Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The NIST-recommended elliptic curve P-256, aka secp256r1. *) | |
(* ========================================================================= *) | |
needs "EC/weierstrass.ml";; | |
needs "EC/excluderoots.ml";; | |
needs "EC/computegroup.ml";; | |
add_curve weierstrass_curve;; | |
add_curveneg weierstrass_neg;; | |
add_curveadd weierstrass_add;; | |
(* ------------------------------------------------------------------------- *) | |
(* The NIST curve parameters, copied from the NIST FIPS 186-4 document. *) | |
(* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf *) | |
(* ------------------------------------------------------------------------- *) | |
let p_256 = new_definition `p_256 = 115792089210356248762697446949407573530086143415290314195533631308867097853951`;; | |
let n_256 = new_definition `n_256 = 115792089210356248762697446949407573529996955224135760342422259061068512044369`;; | |
let SEED_256 = new_definition `SEED_256 = 0xc49d360886e704936a6678e1139d26b7819f7e90`;; | |
let c_256 = new_definition `c_256 = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0d`;; | |
let b_256 = new_definition `b_256 = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b`;; | |
let G_256 = new_definition `G_256 = SOME(&0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296:int,&0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5:int)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Primality of the field characteristic and group order. *) | |
(* ------------------------------------------------------------------------- *) | |
let P_256 = prove | |
(`p_256 = 2 EXP 256 - 2 EXP 224 + 2 EXP 192 + 2 EXP 96 - 1`, | |
REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let PRIME_P256 = time prove | |
(`prime p_256`, | |
REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "23"; "43"; "53"; "107"; "157"; | |
"173"; "181"; "197"; "241"; "257"; "313"; "641"; "661"; "727"; "757"; | |
"919"; "1087"; "1531"; "2411"; "3677"; "3769"; "4349"; "17449"; "18169"; | |
"65537"; "78283"; "490463"; "704251"; "6700417"; "204061199"; | |
"34282281433"; "66417393611"; "11290956913871"; "46076956964474543"; | |
"774023187263532362759620327192479577272145303"; | |
"835945042244614951780389953367877943453916927241"]);; | |
let PRIME_N256 = time prove | |
(`prime n_256`, | |
REWRITE_TAC[n_256] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "29"; "31"; "37"; "41"; "43"; | |
"71"; "97"; "127"; "131"; "151"; "229"; "263"; "311"; "337"; "373"; "727"; | |
"1201"; "1297"; "1511"; "3023"; "3407"; "9547"; "16879"; "17449"; "38189"; | |
"104471"; "126241"; "155317"; "3969899"; "9350987"; "187019741"; | |
"191039911"; "311245691"; "622491383"; "1002328039319"; | |
"208150935158385979"; "2624747550333869278416773953"]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic sanity check on the (otherwise unused) c parameter. *) | |
(* ------------------------------------------------------------------------- *) | |
let SANITY_CHECK_256 = prove | |
(`(&b_256 pow 2 * &c_256:int == -- &27) (mod &p_256)`, | |
REWRITE_TAC[G_256; p_256; b_256; c_256] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ] THEN CONV_TAC INT_REDUCE_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of the curve group and proof of its key properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let p256_group = define | |
`p256_group = | |
weierstrass_group | |
(integer_mod_ring p_256, | |
ring_neg (integer_mod_ring p_256) (&3), | |
&b_256)`;; | |
let P256_GROUP = prove | |
(`group_carrier p256_group = | |
weierstrass_curve | |
(integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256) /\ | |
group_id p256_group = | |
NONE /\ | |
group_inv p256_group = | |
weierstrass_neg | |
(integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256) /\ | |
group_mul p256_group = | |
weierstrass_add | |
(integer_mod_ring p_256,ring_neg (integer_mod_ring p_256) (&3),&b_256)`, | |
REWRITE_TAC[p256_group] THEN | |
MATCH_MP_TAC WEIERSTRASS_GROUP THEN | |
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P256] THEN | |
REWRITE_TAC[p_256; b_256; weierstrass_nonsingular] THEN | |
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
add_ecgroup [p_256; b_256] P256_GROUP;; | |
let NO_ROOTS_P256 = prove | |
(`!x:int. ~((x pow 3 - &3 * x + &b_256 == &0) (mod &p_256))`, | |
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P256 [p_256;b_256]);; | |
let GENERATOR_IN_GROUP_CARRIER_256 = prove | |
(`G_256 IN group_carrier p256_group`, | |
REWRITE_TAC[G_256] THEN CONV_TAC ECGROUP_CARRIER_CONV);; | |
let GROUP_ELEMENT_ORDER_G256 = prove | |
(`group_element_order p256_group G_256 = n_256`, | |
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; GENERATOR_IN_GROUP_CARRIER_256; | |
PRIME_N256] THEN | |
REWRITE_TAC[G_256; el 1 (CONJUNCTS P256_GROUP); option_DISTINCT] THEN | |
REWRITE_TAC[n_256] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN | |
REFL_TAC);; | |
let FINITE_GROUP_CARRIER_256 = prove | |
(`FINITE(group_carrier p256_group)`, | |
REWRITE_TAC[P256_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING; PRIME_P256] THEN | |
REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let SIZE_P256_GROUP = prove | |
(`group_carrier p256_group HAS_SIZE n_256`, | |
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN | |
EXISTS_TAC `G_256:(int#int)option` THEN | |
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_256; GROUP_ELEMENT_ORDER_G256; | |
FINITE_GROUP_CARRIER_256] THEN | |
REWRITE_TAC[P256_GROUP] THEN CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhand o rand) | |
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN | |
REWRITE_TAC[PRIME_P256] THEN ANTS_TAC THENL | |
[REWRITE_TAC[p_256] THEN CONV_TAC NUM_REDUCE_CONV; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN | |
SIMP_TAC[CARD_INTEGER_MOD_RING; p_256; ARITH] THEN | |
REWRITE_TAC[n_256] THEN CONV_TAC NUM_REDUCE_CONV; | |
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN | |
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN | |
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_256; PAIR_EQ] THEN | |
CONV_TAC INT_REDUCE_CONV] THEN | |
ASM_CASES_TAC `y:int = &0` THENL | |
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_P256) THEN | |
REWRITE_TAC[INT_ARITH `y - &3 * x + b:int = y + (-- &3) * x + b`] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; p_256; INT_REM_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH | |
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN | |
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN | |
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE | |
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE | |
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN | |
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; | |
let GENERATED_P256_GROUP = prove | |
(`subgroup_generated p256_group {G_256} = p256_group`, | |
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; | |
GENERATOR_IN_GROUP_CARRIER_256; | |
FINITE_GROUP_CARRIER_256] THEN | |
REWRITE_TAC[GROUP_ELEMENT_ORDER_G256; | |
REWRITE_RULE[HAS_SIZE] SIZE_P256_GROUP]);; | |
let CYCLIC_P256_GROUP = prove | |
(`cyclic_group p256_group`, | |
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P256_GROUP]);; | |
let ABELIAN_P256_GROUP = prove | |
(`abelian_group p256_group`, | |
MESON_TAC[CYCLIC_P256_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);; | |