Functions to extract the components of shell information. *)
(*----------------------------------------------------------------------------*)
let shell_constructors info = info.constructors;;
let shell_accessor_thms info =
((map snd) o flat o (map thd3) o shell_constructors) info;;
let shell_arg_types info = info.arg_types;;
(*
let shell_arg_types info = fst info
and shell_constructors info = (fst o snd) info
and shell_axiom info = (fst o snd o snd) info
and shell_induct info = (fst o snd o snd o snd) info
and shell_cases info = (fst o snd o snd o snd o snd) info
and shell_distinct info = (fst o snd o snd o snd o snd o snd) info
and shell_one_one info = (fst o snd o snd o snd o snd o snd o snd) info
and shell_struct_conv info = (snd o snd o snd o snd o snd o snd o snd) info;;
*)
(*----------------------------------------------------------------------------*)
(* Function to extract details of a named constructor from shell information. *)
(*----------------------------------------------------------------------------*)
let shell_constructor name (info:shell_info) =
let rec shell_constructor' name triples =
if (triples = [])
then failwith "shell_constructor"
else let (con_name,arg_types,accessors) = (hd triples)
in if (con_name = name)
then (arg_types,accessors)
else shell_constructor' name (tl triples)
in shell_constructor' name (info.constructors);;
(*----------------------------------------------------------------------------*)
(* Functions to extract the argument types and the accessor functions for a *)
(* particular constructor. The source is a set of shell information. *)
(*----------------------------------------------------------------------------*)
let shell_constructor_arg_types name info =
fst (shell_constructor name info)
and shell_constructor_accessors name info =
snd (shell_constructor name info);;
(*----------------------------------------------------------------------------*)
(* shells : void -> string list *)
(* *)
(* Function to compute the names of the currently defined system shells. *)
(*----------------------------------------------------------------------------*)
let shells () =
let rec shells' shl =
if (shl = [])
then []
else match (hd shl) with (Shell (name,_)) -> (name::(shells' (tl shl)))
in shells' !system_shells;;
(*----------------------------------------------------------------------------*)
(* all_constructors : void -> string list *)
(* *)
(* Returns a list of all the shell constructors (and bottom values) available *)
(* in the system. *)
(*----------------------------------------------------------------------------*)
let all_constructors () =
flat (map (map fst3 o shell_constructors o sys_shell_info) (shells ()));;
(*----------------------------------------------------------------------------*)
(* all_accessors : void -> string list *)
(* *)
(* Returns a list of all the shell accessors available in the system. *)
(*----------------------------------------------------------------------------*)
let all_accessors () =
flat (map (flat o map (map fst o thd3) o shell_constructors o
sys_shell_info) (shells ()));;
let all_accessor_thms () =
flat (map (shell_accessor_thms o sys_shell_info) (shells ()));;
(*----------------------------------------------------------------------------*)
(* `Shell' for natural numbers. *)
(*----------------------------------------------------------------------------*)
let num_shell =
let (*axiom = num_Axiom
and*) induct = num_INDUCTION
and cases = num_CASES
and distinct = [NOT_SUC]
and one_one = [SUC_INJ]
(* and pre = PRE *)
in Shell
("num",
{arg_types = [];
constructors =
[("0",[],[]);("SUC",[`:num`],[("PRE",CONJUNCT2 PRE)])];
(*axiom = axiom;*)
induct = induct;
cases = cases;
distinct = distinct;
one_one = one_one;
struct_conv = ONE_STEP_RECTY_EQ_CONV
(induct,distinct,one_one)});;
(*----------------------------------------------------------------------------*)
(* `Shell' for lists. *)
(*----------------------------------------------------------------------------*)
let list_shell =
let (*axiom = new_axiom `!x f. ?!fn1. (fn1 [] = x) /\ (!h t. fn1 (CONS h t) = f (fn1 t) h t)`
(* |- !x f. ?!fn1. (fn1 [] = x) /\ (!h t. fn1 (CONS h t) = f (fn1 t) h t) *)
and *) induct = list_INDUCT
and cases = list_CASES
and distinct = [NOT_CONS_NIL]
and one_one = [CONS_11]
in Shell
("list",
{arg_types = [`:'a`];
constructors =
[("NIL",[],[]);
("CONS",
[`:'a`;`:('a)list`],[("HD",HD);("TL",TL)])];
(* axiom = axiom; *)
induct = induct;
cases = cases;
distinct = distinct;
one_one = one_one;
struct_conv = ONE_STEP_RECTY_EQ_CONV
(induct,distinct,one_one)});;
(*----------------------------------------------------------------------------*)
(* Set-up the system shell to reflect the basic HOL system. *)
(*----------------------------------------------------------------------------*)
system_shells := [list_shell;num_shell];;
(*----------------------------------------------------------------------------*)
(* define_shell : string -> string -> (string # string list) list -> void *)
(* *)
(* Function for defining a new HOL type together with accessor functions, and *)
(* making a new Boyer-Moore shell from these definitions. If the type already *)
(* exists the function attempts to load the corresponding theorems from the *)
(* current theory hierarchy and use them to make the shell. *)
(* *)
(* The first two arguments correspond to the arguments taken by `define_type' *)
(* and the third argument defines the accessor functions. This is a list of *)
(* constructor names each with names of accessors. The function assumes that *)
(* there are no accessors for a constructor that doesn't appear in the list, *)
(* so it is not necessary to include an entry for a nullary constructor. For *)
(* other constructors there must be one accessor name for each argument and *)
(* they should be given in the correct order. The function ignores any item *)
(* in the list with a constructor name that does not belong to the type. *)
(* *)
(* The constructor and accessor names must all be distinct and must not be *)
(* the names of existing constants. *)
(* *)
(* Example: *)
(* *)
(* define_shell `sexp` `sexp = Nil | Atom * | Cons sexp sexp` *)
(* [(`Atom`,[`Tok`]);(`Cons`,[`Car`;`Cdr`])];; *)
(* *)
(* This results in the following theorems being stored in the current theory *)
(* (or these are the theorems the function would expect to find in the theory *)
(* hierarchy if the type already exists): *)
(* *)
(* sexp (type axiom) *)
(* sexp_Induct (induction theorem) *)
(* sexp_one_one (injectivity of constructors) *)
(* sexp_distinct (distinctness of constructors) *)
(* sexp_cases (cases theorem) *)
(* *)
(* The following definitions for the accessor functions are also stored: *)
(* *)
(* Tok |- !x. Tok(Atom x) = x *)
(* Car |- !s1 s2. Car(Cons s1 s2) = s1 *)
(* Cdr |- !s1 s2. Cdr(Cons s1 s2) = s2 *)
(* *)
(* In certain cases the distinctness or injectivity theorems may not exist, *)
(* when nothing is saved for them. *)
(* *)
(* Finally, a new Boyer-Moore shell is added based on the definitions and *)
(* theorems. *)
(*----------------------------------------------------------------------------*)
(*
let define_shell name syntax accessors =
let find_theory s =
letrec f s l =
if (null l)
then failwith `find_theory`
else if can (theorem (hd l)) s
then hd l
else f s (tl l)
in f s (ancestry ())
in
let mk_def_eq (name,comb,arg) =
let ty = mk_type(`fun`,[type_of comb;type_of arg])
in mk_eq(mk_comb(mk_var(name,ty),comb),arg)
in
let define_accessor axiom (name,tm) =
(name,new_recursive_definition false axiom name tm)
in
let define_accessors axiom (comb,specs) =
map (\(name,arg). define_accessor axiom (name,mk_def_eq (name,comb,arg)))
specs
in
if (mem name (shells ()))
then failwith `define_shell -- shell already exists`
else
let defined = is_type name
in let theory =
if defined
then (find_theory name ?
failwith (`define_shell -- no axiom found for type ` ^ name))
else current_theory ()
in let name_Axiom =
if defined
then theorem theory name
else define_type name syntax
in let name_Induct =
if defined
then theorem theory (name ^ `_Induct`)
else save_thm((name ^ `_Induct`),prove_induction_thm name_Axiom)
and name_one_ones =
if defined
then (CONJUNCTS (theorem theory (name ^ `_one_one`))
?\s if (can prove_constructors_one_one name_Axiom)
then failwith s
else [])
else ((CONJUNCTS o save_thm)
((name ^ `_one_one`),prove_constructors_one_one name_Axiom)
? [])
and name_distincts =
if defined
then (CONJUNCTS (theorem theory (name ^ `_distinct`))
?\s if (can prove_constructors_distinct name_Axiom)
then failwith s
else [])
else ((CONJUNCTS o save_thm)
((name ^ `_distinct`),prove_constructors_distinct name_Axiom)
? [])
in let name_cases =
if defined
then theorem theory (name ^ `_cases`)
else save_thm((name ^ `_cases`),prove_cases_thm name_Induct)
in let ty = (type_of o fst o dest_forall o concl) name_cases
in let ty_args = snd (dest_type ty)
in let cases = (disjuncts o snd o dest_forall o concl) name_cases
in let combs = map (rhs o snd o strip_exists) cases
in let constrs_and_args = map (((fst o dest_const) # I) o strip_comb) combs
in let (constrs,arg_types) =
split (map (I # (map type_of)) constrs_and_args)
in let acc_specs =
map (\(c,args). combine((snd (assoc c accessors) ? []),args)
? failwith
(`define_shell -- ` ^
`incorrect number of accessors for constructor ` ^ c))
constrs_and_args
in let acc_defs =
if defined
then map (map ((\acc. (acc,definition theory acc)) o fst)) acc_specs
else map (define_accessors name_Axiom) (combine (combs,acc_specs))
in let name_shell =
Shell (name,ty_args,combine(constrs,combine(arg_types,acc_defs)),
name_Axiom,name_Induct,name_cases,
name_distincts,name_one_ones,
ONE_STEP_RECTY_EQ_CONV
(name_Induct,name_distincts,name_one_ones))
in do (system_shells := name_shell.system_shells);;
*)