Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /secp224k1.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.59 kB
(* ========================================================================= *)
(* The SECG-recommended elliptic curve secp224k1. *)
(* ========================================================================= *)
needs "EC/weierstrass.ml";;
needs "EC/excluderoots.ml";;
needs "EC/computegroup.ml";;
add_curve weierstrass_curve;;
add_curveneg weierstrass_neg;;
add_curveadd weierstrass_add;;
(* ------------------------------------------------------------------------- *)
(* The SECG curve parameters, copied from the SEC 2 document. *)
(* See https://www.secg.org/sec2-v2.pdf *)
(* ------------------------------------------------------------------------- *)
let p_224k1 = define `p_224k1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D`;;
let n_224k1 = define `n_224k1 = 0x010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7`;;
let G_224K1 = define `G_224K1 = SOME(&0xA1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C:int,&0x7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5:int)`;;
(* ------------------------------------------------------------------------- *)
(* Primality of the field characteristic and group order. *)
(* ------------------------------------------------------------------------- *)
let P_224K1 = prove
(`p_224k1 = 2 EXP 224 - 2 EXP 32 - 6803`,
REWRITE_TAC[p_224k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let P_224K1_ALT = prove
(`p_224k1 =
2 EXP 224 - 2 EXP 32 - 2 EXP 12 -
2 EXP 11 - 2 EXP 9 - 2 EXP 7 - 2 EXP 4 - 2 - 1`,
REWRITE_TAC[p_224k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let PRIME_P224K1 = time prove
(`prime p_224k1`,
REWRITE_TAC[p_224k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "19"; "23"; "29"; "37"; "41"; "47"; "59";
"79"; "83"; "89"; "101"; "113"; "131"; "163"; "167"; "227"; "419"; "821";
"1163"; "1471"; "1601"; "1777"; "3001"; "3137"; "10663"; "10903"; "14983";
"17293"; "21347"; "43613"; "48847"; "82837"; "7599533"; "42252061";
"17042913689"; "34085827379"; "156976040219402488243";
"31670999344427766303479"; "30974237358850355444802463";
"9743875111334057846550285755748171501325144788037"]);;
let PRIME_N224K1 = time prove
(`prime n_224k1`,
REWRITE_TAC[n_224k1] THEN CONV_TAC NUM_REDUCE_CONV THEN
(CONV_TAC o PRIME_RULE)
["2"; "3"; "5"; "7"; "11"; "13"; "17"; "19"; "23"; "31"; "41"; "61"; "73";
"151"; "163"; "191"; "193"; "239"; "311"; "353"; "367"; "479"; "1013";
"1511"; "2027"; "3023"; "3067"; "9199"; "9923"; "17573"; "34231"; "59539";
"120047"; "252913"; "478453"; "2218883"; "2396171"; "4167731"; "4437767";
"10083949"; "12019933"; "21244693"; "33341849"; "6058046233";
"24281921209346341"; "58597812472881879287";
"2514514399252200308862687893991356095647329471";
"4493324444525106632444502514503273391085054513853345758165826444713"]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the curve group and proof of its key properties. *)
(* ------------------------------------------------------------------------- *)
let p224k1_group = define
`p224k1_group = weierstrass_group(integer_mod_ring p_224k1,&0,&5)`;;
let P224K1_GROUP = prove
(`group_carrier p224k1_group =
weierstrass_curve(integer_mod_ring p_224k1,&0,&5) /\
group_id p224k1_group =
NONE /\
group_inv p224k1_group =
weierstrass_neg(integer_mod_ring p_224k1,&0,&5) /\
group_mul p224k1_group =
weierstrass_add(integer_mod_ring p_224k1,&0,&5)`,
REWRITE_TAC[p224k1_group] THEN
MATCH_MP_TAC WEIERSTRASS_GROUP THEN
REWRITE_TAC[FIELD_INTEGER_MOD_RING; INTEGER_MOD_RING_CHAR; PRIME_P224K1] THEN
REWRITE_TAC[p_224k1; weierstrass_nonsingular] THEN
SIMP_TAC[INTEGER_MOD_RING_CLAUSES; ARITH; IN_ELIM_THM] THEN
CONV_TAC INT_REDUCE_CONV);;
add_ecgroup [p_224k1] P224K1_GROUP;;
let NO_ROOTS_224K1 = prove
(`!x:int. ~((x pow 3 + &5 == &0) (mod &p_224k1))`,
EXCLUDE_MODULAR_CUBIC_ROOTS_TAC PRIME_P224K1 [p_224k1]);;
let GENERATOR_IN_GROUP_CARRIER_224K1 = prove
(`G_224K1 IN group_carrier p224k1_group`,
REWRITE_TAC[G_224K1] THEN CONV_TAC ECGROUP_CARRIER_CONV);;
let GROUP_ELEMENT_ORDER_G224K1 = prove
(`group_element_order p224k1_group G_224K1 = n_224k1`,
SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE_PRIME;
GENERATOR_IN_GROUP_CARRIER_224K1; PRIME_N224K1] THEN
REWRITE_TAC[G_224K1; el 1 (CONJUNCTS P224K1_GROUP);
option_DISTINCT] THEN
REWRITE_TAC[n_224k1] THEN CONV_TAC(LAND_CONV ECGROUP_POW_CONV) THEN
REFL_TAC);;
let FINITE_GROUP_CARRIER_224K1 = prove
(`FINITE(group_carrier p224k1_group)`,
REWRITE_TAC[P224K1_GROUP] THEN MATCH_MP_TAC FINITE_WEIERSTRASS_CURVE THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING;
FIELD_INTEGER_MOD_RING; PRIME_P224K1] THEN
REWRITE_TAC[p_224k1] THEN CONV_TAC NUM_REDUCE_CONV);;
let SIZE_P224K1_GROUP = prove
(`group_carrier p224k1_group HAS_SIZE n_224k1`,
MATCH_MP_TAC GROUP_ADHOC_ORDER_UNIQUE_LEMMA THEN
EXISTS_TAC `G_224K1:(int#int)option` THEN
REWRITE_TAC[GENERATOR_IN_GROUP_CARRIER_224K1;
GROUP_ELEMENT_ORDER_G224K1;
FINITE_GROUP_CARRIER_224K1] THEN
REWRITE_TAC[P224K1_GROUP] THEN CONJ_TAC THENL
[W(MP_TAC o PART_MATCH (lhand o rand)
CARD_BOUND_WEIERSTRASS_CURVE o lhand o snd) THEN
REWRITE_TAC[FINITE_INTEGER_MOD_RING; FIELD_INTEGER_MOD_RING] THEN
REWRITE_TAC[PRIME_P224K1] THEN ANTS_TAC THENL
[REWRITE_TAC[p_224k1] THEN CONV_TAC NUM_REDUCE_CONV;
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] LET_TRANS)] THEN
SIMP_TAC[CARD_INTEGER_MOD_RING; p_224k1; ARITH] THEN
REWRITE_TAC[n_224k1] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[FORALL_OPTION_THM; IN; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_DISTINCT] THEN
MAP_EVERY X_GEN_TAC [`x:int`; `y:int`] THEN REWRITE_TAC[option_INJ] THEN
REWRITE_TAC[IN_INTEGER_MOD_RING_CARRIER; INTEGER_MOD_RING_CLAUSES] THEN
CONV_TAC INT_REM_DOWN_CONV THEN REWRITE_TAC[p_224k1; PAIR_EQ] THEN
CONV_TAC INT_REDUCE_CONV] THEN
ASM_CASES_TAC `y:int = &0` THENL
[ASM_REWRITE_TAC[] THEN CONV_TAC INT_REDUCE_CONV THEN
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC (MP_TAC o SYM)) THEN
CONV_TAC INT_REM_DOWN_CONV THEN MP_TAC(SPEC `x:int` NO_ROOTS_224K1) THEN
REWRITE_TAC[INT_MUL_LZERO; INT_ADD_LID] THEN
REWRITE_TAC[GSYM INT_REM_EQ; p_224k1; INT_REM_ZERO];
STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o MATCH_MP (INT_ARITH
`--y rem p = y ==> y rem p = y ==> (--y rem p = y rem p)`)) THEN
ANTS_TAC THENL [ASM_SIMP_TAC[INT_REM_LT]; ALL_TAC] THEN
REWRITE_TAC[INT_REM_EQ; INTEGER_RULE
`(--y:int == y) (mod p) <=> p divides (&2 * y)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP (INTEGER_RULE
`p divides (a * b:int) ==> coprime(a,p) ==> p divides b`)) THEN
REWRITE_TAC[GSYM num_coprime; ARITH; COPRIME_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP INT_DIVIDES_LE) THEN ASM_INT_ARITH_TAC]);;
let GENERATED_P224K1_GROUP = prove
(`subgroup_generated p224k1_group {G_224K1} = p224k1_group`,
SIMP_TAC[SUBGROUP_GENERATED_ELEMENT_ORDER;
GENERATOR_IN_GROUP_CARRIER_224K1;
FINITE_GROUP_CARRIER_224K1] THEN
REWRITE_TAC[GROUP_ELEMENT_ORDER_G224K1;
REWRITE_RULE[HAS_SIZE] SIZE_P224K1_GROUP]);;
let CYCLIC_P224K1_GROUP = prove
(`cyclic_group p224k1_group`,
MESON_TAC[CYCLIC_GROUP_ALT; GENERATED_P224K1_GROUP]);;
let ABELIAN_P224K1_GROUP = prove
(`abelian_group p224k1_group`,
MESON_TAC[CYCLIC_P224K1_GROUP; CYCLIC_IMP_ABELIAN_GROUP]);;