Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The SECG-recommended elliptic curve secp192k1. *) | |
(* ========================================================================= *) | |
needs "EC/weierstrass.ml";; | |
needs "EC/excluderoots.ml";; | |
needs "EC/computegroup.ml";; | |
add_curve weierstrass_curve;; | |
add_curveneg weierstrass_neg;; | |
add_curveadd weierstrass_add;; | |
(* ------------------------------------------------------------------------- *) | |
(* The SECG curve parameters, copied from the SEC 2 document. *) | |
(* See https://www.secg.org/sec2-v2.pdf *) | |
(* ------------------------------------------------------------------------- *) | |
let p_192k1 = define `p_192k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37`;; | |
let n_192k1 = define `n_192k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D`;; | |
let G_192K1 = define `G_192K1 = SOME(&0xDB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D:int,&0x9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D:int)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Primality of the field characteristic and group order. *) | |
(* ------------------------------------------------------------------------- *) | |
let P_192K1 = prove | |
(`p_192k1 = 2 EXP 192 - 2 EXP 32 - 4553`, | |
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let P_192K1_ALT = prove | |
(`p_192k1 = | |
2 EXP 192 - 2 EXP 32 - 2 EXP 12 - 2 EXP 8 - 2 EXP 7 - 2 EXP 6 - 2 EXP 3 - 1`, | |
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let PRIME_P192K1 = time prove | |
(`prime p_192k1`, | |
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "37"; "41"; "43"; | |
"47"; "61"; "79"; "103"; "149"; "193"; "251"; "281"; "487"; "563"; "1559"; | |
"2473"; "2683"; "3119"; "7057"; "393721"; "706151"; "3651619"; "8473813"; | |
"14606477"; "2307823367"; "11113956389"; "16189543961"; "138580737803"; | |
"1295233555201613"; "10489845818524887021689201254173392444641"]);; | |
let PRIME_N192K1 = time prove | |
(`prime n_192k1`, | |
REWRITE_TAC[n_192k1] THEN CONV_TAC NUM_REDUCE_CONV THEN | |
(CONV_TAC o PRIME_RULE) | |
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "29"; "31"; "41"; "59"; | |
"73"; "83"; "97"; "137"; "167"; "443"; "971"; "2341"; "4933"; "11519"; | |
"29131"; "54151"; "169361"; "444791"; "445097"; "552913"; "815669"; | |
"866417"; "1611297632578441"; "31767070186748510944261247684750677"; | |
"434093022356392396149847294750353440317757907331"; | |
"143250697377609490729449607267616635304860109419231"]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of the curve group and proof of its key properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let p192k1_group = define | |
`p192k1_group = weierstrass_group(integer_mod_ring p_192k1,&0,&3)`;; | |
let P192K1_GROUP = prove | |
(`group_carrier p192k1_group = | |
weierstrass_curve(integer_mod_ring p_192k1,&0,&3) /\ | |
group_id p192k1_group = | |
NONE /\ | |
group_inv p192k1_group = | |
weierstrass_neg(integer_mod_ring p_192k1,&0,&3) /\ | |
group_mul p192k1_group = | |
weierstrass_add(integer_mod_ring p_192k1,&0,&3)`, | |
REWRITE_TAC[p192k1_group] THEN | |
MATCH_MP_TAC WEIERSTRASS_GROUP THEN | |
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P192K1] THEN | |
REWRITE_TAC[p_192k1; weierstrass_nonsingular] THEN | |
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN | |
CONV_TAC INT_REDUCE_CONV);; | |
add_ecgroup [p_192k1] P192K1_GROUP;; | |
let NO_ROOTS_192K1 = prove | |
(`!x:int. ~((x pow 3 + &3 == &0) (mod &p_192k1))`, | |
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P192K1 [p_192k1]);; | |
let GENERATOR_IN_GROUP_CARRIER_192K1 = prove | |
(`G_192K1 IN group_carrier p192k1_group`, | |
REWRITE_TAC[G_192K1] THEN CONV_TAC ECGROUP_CARRIER_CONV);; | |
let GROUP_ELEMENT_ORDER_G192K1 = prove | |
(`group_element_order p192k1_group G_192K1 = n_192k1`, | |
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME; | |
GENERATOR_IN_GROUP_CARRIER_192K1; PRIME_N192K1] THEN | |
REWRITE_TAC[G_192K1; el 1 (CONJUNCTS P192K1_GROUP); | |
option_DISTINCT] THEN | |
REWRITE_TAC[n_192k1] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN | |
REFL_TAC);; | |
let FINITE_GROUP_CARRIER_192K1 = prove | |
(`FINITE(group_carrier p192k1_group)`, | |
REWRITE_TAC[P192K1_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; | |
FIELD_INTEGER_MOD_RING; PRIME_P192K1] THEN | |
REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV);; | |
let SIZE_P192K1_GROUP = prove | |
(`group_carrier p192k1_group HAS_SIZE n_192k1`, | |
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN | |
EXISTS_TAC `G_192K1:(int#int)option` THEN | |
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_192K1; | |
GROUP_ELEMENT_ORDER_G192K1; | |
FINITE_GROUP_CARRIER_192K1] THEN | |
REWRITE_TAC[P192K1_GROUP] THEN CONJ_TAC THENL | |
[W(MP_TAC o PART_MATCH (lhand o rand) | |
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN | |
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN | |
REWRITE_TAC[PRIME_P192K1] THEN ANTS_TAC THENL | |
[REWRITE_TAC[p_192k1] THEN CONV_TAC NUM_REDUCE_CONV; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN | |
SIMP_TAC[CARD_INTEGER_MOD_RING; p_192k1; ARITH] THEN | |
REWRITE_TAC[n_192k1] THEN CONV_TAC NUM_REDUCE_CONV; | |
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN | |
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN | |
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_192k1; PAIR_EQ] THEN | |
CONV_TAC INT_REDUCE_CONV] THEN | |
ASM_CASES_TAC `y:int = &0` THENL | |
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN | |
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_192K1) THEN | |
REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID] THEN | |
REWRITE_TAC[GSYM INT_REM_EQ; p_192k1; INT_REM_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH | |
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN | |
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN | |
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE | |
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE | |
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN | |
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);; | |
let GENERATED_P192K1_GROUP = prove | |
(`subgroup_generated p192k1_group {G_192K1} = p192k1_group`, | |
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER; | |
GENERATOR_IN_GROUP_CARRIER_192K1; | |
FINITE_GROUP_CARRIER_192K1] THEN | |
REWRITE_TAC[GROUP_ELEMENT_ORDER_G192K1; | |
REWRITE_RULE[HAS_SIZE] SIZE_P192K1_GROUP]);; | |
let CYCLIC_P192K1_GROUP = prove | |
(`cyclic_group p192k1_group`, | |
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P192K1_GROUP]);; | |
let ABELIAN_P192K1_GROUP = prove | |
(`abelian_group p192k1_group`, | |
MESON_TAC[CYCLIC_P192K1_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);; | |