Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The NIST-recommended elliptic curve P-192, aka secp192r1. *) | |
(* ========================================================================= *) | |
needs "EC/weierstrass.ml";; | |
needs "EC/excluderoots.ml";; | |
needs "EC/computegroup.ml";; | |
add_curve weierstrass_curve;; | |
add_curveneg weierstrass_neg;; | |
add_curveadd weierstrass_add;; | |
(* ------------------------------------------------------------------------- *) | |
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *) | |
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *) | |
(* ------------------------------------------------------------------------- *) | |
let p_192 = new_definition `p_192 = 6277101735386680763835789423207666416083908700390324961279`;; | |
let n_192 = new_definition `n_192 = 6277101735386680763835789423176059013767194773182842284081`;; | |
let SEED_192 = new_definition `SEED_192 = 0x3045ae6fc8422f64ed579528d38120eae12196d5`;; | |
let c_192 = new_definition `c_192 = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65`;; | |
let b_192 = new_definition `b_192 = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1`;; | |
let G_192 = new_definition `G_192 = SOME(&0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012:int,&0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811:int)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Primality of the field characteristic and group order. *) | |
(* ------------------------------------------------------------------------- *) | |
let P_192 = prove | |
(`p_192 = 2 EXP 192 - 2 EXP 64 - 1`, | |
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let PRIME_P192 = time prove | |
(`prime p_192`, | |
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "17"; "19"; "23"; "29"; "31"; "37"; "41"; "43"; | |
"47"; "59"; "61"; "101"; "103"; "151"; "163"; "191"; "229"; "283"; "607"; | |
"619"; "631"; "907"; "2477"; "54251"; "149309"; "275729"; "379787"; | |
"723127"; "8413201"; "11393611"; "252396031"; "455827231987"; | |
"108341181769254293"; "5933177618131140283"; | |
"288626509448065367648032903"]);; | |
let PRIME_N192 = time prove | |
(`prime n_192`, | |
REWRITE_TAC[n_192] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "23"; "29"; "31"; "43"; "47"; "59"; | |
"61"; "71"; "73"; "103"; "199"; "239"; "331"; "439"; "547"; "569"; "881"; | |
"1031"; "1693"; "1889"; "2063"; "2389"; "4127"; "6829"; "51419"; "53197"; | |
"54623"; "60449"; "15716741"; "46245989"; "51920273"; "103840547"; | |
"7244839476697597"; "7532705587894727"; "9564682313913860059195669"; | |
"3433859179316188682119986911"]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic sanity check on the (otherwise unused) c parameter. *) | |
(* ------------------------------------------------------------------------- *) | |
let SANITY_CHECK_192 = prove | |
(`(&b_192 pow 2 * &c_192:int == -- &27) (mod &p_192)`, | |
REWRITE_TAC[G_192; p_192; b_192; c_192] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of the curve group and proof of its key properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let p192_group = define | |
`p192_group = | |
weierstrass_group | |
(integer_mod_ring p_192, | |
ring_neg (integer_mod_ring p_192) (&3), | |
&b_192)`;; | |
let P192_GROUP = prove | |
(`group_carrier p192_group = | |
weierstrass_curve | |
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192) /\ | |
group_id p192_group = | |
NONE /\ | |
group_inv p192_group = | |
weierstrass_neg | |
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192) /\ | |
group_mul p192_group = | |
weierstrass_add | |
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192)`, | |
REWRITE_TAC[p192_group] THEN | |
MATCH_MP_TAC WEIERSTRASS_GROUP THEN | |
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P192] THEN | |
REWRITE_TAC[p_192; b_192; weierstrass_nonsingular] THEN | |
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
add_ecgroup [p_192; b_192] P192_GROUP;; | |
let NO_ROOTS_P192 = prove | |
(`!x:int. ~((x pow 3 - &3 * x + &b_192 == &0) (mod &p_192))`, | |
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P192 [p_192;b_192]);; | |
let GENERATOR_IN_GROUP_CARRIER_192 = prove | |
(`G_192 IN group_carrier p192_group`, | |
REWRITE_TAC[G_192] THEN CONV_TAC ECGROUP_CARRIER_CONV);; | |
let GROUP_ELEMENT_ORDER_G192 = prove | |
(`group_element_order p192_group G_192 = n_192`, | |
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_192; | |
PRIME_N192] THEN | |
REWRITE_TAC[G_192; el 1 (CONJUNCTS P192_GROUP); option_DISTINCT] THEN | |
REWRITE_TAC[n_192] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN | |
REFL_TAC);; | |
let FINITE_GROUP_CARRIER_192 = prove | |
(`FINITE(group_carrier p192_group)`, | |
REWRITE_TAC[P192_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P192] THEN | |
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let SIZE_P192_GROUP = prove | |
(`group_carrier p192_group HAS_SIZE n_192`, | |
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN | |
EXISTS_TAC `G_192:(int#int)option` THEN | |
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_192; GROUP_ELEMENT_ORDER_G192; | |
FINITE_GROUP_CARRIER_192] THEN | |
REWRITE_TAC[P192_GROUP] THEN CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhand o rand) | |
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN | |
REWRITE_TAC[PRIME_P192] THEN ANTS_TAC THENL | |
[REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN | |
SIMP_TAC[CARD_INTEGER_MOD_RING; p_192; ARITH] THEN | |
REWRITE_TAC[n_192] THEN CONV_TAC NUM_REDUCE_CONV; | |
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN | |
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN | |
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_192; PAIR_EQ] THEN | |
CONV_TAC INT_REDUCE_CONV] THEN | |
ASM_CASES_TAC `y:int = &0` THENL | |
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P192) THEN | |
REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; p_192; INT_REM_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH | |
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN | |
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN | |
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE | |
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE | |
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN | |
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; | |
let GENERATED_P192_GROUP = prove | |
(`subgroup_generated p192_group {G_192} = p192_group`, | |
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; | |
GENERATOR_IN_GROUP_CARRIER_192; | |
FINITE_GROUP_CARRIER_192] THEN | |
REWRITE_TAC[GROUP_ELEMENT_ORDER_G192; | |
REWRITE_RULE[HAS_SIZE] SIZE_P192_GROUP]);; | |
let CYCLIC_P192_GROUP = prove | |
(`cyclic_group p192_group`, | |
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P192_GROUP]);; | |
let ABELIAN_P192_GROUP = prove | |
(`abelian_group p192_group`, | |
MESON_TAC[CYCLIC_P192_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);; | |