Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Jordan /tactics_ext2.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
48.8 kB
(* ------------------------------------------------------------------ *)
(* MORE RECENT ADDITIONS *)
(* ------------------------------------------------------------------ *)
(* abbrev_type copied from definitions_group.ml *)
let pthm = prove_by_refinement(
`(\ (x:A) .T) (@(x:A). T)`,
[BETA_TAC]);;
let abbrev_type ty s = let (a,b) = new_basic_type_definition s
("mk_"^s,"dest_"^s)
(INST_TYPE [ty,`:A`] pthm) in
let abst t = list_mk_forall ((frees t), t) in
let a' = abst (concl a) in
let b' = abst (rhs (concl b)) in
(
prove_by_refinement(a',[REWRITE_TAC[a]]),
prove_by_refinement(b',[REWRITE_TAC[GSYM b]]));;
(* ------------------------------------------------------------------ *)
(* KILL IN *)
(* ------------------------------------------------------------------ *)
let un = REWRITE_RULE[IN];;
(* ------------------------------------------------------------------ *)
let SUBCONJ_TAC =
MATCH_MP_TAC (TAUT `A /\ (A ==>B) ==> (A /\ B)`) THEN CONJ_TAC;;
let PROOF_BY_CONTR_TAC =
MATCH_MP_TAC (TAUT `(~A ==> F) ==> A`) THEN DISCH_TAC;;
(* ------------------------------------------------------------------ *)
(* some general tactics *)
(* ------------------------------------------------------------------ *)
(* before adding assumption to hypothesis list, cleanse it
of unnecessary conditions *)
let CLEAN_ASSUME_TAC th =
MP_TAC th THEN ASM_REWRITE_TAC[] THEN DISCH_TAC;;
let CLEAN_THEN th ttac =
MP_TAC th THEN ASM_REWRITE_TAC[] THEN DISCH_THEN ttac;;
(* looks for a hypothesis by matching a subterm *)
let (UNDISCH_FIND_TAC: term -> tactic) =
fun tm (asl,w) ->
let p = can (term_match[] tm) in
try let sthm,_ = remove
(fun (_,asm) -> can (find_term p) (concl ( asm))) asl in
UNDISCH_TAC (concl (snd sthm)) (asl,w)
with Failure _ -> failwith "UNDISCH_FIND_TAC";;
let (UNDISCH_FIND_THEN: term -> thm_tactic -> tactic) =
fun tm ttac (asl,w) ->
let p = can (term_match[] tm) in
try let sthm,_ = remove
(fun (_,asm) -> can (find_term p) (concl ( asm))) asl in
UNDISCH_THEN (concl (snd sthm)) ttac (asl,w)
with Failure _ -> failwith "UNDISCH_FIND_TAC";;
(* ------------------------------------------------------------------ *)
(* NAME_CONFLICT_TAC : eliminate name conflicts in a term *)
(* ------------------------------------------------------------------ *)
let relabel_bound_conv tm =
let rec vars_and_constants tm acc =
match tm with
| Var _ -> tm::acc
| Const _ -> tm::acc
| Comb(a,b) -> vars_and_constants b (vars_and_constants a acc)
| Abs(a,b) -> a::(vars_and_constants b acc) in
let relabel_bound tm =
match tm with
| Abs(x,t) ->
let avoids = filter ((!=) x) (vars_and_constants tm []) in
let x' = mk_primed_var avoids x in
if (x=x') then failwith "relabel_bound" else (alpha x' tm)
| _ -> failwith "relabel_bound" in
DEPTH_CONV (fun t -> ALPHA t (relabel_bound t)) tm;;
(* example *)
let _ =
let bad_term = mk_abs (`x:bool`,`(x:num)+1=2`) in
relabel_bound_conv bad_term;;
let NAME_CONFLICT_CONV = relabel_bound_conv;;
let NAME_CONFLICT_TAC = CONV_TAC (relabel_bound_conv);;
(* renames given bound variables *)
let alpha_conv env tm = ALPHA tm (deep_alpha env tm);;
(* replaces given alpha-equivalent terms with- the term itself *)
let unify_alpha_tac = SUBST_ALL_TAC o REFL;;
let rec get_abs tm acc = match tm with
Abs(u,v) -> get_abs v (tm::acc)
|Comb(u,v) -> get_abs u (get_abs v acc)
|_ -> acc;;
(* for purposes such as sorting, it helps if ALL ALPHA-equiv
abstractions are replaced by equal abstractions *)
let (alpha_tac:tactic) =
fun (asl,w' ) ->
EVERY (map unify_alpha_tac (get_abs w' [])) (asl,w');;
(* ------------------------------------------------------------------ *)
(* SELECT ELIMINATION.
SELECT_TAC should work whenever there is a single predicate selected.
Something more sophisticated might be needed when there
is (@)A and (@)B
in the same formula.
Useful for proving statements such as `1 + (@x. (x=3)) = 4` *)
(* ------------------------------------------------------------------ *)
(* spec form of SELECT_AX *)
let select_thm select_fn select_exist =
BETA_RULE (ISPECL [select_fn;select_exist]
SELECT_AX);;
(* example *)
select_thm
`\m. (X:num->bool) m /\ (!n. X n ==> m <=| n)` `n:num`;;
let SELECT_EXIST = prove_by_refinement(
`!(P:A->bool) Q. (?y. P y) /\ (!t. (P t ==> Q t)) ==> Q ((@) P)`,
(* {{{ proof *)
[
REPEAT GEN_TAC;
DISCH_ALL_TAC;
UNDISCH_FIND_TAC `(?)`;
DISCH_THEN CHOOSE_TAC;
ASSUME_TAC (ISPECL[`P:(A->bool)`;`y:A`] SELECT_AX);
ASM_MESON_TAC[];
]);;
(* }}} *)
let SELECT_THM = prove_by_refinement(
`!(P:A->bool) Q. (((?y. P y) ==> (!t. (P t ==> Q t))) /\ ((~(?y. P y)) ==>
(!t. Q t))) ==> Q ((@) P)`,
(* {{{ proof *)
[
MESON_TAC[SELECT_EXIST];
]);;
(* }}} *)
let SELECT_TAC =
(* explicitly pull apart the clause Q((@) P),
because MATCH_MP_TAC isn't powerful
enough to do this by itself. *)
let unbeta = prove(
`!(P:A->bool) (Q:A->bool). (Q ((@) P)) <=> (\t. Q t) ((@) P)`,MESON_TAC[]) in
let unbeta_tac = CONV_TAC (HIGHER_REWRITE_CONV[unbeta] true) in
unbeta_tac THEN (MATCH_MP_TAC SELECT_THM) THEN BETA_TAC THEN CONJ_TAC
THENL[
(DISCH_THEN (fun t-> ALL_TAC)) THEN GEN_TAC;
DISCH_TAC THEN GEN_TAC];;
(* EXAMPLE:
# g `(R:A->bool) ((@) S)`;;
val it : Core.goalstack = 1 subgoal (1 total)
`R ((@) S)`
# e SELECT_TAC ;;
val it : Core.goalstack = 2 subgoals (2 total)
0 [`~(?y. S y)`]
`R t`
`S t ==> R t`
*)
(* ------------------------------------------------------------------ *)
(* TYPE_THEN and TYPEL_THEN calculate the types of the terms supplied
in a proof, avoiding the hassle of working them out by hand.
It locates the terms among the free variables in the goal.
Ambiguious if a free variables have name conflicts.
Now TYPE_THEN handles general terms.
*)
(* ------------------------------------------------------------------ *)
let rec type_set: (string*term) list -> (term list*term) -> (term list*term)=
fun typinfo (acclist,utm) -> match acclist with
| [] -> (acclist,utm)
| (Var(s,_) as a)::rest ->
let a' = (assocd s typinfo a) in
if (a = a') then type_set typinfo (rest,utm)
else let inst = instantiate (term_match [] a a') in
type_set typinfo ((map inst rest),inst utm)
| _ -> failwith "type_set: variable expected"
;;
let has_stv t =
let typ = (type_vars_in_term t) in
can (find (fun ty -> (is_vartype ty) && ((dest_vartype ty).[0] = '?'))) typ;;
let TYPE_THEN: term -> (term -> tactic) -> tactic =
fun t (tac:term->tactic) (asl,w) ->
let avoids = itlist (union o frees o concl o snd) asl
(frees w) in
let strip = fun t-> (match t with
|Var(s,_) -> (s,t) | _ -> failwith "TYPE_THEN" ) in
let typinfo = map strip avoids in
let t' = (snd (type_set typinfo ((frees t),t))) in
(warn ((has_stv t')) "TYPE_THEN: unresolved type variables");
tac t' (asl,w);;
(* this version must take variables *)
let TYPEL_THEN: term list -> (term list -> tactic) -> tactic =
fun t (tac:term list->tactic) (asl,w) ->
let avoids = itlist (union o frees o concl o snd) asl
(frees w) in
let strip = fun t-> (match t with
|Var(s,_) -> (s,t) | _ -> failwith "TYPE_THEN" ) in
let typinfo = map strip avoids in
let t' = map (fun u -> snd (type_set typinfo ((frees u),u))) t in
(warn ((can (find has_stv) t')) "TYPEL_THEN: unresolved type vars");
tac t' (asl,w);;
(* trivial example *)
let _ = prove_by_refinement(`!y. y:num = y`,
[
GEN_TAC;
TYPE_THEN `y:A` (fun t -> ASSUME_TAC(ISPEC t (TAUT `!x:B. x=x`)));
UNDISCH_TAC `y:num = y`; (* evidence that `y:A` was retyped as `y:num` *)
MESON_TAC[];
]);;
(* ------------------------------------------------------------------ *)
(* SAVE the goalstate, and retrieve later *)
(* ------------------------------------------------------------------ *)
let (save_goal,get_goal) =
let goal_buffer = ref [] in
let save_goal s =
goal_buffer := (s,!current_goalstack )::!goal_buffer in
let get_goal (s:string) = (current_goalstack:= assoc s !goal_buffer) in
(save_goal,get_goal);;
(* ------------------------------------------------------------------ *)
(* ordered rewrites with general ord function .
This allows rewrites with an arbitrary condition
-- adapted from simp.ml *)
(* ------------------------------------------------------------------ *)
let net_of_thm_ord ord rep force th =
let t = concl th in
let lconsts = freesl (hyp th) in
let matchable = can o term_match lconsts in
try let l,r = dest_eq t in
if rep && free_in l r then
let th' = EQT_INTRO th in
enter lconsts (l,(1,REWR_CONV th'))
else if rep && matchable l r && matchable r l then
enter lconsts (l,(1,ORDERED_REWR_CONV ord th))
else if force then
enter lconsts (l,(1,ORDERED_REWR_CONV ord th))
else enter lconsts (l,(1,REWR_CONV th))
with Failure _ ->
let l,r = dest_eq(rand t) in
if rep && free_in l r then
let tm = lhand t in
let th' = DISCH tm (EQT_INTRO(UNDISCH th)) in
enter lconsts (l,(3,IMP_REWR_CONV th'))
else if rep && matchable l r && matchable r l then
enter lconsts (l,(3,ORDERED_IMP_REWR_CONV ord th))
else enter lconsts(l,(3,IMP_REWR_CONV th));;
let GENERAL_REWRITE_ORD_CONV ord rep force (cnvl:conv->conv) (builtin_net:gconv net) thl =
let thl_canon = itlist (mk_rewrites false) thl [] in
let final_net = itlist (net_of_thm_ord ord rep force ) thl_canon builtin_net in
cnvl (REWRITES_CONV final_net);;
let GEN_REWRITE_ORD_CONV ord force (cnvl:conv->conv) thl =
GENERAL_REWRITE_ORD_CONV ord false force cnvl empty_net thl;;
let PURE_REWRITE_ORD_CONV ord force thl =
GENERAL_REWRITE_ORD_CONV ord true force TOP_DEPTH_CONV empty_net thl;;
let REWRITE_ORD_CONV ord force thl =
GENERAL_REWRITE_ORD_CONV ord true force TOP_DEPTH_CONV (basic_net()) thl;;
let PURE_ONCE_REWRITE_ORD_CONV ord force thl =
GENERAL_REWRITE_ORD_CONV ord false force ONCE_DEPTH_CONV empty_net thl;;
let ONCE_REWRITE_ORD_CONV ord force thl =
GENERAL_REWRITE_ORD_CONV ord false force ONCE_DEPTH_CONV (basic_net()) thl;;
let REWRITE_ORD_TAC ord force thl = CONV_TAC(REWRITE_ORD_CONV ord force thl);;
(* ------------------------------------------------------------------ *)
(* poly reduction *)
(* ------------------------------------------------------------------ *)
(* move vars leftward *)
(* if ord old_lhs new_rhs THEN swap *)
let new_factor_order t1 t2 =
try let t1v = fst(dest_binop `( *. )` t1) in
let t2v = fst(dest_binop `( *. )` t2) in
if (is_var t1v) && (is_var t2v) then term_order t1v t2v
else if (is_var t2v) then true else false
with Failure _ -> false ;;
(* false if it contains a variable or abstraction. *)
let rec is_arith_const tm =
if is_var tm then false else
if is_abs tm then false else
if is_comb tm then
let (a,b) = (dest_comb tm) in
is_arith_const (a) && is_arith_const (b)
else true;;
(* const leftward *)
let new_factor_order2 t1 t2 =
try let t1v = fst(dest_binop `( *. )` t1) in
let t2v = fst(dest_binop `( *. )` t2) in
if (is_var t1v) && (is_var t2v) then term_order t1v t2v
else if (is_arith_const t2v) then true else false
with Failure _ -> false ;;
let rec mon_sz tm =
if is_var tm then
Int (Hashtbl.hash tm)
else
try let (a,b) = dest_binop `( *. )` tm in
(mon_sz a) */ (mon_sz b)
with Failure _ -> Int 1;;
let rec new_summand_order t1 t2 =
try let t1v = fst(dest_binop `( +. )` t1) in
let t2v = fst(dest_binop `( +. )` t2) in
(mon_sz t2v >/ mon_sz t1v)
with Failure _ -> false ;;
let rec new_distrib_order t1 t2 =
try let t2v = fst(dest_binop `( *. )` t2) in
if (is_arith_const t2v) then true else false
with Failure _ ->
try
let t2' = fst(dest_binop `( +. )` t2) in
new_distrib_order t1 t2'
with Failure _ -> false ;;
let real_poly_conv =
(* same side *)
ONCE_REWRITE_CONV [GSYM REAL_SUB_0] THENC
(* expand ALL *)
REWRITE_CONV[real_div;REAL_RDISTRIB;REAL_SUB_RDISTRIB;
pow;
GSYM REAL_MUL_ASSOC;GSYM REAL_ADD_ASSOC;
REAL_ARITH `(x -. (--y) = x + y) /\ (x - y = x + (-- y)) /\
(--(x + y) = --x + (--y)) /\ (--(x - y) = --x + y)`;
REAL_ARITH
`(x*.(-- y) = -- (x*. y)) /\ (--. (--. x) = x) /\
((--. x)*.y = --.(x*.y))`;
REAL_SUB_LDISTRIB;REAL_LDISTRIB] THENC
(* move constants rightward on monomials *)
REWRITE_ORD_CONV new_factor_order false [REAL_MUL_AC;] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV
[REAL_ARITH `-- x = (x*(-- &.1))`] THENC
REWRITE_CONV[GSYM REAL_MUL_ASSOC] THENC
REAL_RAT_REDUCE_CONV THENC
(* collect like monomials *)
REWRITE_ORD_CONV new_summand_order false [REAL_ADD_AC;] THENC
(* move constants leftward AND collect them together *)
REWRITE_ORD_CONV new_factor_order2 false [REAL_MUL_AC;] THENC
REWRITE_ORD_CONV new_distrib_order true [
REAL_ARITH `(a*b +. d*b = (a+d)*b) /\
(a*b + b = (a+ &.1)*b ) /\ ( b + a*b = (a+ &.1)*b) /\
(a*b +. d*b +e = (a+d)*b + e) /\
(a*b + b + e= (a+. &.1)* b +e ) /\
( b + a*b + e = (a + &.1)*b +e) `;] THENC
REAL_RAT_REDUCE_CONV THENC
REWRITE_CONV[REAL_ARITH `(&.0 * x = &.0) /\ (x + &.0 = x) /\
(&.0 + x = x)`];;
let real_poly_tac = CONV_TAC real_poly_conv;;
let test_real_poly_tac = prove_by_refinement(
`!x y . (x + (&.2)*y)*(x- (&.2)*y) = (x*x -. (&.4)*y*y)`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
real_poly_tac;
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* REAL INEQUALITIES *)
(* Take inequality certificate A + B1 + B2 +.... + P = C as a term.
Prove it as an inequality.
Reduce to an ineq (A < C) WITH side conditions
0 <= Bi, 0 < P.
If (not strict), write as an ineq (A <= C) WITH side conditions
0 <= Bi.
Expand each Bi (or P) that is a product U*V as 0 <= U /\ 0 <= V.
To prevent expansion of Bi write (U*V) as (&0 + (U*V)).
CALL as
ineq_le_tac `A + B1 + B2 = C`;
*)
(* ------------------------------------------------------------------ *)
let strict_lemma = prove_by_refinement(
`!A B C. (A+B = C) ==> ((&.0 <. B) ==> (A <. C) )`,
(* {{{ proof *)
[
REAL_ARITH_TAC;
]);;
(* }}} *)
let weak_lemma = prove_by_refinement(
`!A B C. (A+B = C) ==> ((&.0 <=. B) ==> (A <=. C))`,
(* {{{ proof *)
[
REAL_ARITH_TAC;
]);;
(* }}} *)
let strip_lt_lemma = prove_by_refinement(
`!B1 B2 C. ((&.0 <. (B1+B2)) ==> C) ==>
((&.0 <. B2) ==> ((&.0 <=. B1) ==> C))`,
(* {{{ proof *)
[
ASM_MESON_TAC[REAL_LET_ADD];
]);;
(* }}} *)
let strip_le_lemma = prove_by_refinement(
`!B1 B2 C. ((&.0 <=. (B1+B2)) ==> C) ==>
((&.0 <=. B2) ==> ((&.0 <=. B1) ==> C))`,
(* {{{ proof *)
[
ASM_MESON_TAC[REAL_LE_ADD];
]);;
(* }}} *)
let is_x_prod_le tm =
try let hyp = fst(dest_binop `( ==> )` tm) in
let arg = snd(dest_binop `( <=. ) ` hyp) in
let fac = dest_binop `( *. )` arg in
true
with Failure _ -> false;;
let switch_lemma_le_order t1 t2 =
if (is_x_prod_le t1) && (is_x_prod_le t2) then
term_order t1 t2 else
if (is_x_prod_le t2) then true else false;;
let is_x_prod_lt tm =
try let hyp = fst(dest_binop `( ==> )` tm) in
let arg = snd(dest_binop `( <. ) ` hyp) in
let fac = dest_binop `( *. )` arg in
true
with Failure _ -> false;;
let switch_lemma_lt_order t1 t2 =
if (is_x_prod_lt t1) && (is_x_prod_lt t2) then
term_order t1 t2 else
if (is_x_prod_lt t2) then true else false;;
let switch_lemma_le = prove_by_refinement(
`!A B C. ((&.0 <= A) ==> (&.0 <= B) ==> C) =
((&.0 <=. B) ==> (&.0 <= A) ==> C)`,
(* {{{ proof *)
[
ASM_MESON_TAC[];
]);;
(* }}} *)
let switch_lemma_let = prove_by_refinement(
`!A B C. ((&.0 < A) ==> (&.0 <= B) ==> C) =
((&.0 <=. B) ==> (&.0 < A) ==> C)`,
(* {{{ proof *)
[
ASM_MESON_TAC[];
]);;
(* }}} *)
let switch_lemma_lt = prove_by_refinement(
`!A B C. ((&.0 < A) ==> (&.0 < B) ==> C) =
((&.0 <. B) ==> (&.0 < A) ==> C)`,
(* {{{ proof *)
[
ASM_MESON_TAC[];
]);;
(* }}} *)
let expand_prod_lt = prove_by_refinement(
`!B1 B2 C. (&.0 < B1*B2 ==> C) ==>
((&.0 <. B1) ==> (&.0 <. B2) ==> C)`,
(* {{{ proof *)
[
ASM_MESON_TAC[REAL_LT_MUL ];
]);;
(* }}} *)
let expand_prod_le = prove_by_refinement(
`!B1 B2 C. (&.0 <= B1*B2 ==> C) ==>
((&.0 <=. B1) ==> (&.0 <=. B2) ==> C)`,
(* {{{ proof *)
[
ASM_MESON_TAC[REAL_LE_MUL ];
]);;
(* }}} *)
let ineq_cert_gen_tac v cert =
let DISCH_RULE f = DISCH_THEN (fun t-> MP_TAC (f t)) in
TYPE_THEN cert
(MP_TAC o (REWRITE_CONV[REAL_POW_2] THENC real_poly_conv)) THEN
REWRITE_TAC[] THEN
DISCH_RULE (MATCH_MP v) THEN
DISCH_RULE (repeat (MATCH_MP strip_lt_lemma)) THEN
DISCH_RULE (repeat (MATCH_MP strip_le_lemma)) THEN
DISCH_RULE (repeat (MATCH_MP expand_prod_lt o
(CONV_RULE
(REWRITE_ORD_CONV switch_lemma_lt_order true[switch_lemma_lt])))) THEN
DISCH_RULE (repeat (MATCH_MP expand_prod_le o
(CONV_RULE (REWRITE_ORD_CONV switch_lemma_le_order true
[switch_lemma_le])) o
(REWRITE_RULE[switch_lemma_let]))) THEN
DISCH_RULE (repeat (MATCH_MP
(TAUT `(A ==> B==>C) ==> (A /\ B ==> C)`))) THEN
REWRITE_TAC[REAL_MUL_LID] THEN
DISCH_THEN MATCH_MP_TAC THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
ASM_SIMP_TAC[REAL_LE_POW_2;
REAL_ARITH `(&.0 < x ==> &.0 <= x) /\ (&.0 + x = x) /\
(a <= b ==> &.0 <= b - a) /\
(a < b ==> &.0 <= b - a) /\
(~(b < a) ==> &.0 <= b - a) /\
(~(b <= a) ==> &.0 <= b - a) /\
(a < b ==> &.0 < b - a) /\
(~(b <= a) ==> &.0 < b - a)`];;
let ineq_lt_tac = ineq_cert_gen_tac strict_lemma;;
let ineq_le_tac = ineq_cert_gen_tac weak_lemma;;
(* test *)
let test_ineq_tac = prove_by_refinement(
`!x y z. (&.0 <= x*y) /\ (&.0 <. z) ==>
(x*y) <. x*x + (&.3)*x*y + &.4 `,
(* {{{ proof *)
[
DISCH_ALL_TAC;
ineq_lt_tac `x * y + x pow 2 + &2 * (&.0 + x * y) + &2 * &2 = x * x + &3 * x * y + &4`;
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* Move quantifier left. Use class.ml and theorems.ml to bubble
quantifiers towards the head of an expression. It should move
quantifiers past other quantifiers, past conjunctions, disjunctions,
implications, etc.
val quant_left_CONV : string -> term -> thm = <fun>
Arguments:
var_name:string -- The name of the variable that is to be shifted.
It tends to return `T` when the conversion fails.
Example:
quant_left_CONV "a" `!b. ?a. a = b*4`;;
val it : thm = |- (!b. ?a. a = b *| 4) <=> (?a. !b. a b = b *| 4)
*)
(* ------------------------------------------------------------------ *)
let tagb = new_definition `TAGB (x:bool) = x`;;
let is_quant tm = (is_forall tm) || (is_exists tm);;
(*** JRH replaced Comb and Abs with abstract type constructors ***)
let rec tag_quant var_name tm =
if (is_forall tm && (fst (dest_var (fst (dest_forall tm))) = var_name))
then mk_comb (`TAGB`,tm)
else if (is_exists tm && (fst (dest_var (fst (dest_exists tm))) = var_name)) then mk_comb (`TAGB`,tm)
else match tm with
| Comb (x,y) -> mk_comb(tag_quant var_name x,tag_quant var_name y)
| Abs (x,y) -> mk_abs(x,tag_quant var_name y)
| _ -> tm;;
let quant_left_CONV =
(* ~! -> ?~ *)
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let NOT_FORALL_TAG = prove(`!P. ~(TAGB(!x. P x)) <=> (?x:A. ~(P x))`,
REWRITE_TAC[tagb;NOT_FORALL_THM]) in
let SKOLEM_TAG =
prove(`!P. (?y. TAGB (!(x:A). P x ((y:A->B) x))) <=>
( (!(x:A). ?y. P x ((y:B))))`,REWRITE_TAC[tagb;SKOLEM_THM]) in
let SKOLEM_TAG2 =
prove(`!P. (!x:A. TAGB(?y:B. P x y)) <=> (?y. !x. P x (y x))`,
REWRITE_TAC[tagb;SKOLEM_THM]) in
(* !1 !2 -> !2 !1 *)
let SWAP_FORALL_TAG =
prove(`!P:A->B->bool. (!x. TAGB(! y. P x y)) <=> (!y x. P x y)`,
REWRITE_TAC[SWAP_FORALL_THM;tagb]) in
let SWAP_EXISTS_THM = iprove
`!P:A->B->bool. (?x. TAGB (?y. P x y)) <=> (?y x. P x y)` in
(* ! /\ ! -> ! /\ *)
let AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ TAGB (!x. Q x) <=>
(!x. P x /\ Q x))`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let LEFT_AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ Q) <=>
(!x. P x /\ Q )`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_AND_FORALL_TAG = prove(`!P Q. P /\ TAGB (!x. Q x) <=>
(!x. P /\ Q x)`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let TRIV_OR_FORALL_TAG = prove
(`!P Q. TAGB (!x:A. P) \/ TAGB (!x:A. Q) <=> (!x:A. P \/ Q)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_IMP_FORALL_TAG = prove
(`!P Q. (P ==> TAGB (!x:A. Q x)) <=> (!x. P ==> Q x)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let OR_EXISTS_THM = iprove
`!P Q. TAGB (?x. P x) \/ TAGB (?x. Q x) <=> (?x:A. P x \/ Q x)` in
let LEFT_OR_EXISTS_THM = iprove
`!P Q. TAGB (?x. P x) \/ Q <=> (?x:A. P x \/ Q)` in
let RIGHT_OR_EXISTS_THM = iprove
`!P Q. P \/ TAGB (?x. Q x) <=> (?x:A. P \/ Q x)` in
let LEFT_AND_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)` in
let RIGHT_AND_EXISTS_THM = iprove
`!P Q. P /\ TAGB (?x:A. Q x) <=> (?x:A. P /\ Q x)` in
let TRIV_AND_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P) /\ TAGB (?x:A. Q) <=> (?x:A. P /\ Q)` in
let LEFT_IMP_EXISTS_THM = iprove
`!P Q. (TAGB (?x:A. P x) ==> Q) <=> (!x. P x ==> Q)` in
let TRIV_FORALL_IMP_THM = iprove
`!P Q. (TAGB (?x:A. P) ==> TAGB (!x:A. Q)) <=> (!x:A. P ==> Q) ` in
let TRIV_EXISTS_IMP_THM = iprove
`!P Q. (TAGB(!x:A. P) ==> TAGB (?x:A. Q)) <=> (?x:A. P ==> Q) ` in
let NOT_EXISTS_TAG = prove(
`!P. ~(TAGB(?x:A. P x)) <=> (!x. ~(P x))`,
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in
let LEFT_OR_FORALL_TAG = prove
(`!P Q. TAGB(!x:A. P x) \/ Q <=> (!x. P x \/ Q)`,
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in
let RIGHT_OR_FORALL_TAG = prove
(`!P Q. P \/ TAGB(!x:A. Q x) <=> (!x. P \/ Q x)`,
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in
let LEFT_IMP_FORALL_TAG = prove
(`!P Q. (TAGB(!x:A. P x) ==> Q) <=> (?x. P x ==> Q)`,
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in
let RIGHT_IMP_EXISTS_TAG = prove
(`!P Q. (P ==> TAGB(?x:A. Q x)) <=> (?x:A. P ==> Q x)`,
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in
fun var_name tm ->
REWRITE_RULE [tagb]
(TOP_SWEEP_CONV
(GEN_REWRITE_CONV I
[NOT_FORALL_TAG;SKOLEM_TAG;SKOLEM_TAG2;
SWAP_FORALL_TAG;SWAP_EXISTS_THM;
SWAP_EXISTS_THM;
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG;
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG;
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM;
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM;
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG;
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG;
RIGHT_IMP_EXISTS_TAG;
])
(tag_quant var_name tm));;
(* same, but never pass a quantifier past another. No Skolem, etc. *)
let quant_left_noswap_CONV =
(* ~! -> ?~ *)
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let NOT_FORALL_TAG = prove(`!P. ~(TAGB(!x. P x)) <=> (?x:A. ~(P x))`,
REWRITE_TAC[tagb;NOT_FORALL_THM]) in
let SKOLEM_TAG =
prove(`!P. (?y. TAGB (!(x:A). P x ((y:A->B) x))) <=>
( (!(x:A). ?y. P x ((y:B))))`,REWRITE_TAC[tagb;SKOLEM_THM]) in
let SKOLEM_TAG2 =
prove(`!P. (!x:A. TAGB(?y:B. P x y)) <=> (?y. !x. P x (y x))`,
REWRITE_TAC[tagb;SKOLEM_THM]) in
(* !1 !2 -> !2 !1 *)
let SWAP_FORALL_TAG =
prove(`!P:A->B->bool. (!x. TAGB(! y. P x y)) <=> (!y x. P x y)`,
REWRITE_TAC[SWAP_FORALL_THM;tagb]) in
let SWAP_EXISTS_THM = iprove
`!P:A->B->bool. (?x. TAGB (?y. P x y)) <=> (?y x. P x y)` in
(* ! /\ ! -> ! /\ *)
let AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ TAGB (!x. Q x) <=>
(!x. P x /\ Q x))`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let LEFT_AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ Q) <=>
(!x. P x /\ Q )`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_AND_FORALL_TAG = prove(`!P Q. P /\ TAGB (!x. Q x) <=>
(!x. P /\ Q x)`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let TRIV_OR_FORALL_TAG = prove
(`!P Q. TAGB (!x:A. P) \/ TAGB (!x:A. Q) <=> (!x:A. P \/ Q)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_IMP_FORALL_TAG = prove
(`!P Q. (P ==> TAGB (!x:A. Q x)) <=> (!x. P ==> Q x)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let OR_EXISTS_THM = iprove
`!P Q. TAGB (?x. P x) \/ TAGB (?x. Q x) <=> (?x:A. P x \/ Q x)` in
let LEFT_OR_EXISTS_THM = iprove
`!P Q. TAGB (?x. P x) \/ Q <=> (?x:A. P x \/ Q)` in
let RIGHT_OR_EXISTS_THM = iprove
`!P Q. P \/ TAGB (?x. Q x) <=> (?x:A. P \/ Q x)` in
let LEFT_AND_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)` in
let RIGHT_AND_EXISTS_THM = iprove
`!P Q. P /\ TAGB (?x:A. Q x) <=> (?x:A. P /\ Q x)` in
let TRIV_AND_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P) /\ TAGB (?x:A. Q) <=> (?x:A. P /\ Q)` in
let LEFT_IMP_EXISTS_THM = iprove
`!P Q. (TAGB (?x:A. P x) ==> Q) <=> (!x. P x ==> Q)` in
let TRIV_FORALL_IMP_THM = iprove
`!P Q. (TAGB (?x:A. P) ==> TAGB (!x:A. Q)) <=> (!x:A. P ==> Q) ` in
let TRIV_EXISTS_IMP_THM = iprove
`!P Q. (TAGB(!x:A. P) ==> TAGB (?x:A. Q)) <=> (?x:A. P ==> Q) ` in
let NOT_EXISTS_TAG = prove(
`!P. ~(TAGB(?x:A. P x)) <=> (!x. ~(P x))`,
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in
let LEFT_OR_FORALL_TAG = prove
(`!P Q. TAGB(!x:A. P x) \/ Q <=> (!x. P x \/ Q)`,
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in
let RIGHT_OR_FORALL_TAG = prove
(`!P Q. P \/ TAGB(!x:A. Q x) <=> (!x. P \/ Q x)`,
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in
let LEFT_IMP_FORALL_TAG = prove
(`!P Q. (TAGB(!x:A. P x) ==> Q) <=> (?x. P x ==> Q)`,
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in
let RIGHT_IMP_EXISTS_TAG = prove
(`!P Q. (P ==> TAGB(?x:A. Q x)) <=> (?x:A. P ==> Q x)`,
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in
fun var_name tm ->
REWRITE_RULE [tagb]
(TOP_SWEEP_CONV
(GEN_REWRITE_CONV I
[NOT_FORALL_TAG; (* SKOLEM_TAG;SKOLEM_TAG2; *)
(* SWAP_FORALL_TAG;SWAP_EXISTS_THM;
SWAP_EXISTS_THM; *)
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG;
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG;
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM;
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM;
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG;
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG;
RIGHT_IMP_EXISTS_TAG;
])
(tag_quant var_name tm));;
let quant_right_CONV =
(* ~! -> ?~ *)
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let NOT_FORALL_TAG = prove(`!P. TAGB(?x:A. ~(P x)) <=> ~((!x. P x))`,
REWRITE_TAC[tagb;GSYM NOT_FORALL_THM]) in
let SKOLEM_TAG =
prove(`!P. ( TAGB(!(x:A). ?y. P x ((y:B)))) <=>
(?y. (!(x:A). P x ((y:A->B) x)))`,
REWRITE_TAC[tagb;GSYM SKOLEM_THM])
in
let SKOLEM_TAG2 =
prove(`!P. TAGB(?y. !x. P x (y x)) <=> (!x:A. (?y:B. P x y))`,
REWRITE_TAC[tagb;GSYM SKOLEM_THM]) in
(* !1 !2 -> !2 !1.. *)
let SWAP_FORALL_TAG =
prove(`!P:A->B->bool. TAGB(!y x. P x y) <=> (!x. (! y. P x y))`,
REWRITE_TAC[GSYM SWAP_FORALL_THM;tagb]) in
let SWAP_EXISTS_THM = iprove
`!P:A->B->bool. TAGB (?y x. P x y) <=> (?x. (?y. P x y))` in
(* ! /\ ! -> ! /\ *)
let AND_FORALL_TAG = iprove`!P Q. TAGB(!x. P x /\ Q x) <=>
((!x. P x) /\ (!x. Q x))` in
let LEFT_AND_FORALL_TAG = prove(`!P Q.
TAGB(!x. P x /\ Q ) <=> ((!x. P x) /\ Q)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_AND_FORALL_TAG = prove(`!P Q.
TAGB(!x. P /\ Q x) <=> P /\ (!x. Q x)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let TRIV_OR_FORALL_TAG = prove
(`!P Q. TAGB(!x:A. P \/ Q) <=>(!x:A. P) \/ (!x:A. Q)`,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let RIGHT_IMP_FORALL_TAG = prove
(`!P Q. TAGB (!x. P ==> Q x) <=> (P ==> (!x:A. Q x)) `,
REWRITE_TAC[tagb] THEN ITAUT_TAC) in
let OR_EXISTS_THM = iprove
`!P Q. TAGB(?x:A. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x) ` in
let LEFT_OR_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P x \/ Q) <=> (?x. P x) \/ Q ` in
let RIGHT_OR_EXISTS_THM = iprove
`!P Q.TAGB (?x:A. P \/ Q x) <=> P \/ (?x. Q x)` in
let LEFT_AND_EXISTS_THM = iprove
`!P Q.TAGB (?x:A. P x /\ Q) <=> (?x:A. P x) /\ Q` in
let RIGHT_AND_EXISTS_THM = iprove
`!P Q. TAGB (?x:A. P /\ Q x) <=> P /\ (?x:A. Q x) ` in
let TRIV_AND_EXISTS_THM = iprove
`!P Q. TAGB(?x:A. P /\ Q) <=> (?x:A. P) /\ (?x:A. Q) ` in (* *)
let LEFT_IMP_EXISTS_THM = iprove
`!P Q. TAGB(!x. P x ==> Q) <=> ( (?x:A. P x) ==> Q) ` in (* *)
let TRIV_FORALL_IMP_THM = iprove
`!P Q. TAGB(!x:A. P ==> Q) <=> ( (?x:A. P) ==> (!x:A. Q)) ` in
let TRIV_EXISTS_IMP_THM = iprove
`!P Q. TAGB(?x:A. P ==> Q) <=> ((!x:A. P) ==> (?x:A. Q)) ` in
let NOT_EXISTS_TAG = prove(
`!P. TAGB(!x. ~(P x)) <=> ~((?x:A. P x)) `,
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in
let LEFT_OR_FORALL_TAG = prove
(`!P Q. TAGB(!x. P x \/ Q) <=> (!x:A. P x) \/ Q `,
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in
let RIGHT_OR_FORALL_TAG = prove
(`!P Q. TAGB(!x. P \/ Q x) <=> P \/ (!x:A. Q x) `,
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in
let LEFT_IMP_FORALL_TAG = prove
(`!P Q. TAGB(?x. P x ==> Q) <=> ((!x:A. P x) ==> Q) `,
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in
let RIGHT_IMP_EXISTS_TAG = prove
(`!P Q. TAGB(?x:A. P ==> Q x) <=> (P ==> (?x:A. Q x)) `,
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in
fun var_name tm ->
REWRITE_RULE [tagb]
(TOP_SWEEP_CONV
(GEN_REWRITE_CONV I
[NOT_FORALL_TAG;SKOLEM_TAG;SKOLEM_TAG2;
SWAP_FORALL_TAG;SWAP_EXISTS_THM;
SWAP_EXISTS_THM;
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG;
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG;
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM;
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM;
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG;
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG;
RIGHT_IMP_EXISTS_TAG;
])
(tag_quant var_name tm));;
(* ------------------------------------------------------------------ *)
(* Dropping Superfluous Quantifiers .
Example: ?u. (u = t) /\ ...
We can eliminate the u.
*)
(* ------------------------------------------------------------------ *)
let mark_term = new_definition `mark_term (u:A) = u`;;
(*** JRH replaced Comb and Abs with explicit constructors ***)
let rec markq qname tm =
match tm with
Var (a,b) -> if (a=qname) then mk_icomb (`mark_term:A->A`,tm) else tm
|Const(_,_) -> tm
|Comb(s,b) -> mk_comb(markq qname s,markq qname b)
|Abs (x,t) -> mk_abs(x,markq qname t);;
let rec getquants tm =
if (is_forall tm) then
(fst (dest_var (fst (dest_forall tm))))::
(getquants (snd (dest_forall tm)))
else if (is_exists tm) then
(fst (dest_var (fst (dest_exists tm))))::
(getquants (snd (dest_exists tm)))
else match tm with
Comb(s,b) -> (getquants s) @ (getquants b)
| Abs (x,t) -> (getquants t)
| _ -> [];;
(* can loop if there are TWO *)
let rewrite_conjs = [
prove_by_refinement (`!A B C. (A /\ B) /\ C <=> A /\ B /\ C`,[REWRITE_TAC[CONJ_ACI]]);
prove_by_refinement (`!u. (mark_term (u:A) = mark_term u) <=> T`,[MESON_TAC[]]);
prove_by_refinement (`!u t. (t = mark_term (u:A)) <=> (mark_term u = t)`,[MESON_TAC[]]);
prove_by_refinement (`!u a b. (mark_term (u:A) = a) /\ (mark_term u = b) <=> (mark_term u = a) /\ (a = b)`,[MESON_TAC[]]);
prove_by_refinement (`!u a b B. (mark_term (u:A) = a) /\ (mark_term u = b) /\ B <=> (mark_term u = a) /\ (a = b) /\ B`,[MESON_TAC[]]);
prove_by_refinement (`!u t A C. A /\ (mark_term (u:A) = t) /\ C <=>
(mark_term u = t) /\ A /\ C`,[MESON_TAC[]]);
prove_by_refinement (`!A u t. A /\ (mark_term (u:A) = t) <=>
(mark_term u = t) /\ A `,[MESON_TAC[]]);
prove_by_refinement (`!u t C D. (((mark_term (u:A) = t) /\ C) ==> D) <=>
((mark_term (u:A) = t) ==> C ==> D)`,[MESON_TAC[]]);
prove_by_refinement (`!A u t B. (A ==> (mark_term (u:A) = t) ==> B) <=>
((mark_term (u:A) = t) ==> A ==> B)`,[MESON_TAC[]]);
];;
let higher_conjs = [
prove_by_refinement (`!C u t. ((mark_term u = t) ==> C (mark_term u)) <=>
((mark_term u = t) ==> C (t:A))`,[MESON_TAC[mark_term]]);
prove_by_refinement (`!C u t. ((mark_term u = t) /\ C (mark_term u)) <=>
((mark_term u = t) /\ C (t:A))`,[MESON_TAC[mark_term]]);
];;
let dropq_conv =
let drop_exist =
REWRITE_CONV [prove_by_refinement (`!t. ?(u:A). (u = t)`,[MESON_TAC[]])] in
fun qname tm ->
let quanlist = getquants tm in
let quantleft_CONV = EVERY_CONV
(map (REPEATC o quant_left_noswap_CONV) quanlist) in
let qname_conv tm = prove(mk_eq(tm,markq qname tm),
REWRITE_TAC[mark_term]) in
let conj_conv = REWRITE_CONV rewrite_conjs in
let quantright_CONV = (REPEATC (quant_right_CONV qname)) in
let drop_mark_CONV = REWRITE_CONV [mark_term] in
(quantleft_CONV THENC qname_conv THENC conj_conv THENC
(ONCE_REWRITE_CONV higher_conjs)
THENC drop_mark_CONV THENC quantright_CONV THENC
drop_exist ) tm ;;
(* Examples : *)
dropq_conv "u" `!P Q R . (?(u:B). (?(x:A). (u = P x) /\ (Q x)) /\ (R u))`;;
dropq_conv "t" `!P Q R. (!(t:B). (?(x:A). P x /\ (t = Q x)) ==> R t)`;;
dropq_conv "u" `?u v.
((t * (a + &1) + (&1 - t) *a = u) /\
(t * (b + &0) + (&1 - t) * b = v)) /\
a < u /\
u < r /\
(v = b)`;;
(* ------------------------------------------------------------------ *)
(* SOME GENERAL TACTICS FOR THE ASSUMPTION LIST *)
(* ------------------------------------------------------------------ *)
let (%) i = HYP (string_of_int i);;
let WITH i rule = (H_VAL (rule) (HYP (string_of_int i))) ;;
let (UND:int -> tactic) =
fun i (asl,w) ->
let name = "Z-"^(string_of_int i) in
try let thm= assoc name asl in
let tm = concl (thm) in
let (_,asl') = partition (fun t-> ((=) name (fst t))) asl in
null_meta,[asl',mk_imp(tm,w)],
fun i [th] -> MP th (INSTANTIATE_ALL i thm)
with Failure _ -> failwith "UND";;
let KILL i =
(UND i) THEN (DISCH_THEN (fun t -> ALL_TAC));;
let USE i rule = (WITH i rule) THEN (KILL i);;
let CHO i = (UND i) THEN (DISCH_THEN CHOOSE_TAC);;
let X_CHO i t = (UND i) THEN (DISCH_THEN (X_CHOOSE_TAC t));;
let AND i = (UND i) THEN
(DISCH_THEN (fun t-> (ASSUME_TAC (CONJUNCT1 t)
THEN (ASSUME_TAC (CONJUNCT2 t)))));;
let JOIN i j =
(H_VAL2 CONJ ((%)i) ((%)j)) THEN (KILL i) THEN (KILL j);;
let COPY i = WITH i I;;
let REP n tac = EVERY (replicate tac n);;
let REWR i = (UND i) THEN (ASM_REWRITE_TAC[]) THEN DISCH_TAC;;
let LEFT i t = (USE i (CONV_RULE (quant_left_CONV t)));;
let RIGHT i t = (USE i (CONV_RULE (quant_right_CONV t)));;
let LEFT_TAC t = ((CONV_TAC (quant_left_CONV t)));;
let RIGHT_TAC t = ( (CONV_TAC (quant_right_CONV t)));;
let INR = REWRITE_RULE[IN];;
(*
let rec REP n tac = if (n<=0) then ALL_TAC
else (tac THEN (REP (n-1) tac));; (* doesn't seem to work? *)
let COPY i = (UNDISCH_WITH i) THEN (DISCH_THEN (fun t->ALL_TAC));;
MANIPULATING ASSUMPTIONS. (MAKE 0= GOAL)
COPY: int -> tactic Make a copy in adjacent slot.
EXPAND: int -> tactic.
conjunction -> two separate.
exists/goal-forall -> choose.
goal-if-then -> discharge
EXPAND_TERM: int -> term -> tactic.
constant -> expand definition || other rewrites associated.
ADD: term -> tactic.
SIMPLIFY: int -> tactic. Apply simplification rules.
*)
let CONTRAPOSITIVE_TAC = MATCH_MP_TAC (TAUT `(~q ==> ~p) ==> (p ==> q)`)
THEN REWRITE_TAC[];;
let REWRT_TAC = (fun t-> REWRITE_TAC[t]);;
let (REDUCE_CONV,REDUCE_TAC) =
let list = [
(* reals *) REAL_NEG_GE0;
REAL_HALF_DOUBLE;
REAL_SUB_REFL ;
REAL_NEG_NEG;
REAL_LE; LE_0;
REAL_ADD_LINV;REAL_ADD_RINV;
REAL_NEG_0;
REAL_NEG_LE0;
REAL_NEG_GE0;
REAL_LE_NEGL;
REAL_LE_NEGR;
REAL_LE_NEG2;
REAL_NEG_EQ_0;
REAL_SUB_RNEG;
REAL_ARITH `!(x:real). (--x = x) <=> (x = &.0)`;
REAL_ARITH `!(a:real) b. (a - b + b) = a`;
REAL_ADD_LID;
REAL_ADD_RID ;
REAL_INV_0;
REAL_OF_NUM_EQ;
REAL_OF_NUM_LE;
REAL_OF_NUM_LT;
REAL_OF_NUM_ADD;
REAL_OF_NUM_MUL;
REAL_POS;
REAL_MUL_RZERO;
REAL_MUL_LZERO;
REAL_LE_01;
REAL_SUB_RZERO;
REAL_LE_SQUARE;
REAL_MUL_RID;
REAL_MUL_LID;
REAL_ABS_ZERO;
REAL_ABS_NUM;
REAL_ABS_1;
REAL_ABS_NEG;
REAL_ABS_POS;
ABS_ZERO;
ABS_ABS;
REAL_NEG_LT0;
REAL_NEG_GT0;
REAL_LT_NEG2;
REAL_NEG_MUL2;
REAL_OF_NUM_POW;
REAL_LT_INV_EQ;
REAL_POW_1;
REAL_INV2;
prove (`(--. (&.n) < (&.m)) <=> (&.0 < (&.n) + (&.m))`,REAL_ARITH_TAC);
prove (`(--. (&.n) <= (&.m)) <=> (&.0 <= (&.n) + (&.m))`,REAL_ARITH_TAC);
prove (`(--. (&.n) = (&.m)) <=> ((&.n) + (&.m) = (&.0))`,REAL_ARITH_TAC);
prove (`((&.n) < --.(&.m)) <=> ((&.n) + (&.m) <. (&.0))`,REAL_ARITH_TAC);
prove (`((&.n) <= --.(&.m)) <=> ((&.n) + (&.m) <=. (&.0))`,REAL_ARITH_TAC);
prove (`((&.n) = --.(&.m)) <=> ((&.n) + (&.m) = (&.0))`,REAL_ARITH_TAC);
prove (`((&.n) < --.(&.m) + &.r) <=> ((&.n) + (&.m) < (&.r))`,REAL_ARITH_TAC);
prove (`(--. x = --. y) <=> (x = y)`,REAL_ARITH_TAC);
prove (`(--(&.n) < --.(&.m) + &.r) <=> ( (&.m) < &.n + (&.r))`,REAL_ARITH_TAC);
prove (`(--. x = --. y) <=> (x = y)`,REAL_ARITH_TAC);
prove (`((--. (&.1))* x < --. y <=> y < x)`,REAL_ARITH_TAC );
prove (`((--. (&.1))* x <= --. y <=> y <= x)`,REAL_ARITH_TAC );
(* num *)
EXP_1;
EXP_LT_0;
ADD_0;
ARITH_RULE `0+| m = m`;
ADD_EQ_0;
prove (`(0 = m +|n) <=> (m = 0)/\ (n=0)`,MESON_TAC[ADD_EQ_0]);
EQ_ADD_LCANCEL_0;
EQ_ADD_RCANCEL_0;
LT_ADD;
LT_ADDR;
ARITH_RULE `(0 = j -| i) <=> (j <=| i)`;
ARITH_RULE `(j -| i = 0) <=> (j <=| i)`;
ARITH_RULE `0 -| i = 0`;
ARITH_RULE `(i<=| j) /\ (j <=| i) <=> (i = j)`;
ARITH_RULE `0 <| 1`;
(* SUC *)
NOT_SUC;
SUC_INJ;
PRE;
ADD_CLAUSES;
MULT;
MULT_CLAUSES;
LE; LT;
ARITH_RULE `SUC b -| 1 = b`;
ARITH_RULE `SUC b -| b = 1`;
prove(`&.(SUC x) - &.x = &.1`,
REWRITE_TAC [REAL_ARITH `(a -. b=c) <=> (a = b+.c)`;
REAL_OF_NUM_ADD;REAL_OF_NUM_EQ] THEN ARITH_TAC);
(* (o) *)
o_DEF;
(* I *)
I_THM;
I_O_ID;
(* pow *)
REAL_POW_1;
REAL_POW_ONE;
(* INT *)
INT_ADD_LINV;
INT_ADD_RINV;
INT_ADD_SUB2;
INT_EQ_NEG2;
INT_LE_NEG2;
INT_LE_NEGL;
INT_LE_NEGR;
INT_LT_NEG2;
INT_LT_NEG2;
INT_NEG_NEG;
INT_NEG_0;
INT_NEG_EQ_0;
INT_NEG_GE0;
INT_NEG_GT0;
INT_NEG_LE0;
INT_NEG_LT0;
GSYM INT_NEG_MINUS1;
INT_NEG_MUL2;
INT_NEG_NEG;
(* sets *)
] in
(REWRITE_CONV list,REWRITE_TAC list);;
(* prove by squaring *)
let REAL_POW_2_LE = prove_by_refinement(
`!x y. (&.0 <= x) /\ (&.0 <= y) /\ (x pow 2 <=. y pow 2) ==> (x <=. y)`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
MP_TAC (SPECL[` (x:real) pow 2`;`(y:real)pow 2`] SQRT_MONO_LE);
ASM_REWRITE_TAC[];
ASM_SIMP_TAC[REAL_POW_LE];
ASM_SIMP_TAC[POW_2_SQRT];
]);;
(* }}} *)
(* prove by squaring *)
let REAL_POW_2_LT = prove_by_refinement(
`!x y. (&.0 <= x) /\ (&.0 <= y) /\ (x pow 2 <. y pow 2) ==> (x <. y)`,
(* {{{ proof *)
[
DISCH_ALL_TAC;
MP_TAC (SPECL[` (x:real) pow 2`;`(y:real)pow 2`] SQRT_MONO_LT);
ASM_REWRITE_TAC[];
ASM_SIMP_TAC[REAL_POW_LE];
ASM_SIMP_TAC[POW_2_SQRT];
]);;
(* }}} *)
let SQUARE_TAC =
FIRST[
MATCH_MP_TAC REAL_LE_LSQRT;
MATCH_MP_TAC REAL_POW_2_LT;
MATCH_MP_TAC REAL_POW_2_LE
]
THEN REWRITE_TAC[];;
(****)
let SPEC2_TAC t = SPEC_TAC (t,t);;
let IN_ELIM i = (USE i (REWRITE_RULE[IN]));;
let rec range i n =
if (n>0) then (i::(range (i+1) (n-1))) else [];;
(* in elimination *)
let (IN_OUT_TAC: tactic) =
fun (asl,g) -> (REWRITE_TAC [IN] THEN
(EVERY (map (IN_ELIM) (range 0 (length asl))))) (asl,g);;
let (IWRITE_TAC : thm list -> tactic) =
fun thlist -> REWRITE_TAC (map INR thlist);;
let (IWRITE_RULE : thm list -> thm -> thm) =
fun thlist -> REWRITE_RULE (map INR thlist);;
let IMATCH_MP imp ant = MATCH_MP (INR imp) (INR ant);;
let IMATCH_MP_TAC imp = MATCH_MP_TAC (INR imp);;
let GBETA_TAC = (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV));;
let GBETA_RULE = (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV));;
(* breaks antecedent into multiple cases *)
let REP_CASES_TAC =
REPEAT (DISCH_THEN (REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC));;
let TSPEC t i = TYPE_THEN t (USE i o SPEC);;
let IMP_REAL t i = (USE i (MATCH_MP (REAL_ARITH t)));;
(* goes from f = g to fz = gz *)
let TAPP z i = TYPE_THEN z (fun u -> (USE i(fun t -> AP_THM t u)));;
(* ONE NEW TACTIC -- DOESN'T WORK!! DON'T USE....
let CONCL_TAC t = let co = snd (dest_imp (concl t)) in
SUBGOAL_TAC co THEN (TRY (IMATCH_MP_TAC t));;
*)
(* subgoal the antecedent of a THM, in order to USE the conclusion *)
let ANT_TAC t = let (ant,co) = (dest_imp (concl t)) in
SUBGOAL_TAC ant
THENL [ALL_TAC;DISCH_THEN (fun u-> MP_TAC (MATCH_MP t u))];;
let TH_INTRO_TAC tl th = TYPEL_THEN tl (fun t-> ANT_TAC (ISPECL t th));;
let THM_INTRO_TAC tl th = TYPEL_THEN tl
(fun t->
let s = ISPECL t th in
if is_imp (concl s) then ANT_TAC s else ASSUME_TAC s);;
let (DISCH_THEN_FULL_REWRITE:tactic) =
DISCH_THEN (fun t-> REWRITE_TAC[t] THEN
(RULE_ASSUM_TAC (REWRITE_RULE[t])));;
let FULL_REWRITE_TAC t = (REWRITE_TAC t THEN (RULE_ASSUM_TAC (REWRITE_RULE t)));;
(* ------------------------------------------------------------------ *)
let BASIC_TAC =
[ GEN_TAC;
IMATCH_MP_TAC (TAUT ` (a ==> b ==> C) ==> ( a /\ b ==> C)`);
DISCH_THEN (CHOOSE_THEN MP_TAC);
FIRST_ASSUM (fun t-> UNDISCH_TAC (concl t) THEN
(DISCH_THEN CHOOSE_TAC));
FIRST_ASSUM (fun t ->
(if (length (CONJUNCTS t) < 2) then failwith "BASIC_TAC"
else UNDISCH_TAC (concl t)));
DISCH_TAC;
];;
let REP_BASIC_TAC = REPEAT (CHANGED_TAC (FIRST BASIC_TAC));;
(* ------------------------------------------------------------------ *)
let USE_FIRST rule =
FIRST_ASSUM (fun t -> (UNDISCH_TAC (concl t) THEN
(DISCH_THEN (ASSUME_TAC o rule))));;
let WITH_FIRST rule =
FIRST_ASSUM (fun t -> ASSUME_TAC (rule t));;
let UNDF t = (TYPE_THEN t UNDISCH_FIND_TAC );;
let GRABF t ttac = (UNDF t THEN (DISCH_THEN ttac));;
let USEF t rule =
(TYPE_THEN t (fun t' -> UNDISCH_FIND_THEN t'
(fun u -> ASSUME_TAC (rule u))));;
(* ------------------------------------------------------------------ *)
(* UNIFY_EXISTS_TAC *)
(* ------------------------------------------------------------------ *)
let rec EXISTSL_TAC tml = match tml with
a::tml' -> EXISTS_TAC a THEN EXISTSL_TAC tml' |
[] -> ALL_TAC;;
(*
Goal: ?x1....xn. P1 /\ ... /\ Pm
Try to pick ALL of x1...xn to unify ONE or more Pi with terms
appearing in the assumption list, trying term_unify on
each Pi with each assumption.
*)
let (UNIFY_EXISTS_TAC:tactic) =
let run_one wc assum (varl,sofar) =
if varl = [] then (varl,sofar) else
try (
let wc' = instantiate ([],sofar,[]) wc in
let (_,ins,_) = term_unify varl wc' assum in
let insv = map snd ins in
( subtract varl insv , union sofar ins )
) with failure -> (varl,sofar) in
let run_onel asl wc (varl,sofar) =
itlist (run_one wc) asl (varl,sofar) in
let run_all varl sofar wcl asl =
itlist (run_onel asl) wcl (varl,sofar) in
let full_unify (asl,w) =
let (varl,ws) = strip_exists w in
let vargl = map genvar (map type_of varl) in
let wg = instantiate ([],zip vargl varl,[]) ws in
let wcg = conjuncts wg in
let (vargl',sofar) = run_all vargl [] wcg ( asl) in
if (vargl' = []) then
map (C rev_assoc sofar) (map (C rev_assoc (zip vargl varl)) varl)
else failwith "full_unify: unification not found " in
fun (asl,w) ->
try(
let asl' = map (concl o snd) asl in
let asl'' = flat (map (conjuncts ) asl') in
let varsub = full_unify (asl'',w) in
EXISTSL_TAC varsub (asl,w)
) with failure -> failwith "UNIFY_EXIST_TAC: unification not found.";;
(* partial example *)
let unify_exists_tac_example = try(prove_by_refinement(
`!C a b v A R TX U SS. (A v /\ (a = v) /\ (C:num->num->bool) a b /\ R a ==>
?v v'. TX v' /\ U v v' /\ C v' v /\ SS v)`,
(* {{{ proof *)
[
REP_BASIC_TAC;
UNIFY_EXISTS_TAC; (* v' -> a and v -> b *)
(* not finished. Here is a variant approach. *)
REP_GEN_TAC;
DISCH_TAC;
UNIFY_EXISTS_TAC;
])) with failure -> (REFL `T`);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* UNIFY_EXISTS conversion *)
(* ------------------------------------------------------------------ *)
(*
FIRST argument is the "certificate"
second arg is the goal.
Example:
UNIFY_EXISTS `(f:num->bool) x` `?t. (f:num->bool) t`
*)
let (UNIFY_EXISTS:thm -> term -> thm) =
let run_one wc assum (varl,sofar) =
if varl = [] then (varl,sofar) else
try (
let wc' = instantiate ([],sofar,[]) wc in
let (_,ins,_) = term_unify varl wc' assum in
let insv = map snd ins in
( subtract varl insv , union sofar ins )
) with failure -> (varl,sofar) in
let run_onel asl wc (varl,sofar) =
itlist (run_one wc) asl (varl,sofar) in
let run_all varl sofar wcl asl =
itlist (run_onel asl) wcl (varl,sofar) in
let full_unify (t,w) =
let (varl,ws) = strip_exists w in
let vargl = map genvar (map type_of varl) in
let wg = instantiate ([],zip vargl varl,[]) ws in
let wcg = conjuncts wg in
let (vargl',sofar) = run_all vargl [] wcg ( [concl t]) in
if (vargl' = []) then
map (C rev_assoc sofar) (map (C rev_assoc (zip vargl varl)) varl)
else failwith "full_unify: unification not found " in
fun t w ->
try(
if not(is_exists w) then failwith "UNIFY_EXISTS: not EXISTS" else
let varl' = (full_unify (t,w)) in
let (varl,ws) = strip_exists w in
let varsub = zip varl' varl in
let varlb = map (fun s-> chop_list s (rev varl))
(range 1 (length varl)) in
let targets = map (fun s-> (instantiate ([],varsub,[])
(list_mk_exists( rev (fst s), ws)) )) varlb in
let target_zip = zip (rev targets) varl' in
itlist (fun s th -> EXISTS s th) target_zip t
) with failure -> failwith "UNIFY_EXISTS: unification not found.";;
let unify_exists_example=
UNIFY_EXISTS (ARITH_RULE `2 = 0+2`) `(?x y. ((x:num) = y))`;;
(* now make a prover for it *)
(* ------------------------------------------------------------------ *)
(*
drop_ant_tac replaces
0 A ==>B
1 A
with
0 B
1 A
in hypothesis list
*)
let DROP_ANT_TAC pq =
UNDISCH_TAC pq THEN (UNDISCH_TAC (fst (dest_imp pq))) THEN
DISCH_THEN (fun pthm -> ASSUME_TAC pthm THEN
DISCH_THEN (fun pqthm -> ASSUME_TAC (MATCH_MP pqthm pthm )));;
let (DROP_ALL_ANT_TAC:tactic) =
fun (asl,w) ->
let imps = filter (is_imp) (map (concl o snd) asl) in
MAP_EVERY (TRY o DROP_ANT_TAC) imps (asl,w);;
let drop_ant_tac_example = prove_by_refinement(
`!A B C D E. (A /\ (A ==> B) /\ (C ==>D) /\ C) ==> (E \/ C \/ B)`,
(* {{{ proof *)
[
REP_BASIC_TAC;
DROP_ALL_ANT_TAC;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
(* ------------------------------------------------------------------ *)
(* ASSUME tm, then prove it later. almost the same as asm-cases-tac *)
let (BACK_TAC : term -> tactic) =
fun tm (asl,w) ->
let ng = mk_imp (tm,w) in
(SUBGOAL_TAC ng THENL [ALL_TAC;DISCH_THEN IMATCH_MP_TAC ]) (asl,w);;
(* --- *)
(* Using hash numbers for tactics *)
(* --- *)
let label_of_hash ((asl,g):goal) (h:int) =
let one_label h (s,tm) =
if (h = hash_of_term (concl tm)) then
let s1 = String.sub s 2 (String.length s - 2) in
int_of_string s1
else failwith "label_of_hash" in
tryfind (one_label h) asl;;
let HASHIFY m h w = m (label_of_hash w h) w;;
let UNDH = HASHIFY UND;;
let REWRH = HASHIFY REWR;;
let KILLH = HASHIFY KILL;;
let COPYH = HASHIFY COPY;;
let HASHIFY1 m h tm w = m (label_of_hash w h) tm w;;
let USEH = HASHIFY1 USE;;
let LEFTH = HASHIFY1 LEFT;;
let RIGHTH = HASHIFY1 RIGHT;;
let TSPECH tm h w = TSPEC tm (label_of_hash w h) w ;;