Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let mytheory = ref [ | |
`m + 0 = m`; | |
`m + (SUC n) = SUC(m + n)`; | |
`m + n = n + m`; | |
`m + (n + p) = (m + n) + p`; | |
`(m + n) + p = m + (n + p)`; | |
`(m + n = 0) <=> (m = 0) /\ (n = 0)`; | |
`(m + n = m + p) <=> (n = p)`; | |
`(m + p = n + p) <=> (m = n)`; | |
`(m + n = m) <=> (n = 0)`; | |
`(m + n = n) <=> (m = 0)`; | |
`SUC m = m + SUC(0)`; | |
`m * 0 = 0`; | |
`m * (SUC n) = m + (m * n)`; | |
`(0 * n = 0) /\ (m * 0 = 0) /\ (1 * n = n) /\ (m * 1 = m) /\ ((SUC m) * n = (m * n) + n) /\ (m * (SUC n) = m + (m * n))`; | |
`m * n = n * m`; | |
`m * (n + p) = (m * n) + (m * p)`; | |
`(m + n) * p = (m * p) + (n * p)`; | |
`m * (n * p) = (m * n) * p`; | |
`(m * n = 0) <=> (m = 0) \/ (n = 0)`; | |
`(m * n = m * p) <=> (m = 0) \/ (n = p)`; | |
`(m * p = n * p) <=> (m = n) \/ (p = 0)`; | |
`SUC(SUC(0)) * n = n + n`; | |
`(m * n = SUC(0)) <=> (m = SUC(0)) /\ (n = SUC(0))`; | |
`(m EXP n = 0) <=> (m = 0) /\ ~(n = 0)`; | |
`m EXP (n + p) = (m EXP n) * (m EXP p)`; | |
`SUC(0) EXP n = SUC(0)`; | |
`n EXP SUC(0) = n`; | |
`n EXP SUC(SUC(0)) = n * n`; | |
`(m * n) EXP p = m EXP p * n EXP p`; | |
`m EXP (n * p) = (m EXP n) EXP p`; | |
`(SUC m <= n) <=> (m < n)`; | |
`(m < SUC n) <=> (m <= n)`; | |
`(SUC m <= SUC n) <=> (m <= n)`; | |
`(SUC m < SUC n) <=> (m < n)`; | |
`0 <= n`; | |
`0 < SUC n`; | |
`n <= n`; | |
`~(n < n)`; | |
`(m <= n /\ n <= m) <=> (m = n)`; | |
`~(m < n /\ n < m)`; | |
`~(m <= n /\ n < m)`; | |
`~(m < n /\ n <= m)`; | |
`m <= n /\ n <= p ==> m <= p`; | |
`m < n /\ n < p ==> m < p`; | |
`m <= n /\ n < p ==> m < p`; | |
`m < n /\ n <= p ==> m < p`; | |
`m <= n \/ n <= m`; | |
`(m < n) \/ (n < m) \/ (m = n)`; | |
`m <= n \/ n < m`; | |
`m < n \/ n <= m`; | |
`0 < n <=> ~(n = 0)`; | |
`(m <= n) <=> (m < n) \/ (m = n)`; | |
`(m < n) <=> (m <= n) /\ ~(m = n)`; | |
`~(m <= n) <=> (n < m)`; | |
`~(m < n) <=> n <= m`; | |
`m < n ==> m <= n`; | |
`(m = n) ==> m <= n`; | |
`m <= m + n`; | |
`n <= m + n`; | |
`(m < m + n) <=> (0 < n)`; | |
`(n < m + n) <=> (0 < m)`; | |
`(m + n) <= (m + p) <=> n <= p`; | |
`(m + p) <= (n + p) <=> (m <= n)`; | |
`(m + n) < (m + p) <=> n < p`; | |
`(m + p) < (n + p) <=> (m < n)`; | |
`m <= p /\ n <= q ==> m + n <= p + q`; | |
`m <= p /\ n < q ==> m + n < p + q`; | |
`m < p /\ n <= q ==> m + n < p + q`; | |
`m < p /\ n < q ==> m + n < p + q`; | |
`(0 < m * n) <=> (0 < m) /\ (0 < n)`; | |
`m <= n /\ p <= q ==> m * p <= n * q`; | |
`~(m = 0) /\ n < p ==> m * n < m * p`; | |
`(m * n) <= (m * p) <=> (m = 0) \/ n <= p`; | |
`(m * p) <= (n * p) <=> (m <= n) \/ (p = 0)`; | |
`(m * n) < (m * p) <=> ~(m = 0) /\ n < p`; | |
`(m * p) < (n * p) <=> (m < n) /\ ~(p = 0)`; | |
`(SUC m = SUC n) <=> (m = n)`; | |
`m < n /\ p < q ==> m * p < n * q`; | |
`n <= n * n`; | |
`(P m n <=> P n m) /\ (m <= n ==> P m n) ==> P m n`; | |
`(P m m) /\ (P m n <=> P n m) /\ (m < n ==> P m n) ==> P m y`; | |
`((m < n ==> P m) ==> P n) ==> P n`; | |
`~(EVEN n) <=> ODD n`; | |
`~(ODD n) <=> EVEN n`; | |
`EVEN n \/ ODD n`; | |
`~(EVEN n /\ ODD n)`; | |
`EVEN(m + n) <=> (EVEN m <=> EVEN n)`; | |
`EVEN(m * n) <=> EVEN(m) \/ EVEN(n)`; | |
`EVEN(m EXP n) <=> EVEN(m) /\ ~(n = 0)`; | |
`ODD(m + n) <=> ~(ODD m <=> ODD n)`; | |
`ODD(m * n) <=> ODD(m) /\ ODD(n)`; | |
`ODD(m EXP n) <=> ODD(m) \/ (n = 0)`; | |
`EVEN(SUC(SUC(0)) * n)`; | |
`ODD(SUC(SUC(SUC(0)) * n))`; | |
`(0 - m = 0) /\ (m - 0 = m)`; | |
`PRE(SUC m - n) = m - n`; | |
`SUC m - SUC n = m - n`; | |
`n - n = 0`; | |
`(m + n) - n = m`; | |
`(m + n) - m = n`; | |
`(m - n = 0) <=> m <= n`; | |
`m - (m + n) = 0`; | |
`n - (m + n) = 0`; | |
`n <= m ==> ((m - n) + n = m)`; | |
`(m + n) - (m + p) = n - p`; | |
`(m + p) - (n + p) = m - n`; | |
`m * (n - p) = m * n - m * p`; | |
`(m - n) * p = m * p - n * p`; | |
`!n. SUC n - SUC(0) = n`; | |
`EVEN(m - n) <=> m <= n \/ (EVEN(m) <=> EVEN(n))`; | |
`ODD(m - n) <=> n < m /\ ~(ODD m <=> ODD n)`; | |
`0 < FACT n`; | |
`1 <= FACT n`; | |
`m <= n ==> FACT m <= FACT n`; | |
`0 < x EXP n <=> ~(x = 0) \/ (n = 0)`; | |
`x EXP m < x EXP n <=> SUC(SUC(0)) <= x /\ m < n \/ (x = 0) /\ ~(m = 0) /\ (n = 0)`; | |
`x EXP m <= x EXP n <=> if x = 0 then (m = 0) ==> (n = 0) else (x = 1) \/ m <= n`; | |
`~(p = 0) /\ m <= n ==> m DIV p <= n DIV p`; | |
`P(PRE n) <=> n = SUC m \/ m = 0 /\ n = 0 ==> P m` | |
] | |