Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : shells.ml *) | |
(* DESCRIPTION : Vague approximation in ML to Boyer-Moore "shell" principle *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 8th May 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 12th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : July 2009 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* ML datatype for holding information about a recursive logical type. *) | |
(*----------------------------------------------------------------------------*) | |
type constructor_info = | |
string * (* Constructor name *) | |
hol_type list * (* Argument types *) | |
(string * thm) list;; (* Accessor functions *) | |
type shell_info = | |
{arg_types : hol_type list; (* Argument types for type constructor *) | |
constructors : | |
constructor_info list; (* Constructors for the type *) | |
(* axiom : thm; (* Type axiom *)*) | |
induct : thm; (* Induction theorem *) | |
cases : thm; (* Cases theorem *) | |
distinct : thm list; (* Constructors distinct *) | |
one_one : thm list; (* Constructors one-one *) | |
struct_conv : conv -> conv};; | |
type shell = Shell of string * shell_info;; | |
(*----------------------------------------------------------------------------*) | |
(* Reference variable holding the currently defined system shells. *) | |
(*----------------------------------------------------------------------------*) | |
let system_shells = ref ([]:shell list);; | |
(*----------------------------------------------------------------------------*) | |
(* Function to find the details of a named shell from a list of shells. *) | |
(*----------------------------------------------------------------------------*) | |
let rec shell_info (shl:shell list) name = | |
if (shl = []) | |
then failwith "shell_info" | |
else match (hd shl) with Shell (sh_name,info) -> | |
(if (sh_name = name) | |
then info | |
else shell_info (tl shl) name);; | |
(*----------------------------------------------------------------------------*) | |
(* Function to find the details of a named shell from the shells currently *) | |
(* defined in the system. *) | |
(*----------------------------------------------------------------------------*) | |
let sys_shell_info name = shell_info !system_shells name;; | |
(*----------------------------------------------------------------------------*) | |
(* Functions to extract the components of shell information. *) | |
(*----------------------------------------------------------------------------*) | |
let shell_constructors info = info.constructors;; | |
let shell_accessor_thms info = | |
((map snd) o flat o (map thd3) o shell_constructors) info;; | |
let shell_arg_types info = info.arg_types;; | |
(* | |
let shell_arg_types info = fst info | |
and shell_constructors info = (fst o snd) info | |
and shell_axiom info = (fst o snd o snd) info | |
and shell_induct info = (fst o snd o snd o snd) info | |
and shell_cases info = (fst o snd o snd o snd o snd) info | |
and shell_distinct info = (fst o snd o snd o snd o snd o snd) info | |
and shell_one_one info = (fst o snd o snd o snd o snd o snd o snd) info | |
and shell_struct_conv info = (snd o snd o snd o snd o snd o snd o snd) info;; | |
*) | |
(*----------------------------------------------------------------------------*) | |
(* Function to extract details of a named constructor from shell information. *) | |
(*----------------------------------------------------------------------------*) | |
let shell_constructor name (info:shell_info) = | |
let rec shell_constructor' name triples = | |
if (triples = []) | |
then failwith "shell_constructor" | |
else let (con_name,arg_types,accessors) = (hd triples) | |
in if (con_name = name) | |
then (arg_types,accessors) | |
else shell_constructor' name (tl triples) | |
in shell_constructor' name (info.constructors);; | |
(*----------------------------------------------------------------------------*) | |
(* Functions to extract the argument types and the accessor functions for a *) | |
(* particular constructor. The source is a set of shell information. *) | |
(*----------------------------------------------------------------------------*) | |
let shell_constructor_arg_types name info = | |
fst (shell_constructor name info) | |
and shell_constructor_accessors name info = | |
snd (shell_constructor name info);; | |
(*----------------------------------------------------------------------------*) | |
(* shells : void -> string list *) | |
(* *) | |
(* Function to compute the names of the currently defined system shells. *) | |
(*----------------------------------------------------------------------------*) | |
let shells () = | |
let rec shells' shl = | |
if (shl = []) | |
then [] | |
else match (hd shl) with (Shell (name,_)) -> (name::(shells' (tl shl))) | |
in shells' !system_shells;; | |
(*----------------------------------------------------------------------------*) | |
(* all_constructors : void -> string list *) | |
(* *) | |
(* Returns a list of all the shell constructors (and bottom values) available *) | |
(* in the system. *) | |
(*----------------------------------------------------------------------------*) | |
let all_constructors () = | |
flat (map (map fst3 o shell_constructors o sys_shell_info) (shells ()));; | |
(*----------------------------------------------------------------------------*) | |
(* all_accessors : void -> string list *) | |
(* *) | |
(* Returns a list of all the shell accessors available in the system. *) | |
(*----------------------------------------------------------------------------*) | |
let all_accessors () = | |
flat (map (flat o map (map fst o thd3) o shell_constructors o | |
sys_shell_info) (shells ()));; | |
let all_accessor_thms () = | |
flat (map (shell_accessor_thms o sys_shell_info) (shells ()));; | |
(*----------------------------------------------------------------------------*) | |
(* `Shell' for natural numbers. *) | |
(*----------------------------------------------------------------------------*) | |
let num_shell = | |
let (*axiom = num_Axiom | |
and*) induct = num_INDUCTION | |
and cases = num_CASES | |
and distinct = [NOT_SUC] | |
and one_one = [SUC_INJ] | |
(* and pre = PRE *) | |
in Shell | |
("num", | |
{arg_types = []; | |
constructors = | |
[("0",[],[]);("SUC",[`:num`],[("PRE",CONJUNCT2 PRE)])]; | |
(*axiom = axiom;*) | |
induct = induct; | |
cases = cases; | |
distinct = distinct; | |
one_one = one_one; | |
struct_conv = ONE_STEP_RECTY_EQ_CONV | |
(induct,distinct,one_one)});; | |
(*----------------------------------------------------------------------------*) | |
(* `Shell' for lists. *) | |
(*----------------------------------------------------------------------------*) | |
let list_shell = | |
let (*axiom = new_axiom `!x f. ?!fn1. (fn1 [] = x) /\ (!h t. fn1 (CONS h t) = f (fn1 t) h t)` | |
(* |- !x f. ?!fn1. (fn1 [] = x) /\ (!h t. fn1 (CONS h t) = f (fn1 t) h t) *) | |
and *) induct = list_INDUCT | |
and cases = list_CASES | |
and distinct = [NOT_CONS_NIL] | |
and one_one = [CONS_11] | |
in Shell | |
("list", | |
{arg_types = [`:'a`]; | |
constructors = | |
[("NIL",[],[]); | |
("CONS", | |
[`:'a`;`:('a)list`],[("HD",HD);("TL",TL)])]; | |
(* axiom = axiom; *) | |
induct = induct; | |
cases = cases; | |
distinct = distinct; | |
one_one = one_one; | |
struct_conv = ONE_STEP_RECTY_EQ_CONV | |
(induct,distinct,one_one)});; | |
(*----------------------------------------------------------------------------*) | |
(* Set-up the system shell to reflect the basic HOL system. *) | |
(*----------------------------------------------------------------------------*) | |
system_shells := [list_shell;num_shell];; | |
(*----------------------------------------------------------------------------*) | |
(* define_shell : string -> string -> (string # string list) list -> void *) | |
(* *) | |
(* Function for defining a new HOL type together with accessor functions, and *) | |
(* making a new Boyer-Moore shell from these definitions. If the type already *) | |
(* exists the function attempts to load the corresponding theorems from the *) | |
(* current theory hierarchy and use them to make the shell. *) | |
(* *) | |
(* The first two arguments correspond to the arguments taken by `define_type' *) | |
(* and the third argument defines the accessor functions. This is a list of *) | |
(* constructor names each with names of accessors. The function assumes that *) | |
(* there are no accessors for a constructor that doesn't appear in the list, *) | |
(* so it is not necessary to include an entry for a nullary constructor. For *) | |
(* other constructors there must be one accessor name for each argument and *) | |
(* they should be given in the correct order. The function ignores any item *) | |
(* in the list with a constructor name that does not belong to the type. *) | |
(* *) | |
(* The constructor and accessor names must all be distinct and must not be *) | |
(* the names of existing constants. *) | |
(* *) | |
(* Example: *) | |
(* *) | |
(* define_shell `sexp` `sexp = Nil | Atom * | Cons sexp sexp` *) | |
(* [(`Atom`,[`Tok`]);(`Cons`,[`Car`;`Cdr`])];; *) | |
(* *) | |
(* This results in the following theorems being stored in the current theory *) | |
(* (or these are the theorems the function would expect to find in the theory *) | |
(* hierarchy if the type already exists): *) | |
(* *) | |
(* sexp (type axiom) *) | |
(* sexp_Induct (induction theorem) *) | |
(* sexp_one_one (injectivity of constructors) *) | |
(* sexp_distinct (distinctness of constructors) *) | |
(* sexp_cases (cases theorem) *) | |
(* *) | |
(* The following definitions for the accessor functions are also stored: *) | |
(* *) | |
(* Tok |- !x. Tok(Atom x) = x *) | |
(* Car |- !s1 s2. Car(Cons s1 s2) = s1 *) | |
(* Cdr |- !s1 s2. Cdr(Cons s1 s2) = s2 *) | |
(* *) | |
(* In certain cases the distinctness or injectivity theorems may not exist, *) | |
(* when nothing is saved for them. *) | |
(* *) | |
(* Finally, a new Boyer-Moore shell is added based on the definitions and *) | |
(* theorems. *) | |
(*----------------------------------------------------------------------------*) | |
(* | |
let define_shell name syntax accessors = | |
let find_theory s = | |
letrec f s l = | |
if (null l) | |
then failwith `find_theory` | |
else if can (theorem (hd l)) s | |
then hd l | |
else f s (tl l) | |
in f s (ancestry ()) | |
in | |
let mk_def_eq (name,comb,arg) = | |
let ty = mk_type(`fun`,[type_of comb;type_of arg]) | |
in mk_eq(mk_comb(mk_var(name,ty),comb),arg) | |
in | |
let define_accessor axiom (name,tm) = | |
(name,new_recursive_definition false axiom name tm) | |
in | |
let define_accessors axiom (comb,specs) = | |
map (\(name,arg). define_accessor axiom (name,mk_def_eq (name,comb,arg))) | |
specs | |
in | |
if (mem name (shells ())) | |
then failwith `define_shell -- shell already exists` | |
else | |
let defined = is_type name | |
in let theory = | |
if defined | |
then (find_theory name ? | |
failwith (`define_shell -- no axiom found for type ` ^ name)) | |
else current_theory () | |
in let name_Axiom = | |
if defined | |
then theorem theory name | |
else define_type name syntax | |
in let name_Induct = | |
if defined | |
then theorem theory (name ^ `_Induct`) | |
else save_thm((name ^ `_Induct`),prove_induction_thm name_Axiom) | |
and name_one_ones = | |
if defined | |
then (CONJUNCTS (theorem theory (name ^ `_one_one`)) | |
?\s if (can prove_constructors_one_one name_Axiom) | |
then failwith s | |
else []) | |
else ((CONJUNCTS o save_thm) | |
((name ^ `_one_one`),prove_constructors_one_one name_Axiom) | |
? []) | |
and name_distincts = | |
if defined | |
then (CONJUNCTS (theorem theory (name ^ `_distinct`)) | |
?\s if (can prove_constructors_distinct name_Axiom) | |
then failwith s | |
else []) | |
else ((CONJUNCTS o save_thm) | |
((name ^ `_distinct`),prove_constructors_distinct name_Axiom) | |
? []) | |
in let name_cases = | |
if defined | |
then theorem theory (name ^ `_cases`) | |
else save_thm((name ^ `_cases`),prove_cases_thm name_Induct) | |
in let ty = (type_of o fst o dest_forall o concl) name_cases | |
in let ty_args = snd (dest_type ty) | |
in let cases = (disjuncts o snd o dest_forall o concl) name_cases | |
in let combs = map (rhs o snd o strip_exists) cases | |
in let constrs_and_args = map (((fst o dest_const) # I) o strip_comb) combs | |
in let (constrs,arg_types) = | |
split (map (I # (map type_of)) constrs_and_args) | |
in let acc_specs = | |
map (\(c,args). combine((snd (assoc c accessors) ? []),args) | |
? failwith | |
(`define_shell -- ` ^ | |
`incorrect number of accessors for constructor ` ^ c)) | |
constrs_and_args | |
in let acc_defs = | |
if defined | |
then map (map ((\acc. (acc,definition theory acc)) o fst)) acc_specs | |
else map (define_accessors name_Axiom) (combine (combs,acc_specs)) | |
in let name_shell = | |
Shell (name,ty_args,combine(constrs,combine(arg_types,acc_defs)), | |
name_Axiom,name_Induct,name_cases, | |
name_distincts,name_one_ones, | |
ONE_STEP_RECTY_EQ_CONV | |
(name_Induct,name_distincts,name_one_ones)) | |
in do (system_shells := name_shell.system_shells);; | |
*) | |