Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /nistp192.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.93 kB
(* ========================================================================= *)
(* The NIST-recommended elliptic curve P-192, aka secp192r1. *)
(* ========================================================================= *)
needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;
(* ------------------------------------------------------------------------- *)
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *)
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *)
(* ------------------------------------------------------------------------- *)
let p_192 = new_definition `p_192 = 6277101735386680763835789423207666416083908700390324961279`;;
let n_192 = new_definition `n_192 = 6277101735386680763835789423176059013767194773182842284081`;;
let SEED_192 = new_definition `SEED_192 = 0x3045ae6fc8422f64ed579528d38120eae12196d5`;;
let c_192 = new_definition `c_192 = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65`;;
let b_192 = new_definition `b_192 = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1`;;
let G_192 = new_definition `G_192 = SOME(&0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012:int,&0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order. *)
(* ------------------------------------------------------------------------- *)
let P_192 = prove
(`p_192 = 2 EXP 192 - 2 EXP 64 - 1`,
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV);;
let PRIME_P192 = time prove
(`prime p_192`,
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "17"; "19"; "23"; "29"; "31"; "37"; "41"; "43";
"47"; "59"; "61"; "101"; "103"; "151"; "163"; "191"; "229"; "283"; "607";
"619"; "631"; "907"; "2477"; "54251"; "149309"; "275729"; "379787";
"723127"; "8413201"; "11393611"; "252396031"; "455827231987";
"108341181769254293"; "5933177618131140283";
"288626509448065367648032903"]);;
let PRIME_N192 = time prove
(`prime n_192`,
REWRITE_TAC[n_192] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "23"; "29"; "31"; "43"; "47"; "59";
"61"; "71"; "73"; "103"; "199"; "239"; "331"; "439"; "547"; "569"; "881";
"1031"; "1693"; "1889"; "2063"; "2389"; "4127"; "6829"; "51419"; "53197";
"54623"; "60449"; "15716741"; "46245989"; "51920273"; "103840547";
"7244839476697597"; "7532705587894727"; "9564682313913860059195669";
"3433859179316188682119986911"]);;
(* ------------------------------------------------------------------------- *)
(* Basic sanity check on the (otherwise unused) c parameter. *)
(* ------------------------------------------------------------------------- *)
let SANITY_CHECK_192 = prove
(`(&b_192 pow 2 * &c_192:int == -- &27) (mod &p_192)`,
REWRITE_TAC[G_192; p_192; b_192; c_192] THEN
REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let p192_group = define
`p192_group =
weierstrass_group
(integer_mod_ring p_192,
ring_neg (integer_mod_ring p_192) (&3),
&b_192)`;;
let P192_GROUP = prove
(`group_carrier p192_group =
weierstrass_curve
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192) /\
group_id p192_group =
NONE /\
group_inv p192_group =
weierstrass_neg
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192) /\
group_mul p192_group =
weierstrass_add
(integer_mod_ring p_192,ring_neg (integer_mod_ring p_192) (&3),&b_192)`,
REWRITE_TAC[p192_group] THEN
MATCH_MP_TAC WEIERSTRASS_GROUP THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P192] THEN
REWRITE_TAC[p_192; b_192; weierstrass_nonsingular] THEN
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [p_192; b_192] P192_GROUP;;
let NO_ROOTS_P192 = prove
(`!x:int. ~((x pow 3 - &3 * x + &b_192 == &0) (mod &p_192))`,
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P192 [p_192;b_192]);;
let GENERATOR_IN_GROUP_CARRIER_192 = prove
(`G_192 IN group_carrier p192_group`,
REWRITE_TAC[G_192] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_G192 = prove
(`group_element_order p192_group G_192 = n_192`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_192;
PRIME_N192] THEN
REWRITE_TAC[G_192; el 1 (CONJUNCTS P192_GROUP); option_DISTINCT] THEN
REWRITE_TAC[n_192] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REFL_TAC);;
let FINITE_GROUP_CARRIER_192 = prove
(`FINITE(group_carrier p192_group)`,
REWRITE_TAC[P192_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P192] THEN
REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV);;
let SIZE_P192_GROUP = prove
(`group_carrier p192_group HAS_SIZE n_192`,
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
EXISTS_TAC `G_192:(int#int)option` THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_192; GROUP_ELEMENT_ORDER_G192;
FINITE_GROUP_CARRIER_192] THEN
REWRITE_TAC[P192_GROUP] THEN CONJ_TAC THENL
[W(MP_TAC o PART_MATCH (lhand o rand)
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
REWRITE_TAC[PRIME_P192] THEN ANTS_TAC THENL
[REWRITE_TAC[p_192] THEN CONV_TAC NUM_REDUCE_CONV;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
SIMP_TAC[CARD_INTEGER_MOD_RING; p_192; ARITH] THEN
REWRITE_TAC[n_192] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_192; PAIR_EQ] THEN
CONV_TAC INT_REDUCE_CONV] THEN
ASM_CASES_TAC `y:int = &0` THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P192) THEN
REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN
REWRITE_TAC[GSYM INT_REM_EQ; p_192; INT_REM_ZERO];
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;
let GENERATED_P192_GROUP = prove
(`subgroup_generated p192_group {G_192} = p192_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
GENERATOR_IN_GROUP_CARRIER_192;
FINITE_GROUP_CARRIER_192] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_G192;
REWRITE_RULE[HAS_SIZE] SIZE_P192_GROUP]);;
let CYCLIC_P192_GROUP = prove
(`cyclic_group p192_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P192_GROUP]);;
let ABELIAN_P192_GROUP = prove
(`abelian_group p192_group`,
MESON_TAC[CYCLIC_P192_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;