Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Specific formulas for evaluating (X,Z)-only projective point operations. *) | |
(* ========================================================================= *) | |
needs "EC/xzprojective.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Montgomery ladder step, XZ-coordinate differential addition and doubling. *) | |
(* *) | |
(* Source: Montgomery [1987] "Speeding the Pollard and elliptic curve..." *) | |
(* ------------------------------------------------------------------------- *) | |
(*** | |
*** | |
http://hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 | |
***) | |
let mladd_1987_m = new_definition | |
`mladd_1987_m (f:A ring,a:A,b:A) a24 X1 (X2,Z2) (X3,Z3) = | |
let A = ring_add f X2 Z2 in | |
let AA = ring_pow f A 2 in | |
let B = ring_sub f X2 Z2 in | |
let BB = ring_pow f B 2 in | |
let E = ring_sub f AA BB in | |
let C = ring_add f X3 Z3 in | |
let D = ring_sub f X3 Z3 in | |
let DA = ring_mul f D A in | |
let CB = ring_mul f C B in | |
let t0 = ring_add f DA CB in | |
let X5 = ring_pow f t0 2 in | |
let t1 = ring_sub f DA CB in | |
let t2 = ring_pow f t1 2 in | |
let Z5 = ring_mul f X1 t2 in | |
let X4 = ring_mul f AA BB in | |
let t3 = ring_mul f a24 E in | |
let t4 = ring_add f BB t3 in | |
let Z4 = ring_mul f E t4 in | |
(X4,Z4),(X5,Z5)`;; | |
let MLADD_1987_M = prove | |
(`!f (a:A) b a24 X1 X2 Z2 X3 Z3. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
a24 IN ring_carrier f /\ X1 IN ring_carrier f /\ | |
X2 IN ring_carrier f /\ Z2 IN ring_carrier f /\ | |
X3 IN ring_carrier f /\ Z3 IN ring_carrier f /\ | |
ring_mul f (ring_of_num f 4) a24 = ring_add f a (ring_of_num f 2) | |
==> mladd_1987_m (f,a,b) a24 X1 (X2,Z2) (X3,Z3) = | |
(montgomery_xzdouble (f,a,b) (X2,Z2), | |
montgomery_xzdiffadd (f,a,b) (X1,ring_1 f) (X2,Z2) (X3,Z3))`, | |
REWRITE_TAC[FIELD_CHAR_NOT2] THEN | |
REWRITE_TAC[mladd_1987_m; montgomery_xzdouble; montgomery_xzdiffadd] THEN | |
REPEAT STRIP_TAC THEN CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
REWRITE_TAC[PAIR_EQ] THEN FIELD_TAC THEN | |
NOT_RING_CHAR_DIVIDES_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Recovering y coordinate within the projective representation. *) | |
(* *) | |
(* Source: Okeya and Sakurai [2001] "Efficient Elliptic Curve...", Alg. 1. *) | |
(* ------------------------------------------------------------------------- *) | |
let okeya_sakurai_1 = new_definition | |
`okeya_sakurai_1 (f:A ring,a:A,b:A) (x,y) (X1,Z1) (X2,Z2) = | |
let a2 = ring_add f a a | |
and b2 = ring_add f b b in | |
let t1 = ring_mul f x Z1 in | |
let t2 = ring_add f X1 t1 in | |
let t3 = ring_sub f X1 t1 in | |
let t3 = ring_mul f t3 t3 in | |
let t3 = ring_mul f t3 X2 in | |
let t1 = ring_mul f a2 Z1 in | |
let t2 = ring_add f t2 t1 in | |
let t4 = ring_mul f x X1 in | |
let t4 = ring_add f t4 Z1 in | |
let t2 = ring_mul f t2 t4 in | |
let t1 = ring_mul f t1 Z1 in | |
let t2 = ring_sub f t2 t1 in | |
let t2 = ring_mul f t2 Z2 in | |
let y' = ring_sub f t2 t3 in | |
let t1 = ring_mul f b2 y in | |
let t1 = ring_mul f t1 Z1 in | |
let t1 = ring_mul f t1 Z2 in | |
let x' = ring_mul f t1 X1 in | |
let z' = ring_mul f t1 Z1 in | |
(x',y',z')`;; | |
(*** Note the overarching assumption that the initial point is non-trivial | |
*** and has nonzero y coordinate, although we do handle degeneracy in the | |
*** result point. | |
***) | |
let OKEYA_SAKURAI_1 = prove | |
(`!f (a:A) b x y p X1 Z1 X2 Z2. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ | |
montgomery_curve (f,a,b) (SOME(x,y)) /\ ~(y = ring_0 f) /\ | |
montgomery_curve (f,a,b) p /\ | |
montgomery_xz f p (X1,Z1) /\ | |
montgomery_xz f (montgomery_add(f,a,b) (SOME(x,y)) p) (X2,Z2) | |
==> let x',y',z' = okeya_sakurai_1 (f,a,b) (x,y) (X1,Z1) (X2,Z2) in | |
p = if z' = ring_0 f then | |
(if Z1 = ring_0 f then NONE else SOME(x,ring_neg f y)) | |
else SOME(ring_div f x' z',ring_div f y' z')`, | |
MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `b:A`; `x:A`; `y:A`] THEN | |
REWRITE_TAC[FIELD_CHAR_NOT2; FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[montgomery_curve; montgomery_xz; okeya_sakurai_1] THEN | |
CONJ_TAC THENL | |
[REPEAT GEN_TAC THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
SPEC_TAC(`montgomery_add (f,a:A,b) (SOME(x,y)) NONE`,`q:(A#A)option`) THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; montgomery_xz] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[RING_MUL_LZERO; RING_MUL_RZERO; RING_0; RING_ADD; RING_MUL]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `X1:A`; `Z1:A`; `X2:A`; `Z2:A`] THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN | |
CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
ASM_SIMP_TAC[FIELD_MUL_EQ_0; RING_ADD; RING_MUL] THEN | |
ASM_CASES_TAC `(X2:A) IN ring_carrier f /\ Z2 IN ring_carrier f` THENL | |
[FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN | |
ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 5) | |
[FIELD_MUL_EQ_0; RING_ADD; RING_MUL; RING_OF_NUM; RING_OF_NUM_EQ_0; | |
RING_RULE `ring_add f b b:A = ring_mul f (ring_of_num f 2) b`]; | |
ASM_REWRITE_TAC[montgomery_add; LET_DEF; LET_END_DEF] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[montgomery_xz]) THEN | |
ASM_REWRITE_TAC[CONJ_ASSOC]] THEN | |
REWRITE_TAC[montgomery_add; LET_DEF; LET_END_DEF] THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[montgomery_xz; option_DISTINCT; option_INJ; PAIR_EQ]) | |
THENL [FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC; FIELD_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `~(ring_of_num f 2:A = ring_0 f)` ASSUME_TAC THENL | |
[FIELD_TAC; RING_PULL_DIV_TAC THEN DISCH_THEN SUBST1_TAC] THEN | |
CONJ_TAC THENL [FIELD_TAC; ALL_TAC] THEN | |
SUBGOAL_THEN `~(ring_sub f x1 x:A = ring_0 f)` ASSUME_TAC THENL | |
[FIELD_TAC; RING_PULL_DIV_TAC THEN FIELD_TAC]);; | |