Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /secp192k1.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.3 kB
(* ========================================================================= *)
(* The SECG-recommended elliptic curve secp192k1. *)
(* ========================================================================= *)
needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;
(* ------------------------------------------------------------------------- *)
(* The SECG curve parameters, copied from the SEC 2 document. *)
(* See https://www.secg.org/sec2-v2.pdf *)
(* ------------------------------------------------------------------------- *)
let p_192k1 = define `p_192k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37`;;
let n_192k1 = define `n_192k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D`;;
let G_192K1 = define `G_192K1 = SOME(&0xDB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D:int,&0x9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order. *)
(* ------------------------------------------------------------------------- *)
let P_192K1 = prove
(`p_192k1 = 2 EXP 192 - 2 EXP 32 - 4553`,
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let P_192K1_ALT = prove
(`p_192k1 =
2 EXP 192 - 2 EXP 32 - 2 EXP 12 - 2 EXP 8 - 2 EXP 7 - 2 EXP 6 - 2 EXP 3 - 1`,
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let PRIME_P192K1 = time prove
(`prime p_192k1`,
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "37"; "41"; "43";
"47"; "61"; "79"; "103"; "149"; "193"; "251"; "281"; "487"; "563"; "1559";
"2473"; "2683"; "3119"; "7057"; "393721"; "706151"; "3651619"; "8473813";
"14606477"; "2307823367"; "11113956389"; "16189543961"; "138580737803";
"1295233555201613"; "10489845818524887021689201254173392444641"]);;
let PRIME_N192K1 = time prove
(`prime n_192k1`,
REWRITE_TAC[n_192k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "41"; "59";
"73"; "83"; "97"; "137"; "167"; "443"; "971"; "2341"; "4933"; "11519";
"29131"; "54151"; "169361"; "444791"; "445097"; "552913"; "815669";
"866417"; "1611297632578441"; "31767070186748510944261247684750677";
"434093022356392396149847294750353440317757907331";
"143250697377609490729449607267616635304860109419231"]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let p192k1_group = define
`p192k1_group = weierstrass_group(integer_mod_ring p_192k1,&0,&3)`;;
let P192K1_GROUP = prove
(`group_carrier p192k1_group =
weierstrass_curve(integer_mod_ring p_192k1,&0,&3) /\
group_id p192k1_group =
NONE /\
group_inv p192k1_group =
weierstrass_neg(integer_mod_ring p_192k1,&0,&3) /\
group_mul p192k1_group =
weierstrass_add(integer_mod_ring p_192k1,&0,&3)`,
REWRITE_TAC[p192k1_group] THEN
MATCH_MP_TAC WEIERSTRASS_GROUP THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P192K1] THEN
REWRITE_TAC[p_192k1; weierstrass_nonsingular] THEN
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [p_192k1] P192K1_GROUP;;
let NO_ROOTS_192K1 = prove
(`!x:int. ~((x pow 3 + &3 == &0) (mod &p_192k1))`,
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P192K1 [p_192k1]);;
let GENERATOR_IN_GROUP_CARRIER_192K1 = prove
(`G_192K1 IN group_carrier p192k1_group`,
REWRITE_TAC[G_192K1] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_G192K1 = prove
(`group_element_order p192k1_group G_192K1 = n_192k1`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME;
GENERATOR_IN_GROUP_CARRIER_192K1; PRIME_N192K1] THEN
REWRITE_TAC[G_192K1; el 1 (CONJUNCTS P192K1_GROUP);
option_DISTINCT] THEN
REWRITE_TAC[n_192k1] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REFL_TAC);;
let FINITE_GROUP_CARRIER_192K1 = prove
(`FINITE(group_carrier p192k1_group)`,
REWRITE_TAC[P192K1_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING;
FIELD_INTEGER_MOD_RING; PRIME_P192K1] THEN
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let SIZE_P192K1_GROUP = prove
(`group_carrier p192k1_group HAS_SIZE n_192k1`,
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
EXISTS_TAC `G_192K1:(int#int)option` THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_192K1;
GROUP_ELEMENT_ORDER_G192K1;
FINITE_GROUP_CARRIER_192K1] THEN
REWRITE_TAC[P192K1_GROUP] THEN CONJ_TAC THENL
[W(MP_TAC o PART_MATCH (lhand o rand)
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
REWRITE_TAC[PRIME_P192K1] THEN ANTS_TAC THENL
[REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
SIMP_TAC[CARD_INTEGER_MOD_RING; p_192k1; ARITH] THEN
REWRITE_TAC[n_192k1] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_192k1; PAIR_EQ] THEN
CONV_TAC INT_REDUCE_CONV] THEN
ASM_CASES_TAC `y:int = &0` THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_192K1) THEN
REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID] THEN
REWRITE_TAC[GSYM INT_REM_EQ; p_192k1; INT_REM_ZERO];
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;
let GENERATED_P192K1_GROUP = prove
(`subgroup_generated p192k1_group {G_192K1} = p192k1_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
GENERATOR_IN_GROUP_CARRIER_192K1;
FINITE_GROUP_CARRIER_192K1] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_G192K1;
REWRITE_RULE[HAS_SIZE] SIZE_P192K1_GROUP]);;
let CYCLIC_P192K1_GROUP = prove
(`cyclic_group p192k1_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P192K1_GROUP]);;
let ABELIAN_P192K1_GROUP = prove
(`abelian_group p192k1_group`,
MESON_TAC[CYCLIC_P192K1_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;