Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ------------------------------------------------------------------ *) | |
(* MORE RECENT ADDITIONS *) | |
(* ------------------------------------------------------------------ *) | |
(* abbrev_type copied from definitions_group.ml *) | |
let pthm = prove_by_refinement( | |
`(\ (x:A) .T) (@(x:A). T)`, | |
[BETA_TAC]);; | |
let abbrev_type ty s = let (a,b) = new_basic_type_definition s | |
("mk_"^s,"dest_"^s) | |
(INST_TYPE [ty,`:A`] pthm) in | |
let abst t = list_mk_forall ((frees t), t) in | |
let a' = abst (concl a) in | |
let b' = abst (rhs (concl b)) in | |
( | |
prove_by_refinement(a',[REWRITE_TAC[a]]), | |
prove_by_refinement(b',[REWRITE_TAC[GSYM b]]));; | |
(* ------------------------------------------------------------------ *) | |
(* KILL IN *) | |
(* ------------------------------------------------------------------ *) | |
let un = REWRITE_RULE[IN];; | |
(* ------------------------------------------------------------------ *) | |
let SUBCONJ_TAC = | |
MATCH_MP_TAC (TAUT `A /\ (A ==>B) ==> (A /\ B)`) THEN CONJ_TAC;; | |
let PROOF_BY_CONTR_TAC = | |
MATCH_MP_TAC (TAUT `(~A ==> F) ==> A`) THEN DISCH_TAC;; | |
(* ------------------------------------------------------------------ *) | |
(* some general tactics *) | |
(* ------------------------------------------------------------------ *) | |
(* before adding assumption to hypothesis list, cleanse it | |
of unnecessary conditions *) | |
let CLEAN_ASSUME_TAC th = | |
MP_TAC th THEN ASM_REWRITE_TAC[] THEN DISCH_TAC;; | |
let CLEAN_THEN th ttac = | |
MP_TAC th THEN ASM_REWRITE_TAC[] THEN DISCH_THEN ttac;; | |
(* looks for a hypothesis by matching a subterm *) | |
let (UNDISCH_FIND_TAC: term -> tactic) = | |
fun tm (asl,w) -> | |
let p = can (term_match[] tm) in | |
try let sthm,_ = remove | |
(fun (_,asm) -> can (find_term p) (concl ( asm))) asl in | |
UNDISCH_TAC (concl (snd sthm)) (asl,w) | |
with Failure _ -> failwith "UNDISCH_FIND_TAC";; | |
let (UNDISCH_FIND_THEN: term -> thm_tactic -> tactic) = | |
fun tm ttac (asl,w) -> | |
let p = can (term_match[] tm) in | |
try let sthm,_ = remove | |
(fun (_,asm) -> can (find_term p) (concl ( asm))) asl in | |
UNDISCH_THEN (concl (snd sthm)) ttac (asl,w) | |
with Failure _ -> failwith "UNDISCH_FIND_TAC";; | |
(* ------------------------------------------------------------------ *) | |
(* NAME_CONFLICT_TAC : eliminate name conflicts in a term *) | |
(* ------------------------------------------------------------------ *) | |
let relabel_bound_conv tm = | |
let rec vars_and_constants tm acc = | |
match tm with | |
| Var _ -> tm::acc | |
| Const _ -> tm::acc | |
| Comb(a,b) -> vars_and_constants b (vars_and_constants a acc) | |
| Abs(a,b) -> a::(vars_and_constants b acc) in | |
let relabel_bound tm = | |
match tm with | |
| Abs(x,t) -> | |
let avoids = filter ((!=) x) (vars_and_constants tm []) in | |
let x' = mk_primed_var avoids x in | |
if (x=x') then failwith "relabel_bound" else (alpha x' tm) | |
| _ -> failwith "relabel_bound" in | |
DEPTH_CONV (fun t -> ALPHA t (relabel_bound t)) tm;; | |
(* example *) | |
let _ = | |
let bad_term = mk_abs (`x:bool`,`(x:num)+1=2`) in | |
relabel_bound_conv bad_term;; | |
let NAME_CONFLICT_CONV = relabel_bound_conv;; | |
let NAME_CONFLICT_TAC = CONV_TAC (relabel_bound_conv);; | |
(* renames given bound variables *) | |
let alpha_conv env tm = ALPHA tm (deep_alpha env tm);; | |
(* replaces given alpha-equivalent terms with- the term itself *) | |
let unify_alpha_tac = SUBST_ALL_TAC o REFL;; | |
let rec get_abs tm acc = match tm with | |
Abs(u,v) -> get_abs v (tm::acc) | |
|Comb(u,v) -> get_abs u (get_abs v acc) | |
|_ -> acc;; | |
(* for purposes such as sorting, it helps if ALL ALPHA-equiv | |
abstractions are replaced by equal abstractions *) | |
let (alpha_tac:tactic) = | |
fun (asl,w' ) -> | |
EVERY (map unify_alpha_tac (get_abs w' [])) (asl,w');; | |
(* ------------------------------------------------------------------ *) | |
(* SELECT ELIMINATION. | |
SELECT_TAC should work whenever there is a single predicate selected. | |
Something more sophisticated might be needed when there | |
is (@)A and (@)B | |
in the same formula. | |
Useful for proving statements such as `1 + (@x. (x=3)) = 4` *) | |
(* ------------------------------------------------------------------ *) | |
(* spec form of SELECT_AX *) | |
let select_thm select_fn select_exist = | |
BETA_RULE (ISPECL [select_fn;select_exist] | |
SELECT_AX);; | |
(* example *) | |
select_thm | |
`\m. (X:num->bool) m /\ (!n. X n ==> m <=| n)` `n:num`;; | |
let SELECT_EXIST = prove_by_refinement( | |
`!(P:A->bool) Q. (?y. P y) /\ (!t. (P t ==> Q t)) ==> Q ((@) P)`, | |
(* {{{ proof *) | |
[ | |
REPEAT GEN_TAC; | |
DISCH_ALL_TAC; | |
UNDISCH_FIND_TAC `(?)`; | |
DISCH_THEN CHOOSE_TAC; | |
ASSUME_TAC (ISPECL[`P:(A->bool)`;`y:A`] SELECT_AX); | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let SELECT_THM = prove_by_refinement( | |
`!(P:A->bool) Q. (((?y. P y) ==> (!t. (P t ==> Q t))) /\ ((~(?y. P y)) ==> | |
(!t. Q t))) ==> Q ((@) P)`, | |
(* {{{ proof *) | |
[ | |
MESON_TAC[SELECT_EXIST]; | |
]);; | |
(* }}} *) | |
let SELECT_TAC = | |
(* explicitly pull apart the clause Q((@) P), | |
because MATCH_MP_TAC isn't powerful | |
enough to do this by itself. *) | |
let unbeta = prove( | |
`!(P:A->bool) (Q:A->bool). (Q ((@) P)) <=> (\t. Q t) ((@) P)`,MESON_TAC[]) in | |
let unbeta_tac = CONV_TAC (HIGHER_REWRITE_CONV[unbeta] true) in | |
unbeta_tac THEN (MATCH_MP_TAC SELECT_THM) THEN BETA_TAC THEN CONJ_TAC | |
THENL[ | |
(DISCH_THEN (fun t-> ALL_TAC)) THEN GEN_TAC; | |
DISCH_TAC THEN GEN_TAC];; | |
(* EXAMPLE: | |
# g `(R:A->bool) ((@) S)`;; | |
val it : Core.goalstack = 1 subgoal (1 total) | |
`R ((@) S)` | |
# e SELECT_TAC ;; | |
val it : Core.goalstack = 2 subgoals (2 total) | |
0 [`~(?y. S y)`] | |
`R t` | |
`S t ==> R t` | |
*) | |
(* ------------------------------------------------------------------ *) | |
(* TYPE_THEN and TYPEL_THEN calculate the types of the terms supplied | |
in a proof, avoiding the hassle of working them out by hand. | |
It locates the terms among the free variables in the goal. | |
Ambiguious if a free variables have name conflicts. | |
Now TYPE_THEN handles general terms. | |
*) | |
(* ------------------------------------------------------------------ *) | |
let rec type_set: (string*term) list -> (term list*term) -> (term list*term)= | |
fun typinfo (acclist,utm) -> match acclist with | |
| [] -> (acclist,utm) | |
| (Var(s,_) as a)::rest -> | |
let a' = (assocd s typinfo a) in | |
if (a = a') then type_set typinfo (rest,utm) | |
else let inst = instantiate (term_match [] a a') in | |
type_set typinfo ((map inst rest),inst utm) | |
| _ -> failwith "type_set: variable expected" | |
;; | |
let has_stv t = | |
let typ = (type_vars_in_term t) in | |
can (find (fun ty -> (is_vartype ty) && ((dest_vartype ty).[0] = '?'))) typ;; | |
let TYPE_THEN: term -> (term -> tactic) -> tactic = | |
fun t (tac:term->tactic) (asl,w) -> | |
let avoids = itlist (union o frees o concl o snd) asl | |
(frees w) in | |
let strip = fun t-> (match t with | |
|Var(s,_) -> (s,t) | _ -> failwith "TYPE_THEN" ) in | |
let typinfo = map strip avoids in | |
let t' = (snd (type_set typinfo ((frees t),t))) in | |
(warn ((has_stv t')) "TYPE_THEN: unresolved type variables"); | |
tac t' (asl,w);; | |
(* this version must take variables *) | |
let TYPEL_THEN: term list -> (term list -> tactic) -> tactic = | |
fun t (tac:term list->tactic) (asl,w) -> | |
let avoids = itlist (union o frees o concl o snd) asl | |
(frees w) in | |
let strip = fun t-> (match t with | |
|Var(s,_) -> (s,t) | _ -> failwith "TYPE_THEN" ) in | |
let typinfo = map strip avoids in | |
let t' = map (fun u -> snd (type_set typinfo ((frees u),u))) t in | |
(warn ((can (find has_stv) t')) "TYPEL_THEN: unresolved type vars"); | |
tac t' (asl,w);; | |
(* trivial example *) | |
let _ = prove_by_refinement(`!y. y:num = y`, | |
[ | |
GEN_TAC; | |
TYPE_THEN `y:A` (fun t -> ASSUME_TAC(ISPEC t (TAUT `!x:B. x=x`))); | |
UNDISCH_TAC `y:num = y`; (* evidence that `y:A` was retyped as `y:num` *) | |
MESON_TAC[]; | |
]);; | |
(* ------------------------------------------------------------------ *) | |
(* SAVE the goalstate, and retrieve later *) | |
(* ------------------------------------------------------------------ *) | |
let (save_goal,get_goal) = | |
let goal_buffer = ref [] in | |
let save_goal s = | |
goal_buffer := (s,!current_goalstack )::!goal_buffer in | |
let get_goal (s:string) = (current_goalstack:= assoc s !goal_buffer) in | |
(save_goal,get_goal);; | |
(* ------------------------------------------------------------------ *) | |
(* ordered rewrites with general ord function . | |
This allows rewrites with an arbitrary condition | |
-- adapted from simp.ml *) | |
(* ------------------------------------------------------------------ *) | |
let net_of_thm_ord ord rep force th = | |
let t = concl th in | |
let lconsts = freesl (hyp th) in | |
let matchable = can o term_match lconsts in | |
try let l,r = dest_eq t in | |
if rep && free_in l r then | |
let th' = EQT_INTRO th in | |
enter lconsts (l,(1,REWR_CONV th')) | |
else if rep && matchable l r && matchable r l then | |
enter lconsts (l,(1,ORDERED_REWR_CONV ord th)) | |
else if force then | |
enter lconsts (l,(1,ORDERED_REWR_CONV ord th)) | |
else enter lconsts (l,(1,REWR_CONV th)) | |
with Failure _ -> | |
let l,r = dest_eq(rand t) in | |
if rep && free_in l r then | |
let tm = lhand t in | |
let th' = DISCH tm (EQT_INTRO(UNDISCH th)) in | |
enter lconsts (l,(3,IMP_REWR_CONV th')) | |
else if rep && matchable l r && matchable r l then | |
enter lconsts (l,(3,ORDERED_IMP_REWR_CONV ord th)) | |
else enter lconsts(l,(3,IMP_REWR_CONV th));; | |
let GENERAL_REWRITE_ORD_CONV ord rep force (cnvl:conv->conv) (builtin_net:gconv net) thl = | |
let thl_canon = itlist (mk_rewrites false) thl [] in | |
let final_net = itlist (net_of_thm_ord ord rep force ) thl_canon builtin_net in | |
cnvl (REWRITES_CONV final_net);; | |
let GEN_REWRITE_ORD_CONV ord force (cnvl:conv->conv) thl = | |
GENERAL_REWRITE_ORD_CONV ord false force cnvl empty_net thl;; | |
let PURE_REWRITE_ORD_CONV ord force thl = | |
GENERAL_REWRITE_ORD_CONV ord true force TOP_DEPTH_CONV empty_net thl;; | |
let REWRITE_ORD_CONV ord force thl = | |
GENERAL_REWRITE_ORD_CONV ord true force TOP_DEPTH_CONV (basic_net()) thl;; | |
let PURE_ONCE_REWRITE_ORD_CONV ord force thl = | |
GENERAL_REWRITE_ORD_CONV ord false force ONCE_DEPTH_CONV empty_net thl;; | |
let ONCE_REWRITE_ORD_CONV ord force thl = | |
GENERAL_REWRITE_ORD_CONV ord false force ONCE_DEPTH_CONV (basic_net()) thl;; | |
let REWRITE_ORD_TAC ord force thl = CONV_TAC(REWRITE_ORD_CONV ord force thl);; | |
(* ------------------------------------------------------------------ *) | |
(* poly reduction *) | |
(* ------------------------------------------------------------------ *) | |
(* move vars leftward *) | |
(* if ord old_lhs new_rhs THEN swap *) | |
let new_factor_order t1 t2 = | |
try let t1v = fst(dest_binop `( *. )` t1) in | |
let t2v = fst(dest_binop `( *. )` t2) in | |
if (is_var t1v) && (is_var t2v) then term_order t1v t2v | |
else if (is_var t2v) then true else false | |
with Failure _ -> false ;; | |
(* false if it contains a variable or abstraction. *) | |
let rec is_arith_const tm = | |
if is_var tm then false else | |
if is_abs tm then false else | |
if is_comb tm then | |
let (a,b) = (dest_comb tm) in | |
is_arith_const (a) && is_arith_const (b) | |
else true;; | |
(* const leftward *) | |
let new_factor_order2 t1 t2 = | |
try let t1v = fst(dest_binop `( *. )` t1) in | |
let t2v = fst(dest_binop `( *. )` t2) in | |
if (is_var t1v) && (is_var t2v) then term_order t1v t2v | |
else if (is_arith_const t2v) then true else false | |
with Failure _ -> false ;; | |
let rec mon_sz tm = | |
if is_var tm then | |
Int (Hashtbl.hash tm) | |
else | |
try let (a,b) = dest_binop `( *. )` tm in | |
(mon_sz a) */ (mon_sz b) | |
with Failure _ -> Int 1;; | |
let rec new_summand_order t1 t2 = | |
try let t1v = fst(dest_binop `( +. )` t1) in | |
let t2v = fst(dest_binop `( +. )` t2) in | |
(mon_sz t2v >/ mon_sz t1v) | |
with Failure _ -> false ;; | |
let rec new_distrib_order t1 t2 = | |
try let t2v = fst(dest_binop `( *. )` t2) in | |
if (is_arith_const t2v) then true else false | |
with Failure _ -> | |
try | |
let t2' = fst(dest_binop `( +. )` t2) in | |
new_distrib_order t1 t2' | |
with Failure _ -> false ;; | |
let real_poly_conv = | |
(* same side *) | |
ONCE_REWRITE_CONV [GSYM REAL_SUB_0] THENC | |
(* expand ALL *) | |
REWRITE_CONV[real_div;REAL_RDISTRIB;REAL_SUB_RDISTRIB; | |
pow; | |
GSYM REAL_MUL_ASSOC;GSYM REAL_ADD_ASSOC; | |
REAL_ARITH `(x -. (--y) = x + y) /\ (x - y = x + (-- y)) /\ | |
(--(x + y) = --x + (--y)) /\ (--(x - y) = --x + y)`; | |
REAL_ARITH | |
`(x*.(-- y) = -- (x*. y)) /\ (--. (--. x) = x) /\ | |
((--. x)*.y = --.(x*.y))`; | |
REAL_SUB_LDISTRIB;REAL_LDISTRIB] THENC | |
(* move constants rightward on monomials *) | |
REWRITE_ORD_CONV new_factor_order false [REAL_MUL_AC;] THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV | |
[REAL_ARITH `-- x = (x*(-- &.1))`] THENC | |
REWRITE_CONV[GSYM REAL_MUL_ASSOC] THENC | |
REAL_RAT_REDUCE_CONV THENC | |
(* collect like monomials *) | |
REWRITE_ORD_CONV new_summand_order false [REAL_ADD_AC;] THENC | |
(* move constants leftward AND collect them together *) | |
REWRITE_ORD_CONV new_factor_order2 false [REAL_MUL_AC;] THENC | |
REWRITE_ORD_CONV new_distrib_order true [ | |
REAL_ARITH `(a*b +. d*b = (a+d)*b) /\ | |
(a*b + b = (a+ &.1)*b ) /\ ( b + a*b = (a+ &.1)*b) /\ | |
(a*b +. d*b +e = (a+d)*b + e) /\ | |
(a*b + b + e= (a+. &.1)* b +e ) /\ | |
( b + a*b + e = (a + &.1)*b +e) `;] THENC | |
REAL_RAT_REDUCE_CONV THENC | |
REWRITE_CONV[REAL_ARITH `(&.0 * x = &.0) /\ (x + &.0 = x) /\ | |
(&.0 + x = x)`];; | |
let real_poly_tac = CONV_TAC real_poly_conv;; | |
let test_real_poly_tac = prove_by_refinement( | |
`!x y . (x + (&.2)*y)*(x- (&.2)*y) = (x*x -. (&.4)*y*y)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
real_poly_tac; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* REAL INEQUALITIES *) | |
(* Take inequality certificate A + B1 + B2 +.... + P = C as a term. | |
Prove it as an inequality. | |
Reduce to an ineq (A < C) WITH side conditions | |
0 <= Bi, 0 < P. | |
If (not strict), write as an ineq (A <= C) WITH side conditions | |
0 <= Bi. | |
Expand each Bi (or P) that is a product U*V as 0 <= U /\ 0 <= V. | |
To prevent expansion of Bi write (U*V) as (&0 + (U*V)). | |
CALL as | |
ineq_le_tac `A + B1 + B2 = C`; | |
*) | |
(* ------------------------------------------------------------------ *) | |
let strict_lemma = prove_by_refinement( | |
`!A B C. (A+B = C) ==> ((&.0 <. B) ==> (A <. C) )`, | |
(* {{{ proof *) | |
[ | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let weak_lemma = prove_by_refinement( | |
`!A B C. (A+B = C) ==> ((&.0 <=. B) ==> (A <=. C))`, | |
(* {{{ proof *) | |
[ | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let strip_lt_lemma = prove_by_refinement( | |
`!B1 B2 C. ((&.0 <. (B1+B2)) ==> C) ==> | |
((&.0 <. B2) ==> ((&.0 <=. B1) ==> C))`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[REAL_LET_ADD]; | |
]);; | |
(* }}} *) | |
let strip_le_lemma = prove_by_refinement( | |
`!B1 B2 C. ((&.0 <=. (B1+B2)) ==> C) ==> | |
((&.0 <=. B2) ==> ((&.0 <=. B1) ==> C))`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[REAL_LE_ADD]; | |
]);; | |
(* }}} *) | |
let is_x_prod_le tm = | |
try let hyp = fst(dest_binop `( ==> )` tm) in | |
let arg = snd(dest_binop `( <=. ) ` hyp) in | |
let fac = dest_binop `( *. )` arg in | |
true | |
with Failure _ -> false;; | |
let switch_lemma_le_order t1 t2 = | |
if (is_x_prod_le t1) && (is_x_prod_le t2) then | |
term_order t1 t2 else | |
if (is_x_prod_le t2) then true else false;; | |
let is_x_prod_lt tm = | |
try let hyp = fst(dest_binop `( ==> )` tm) in | |
let arg = snd(dest_binop `( <. ) ` hyp) in | |
let fac = dest_binop `( *. )` arg in | |
true | |
with Failure _ -> false;; | |
let switch_lemma_lt_order t1 t2 = | |
if (is_x_prod_lt t1) && (is_x_prod_lt t2) then | |
term_order t1 t2 else | |
if (is_x_prod_lt t2) then true else false;; | |
let switch_lemma_le = prove_by_refinement( | |
`!A B C. ((&.0 <= A) ==> (&.0 <= B) ==> C) = | |
((&.0 <=. B) ==> (&.0 <= A) ==> C)`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let switch_lemma_let = prove_by_refinement( | |
`!A B C. ((&.0 < A) ==> (&.0 <= B) ==> C) = | |
((&.0 <=. B) ==> (&.0 < A) ==> C)`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let switch_lemma_lt = prove_by_refinement( | |
`!A B C. ((&.0 < A) ==> (&.0 < B) ==> C) = | |
((&.0 <. B) ==> (&.0 < A) ==> C)`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let expand_prod_lt = prove_by_refinement( | |
`!B1 B2 C. (&.0 < B1*B2 ==> C) ==> | |
((&.0 <. B1) ==> (&.0 <. B2) ==> C)`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[REAL_LT_MUL ]; | |
]);; | |
(* }}} *) | |
let expand_prod_le = prove_by_refinement( | |
`!B1 B2 C. (&.0 <= B1*B2 ==> C) ==> | |
((&.0 <=. B1) ==> (&.0 <=. B2) ==> C)`, | |
(* {{{ proof *) | |
[ | |
ASM_MESON_TAC[REAL_LE_MUL ]; | |
]);; | |
(* }}} *) | |
let ineq_cert_gen_tac v cert = | |
let DISCH_RULE f = DISCH_THEN (fun t-> MP_TAC (f t)) in | |
TYPE_THEN cert | |
(MP_TAC o (REWRITE_CONV[REAL_POW_2] THENC real_poly_conv)) THEN | |
REWRITE_TAC[] THEN | |
DISCH_RULE (MATCH_MP v) THEN | |
DISCH_RULE (repeat (MATCH_MP strip_lt_lemma)) THEN | |
DISCH_RULE (repeat (MATCH_MP strip_le_lemma)) THEN | |
DISCH_RULE (repeat (MATCH_MP expand_prod_lt o | |
(CONV_RULE | |
(REWRITE_ORD_CONV switch_lemma_lt_order true[switch_lemma_lt])))) THEN | |
DISCH_RULE (repeat (MATCH_MP expand_prod_le o | |
(CONV_RULE (REWRITE_ORD_CONV switch_lemma_le_order true | |
[switch_lemma_le])) o | |
(REWRITE_RULE[switch_lemma_let]))) THEN | |
DISCH_RULE (repeat (MATCH_MP | |
(TAUT `(A ==> B==>C) ==> (A /\ B ==> C)`))) THEN | |
REWRITE_TAC[REAL_MUL_LID] THEN | |
DISCH_THEN MATCH_MP_TAC THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_SIMP_TAC[REAL_LE_POW_2; | |
REAL_ARITH `(&.0 < x ==> &.0 <= x) /\ (&.0 + x = x) /\ | |
(a <= b ==> &.0 <= b - a) /\ | |
(a < b ==> &.0 <= b - a) /\ | |
(~(b < a) ==> &.0 <= b - a) /\ | |
(~(b <= a) ==> &.0 <= b - a) /\ | |
(a < b ==> &.0 < b - a) /\ | |
(~(b <= a) ==> &.0 < b - a)`];; | |
let ineq_lt_tac = ineq_cert_gen_tac strict_lemma;; | |
let ineq_le_tac = ineq_cert_gen_tac weak_lemma;; | |
(* test *) | |
let test_ineq_tac = prove_by_refinement( | |
`!x y z. (&.0 <= x*y) /\ (&.0 <. z) ==> | |
(x*y) <. x*x + (&.3)*x*y + &.4 `, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
ineq_lt_tac `x * y + x pow 2 + &2 * (&.0 + x * y) + &2 * &2 = x * x + &3 * x * y + &4`; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* Move quantifier left. Use class.ml and theorems.ml to bubble | |
quantifiers towards the head of an expression. It should move | |
quantifiers past other quantifiers, past conjunctions, disjunctions, | |
implications, etc. | |
val quant_left_CONV : string -> term -> thm = <fun> | |
Arguments: | |
var_name:string -- The name of the variable that is to be shifted. | |
It tends to return `T` when the conversion fails. | |
Example: | |
quant_left_CONV "a" `!b. ?a. a = b*4`;; | |
val it : thm = |- (!b. ?a. a = b *| 4) <=> (?a. !b. a b = b *| 4) | |
*) | |
(* ------------------------------------------------------------------ *) | |
let tagb = new_definition `TAGB (x:bool) = x`;; | |
let is_quant tm = (is_forall tm) || (is_exists tm);; | |
(*** JRH replaced Comb and Abs with abstract type constructors ***) | |
let rec tag_quant var_name tm = | |
if (is_forall tm && (fst (dest_var (fst (dest_forall tm))) = var_name)) | |
then mk_comb (`TAGB`,tm) | |
else if (is_exists tm && (fst (dest_var (fst (dest_exists tm))) = var_name)) then mk_comb (`TAGB`,tm) | |
else match tm with | |
| Comb (x,y) -> mk_comb(tag_quant var_name x,tag_quant var_name y) | |
| Abs (x,y) -> mk_abs(x,tag_quant var_name y) | |
| _ -> tm;; | |
let quant_left_CONV = | |
(* ~! -> ?~ *) | |
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let NOT_FORALL_TAG = prove(`!P. ~(TAGB(!x. P x)) <=> (?x:A. ~(P x))`, | |
REWRITE_TAC[tagb;NOT_FORALL_THM]) in | |
let SKOLEM_TAG = | |
prove(`!P. (?y. TAGB (!(x:A). P x ((y:A->B) x))) <=> | |
( (!(x:A). ?y. P x ((y:B))))`,REWRITE_TAC[tagb;SKOLEM_THM]) in | |
let SKOLEM_TAG2 = | |
prove(`!P. (!x:A. TAGB(?y:B. P x y)) <=> (?y. !x. P x (y x))`, | |
REWRITE_TAC[tagb;SKOLEM_THM]) in | |
(* !1 !2 -> !2 !1 *) | |
let SWAP_FORALL_TAG = | |
prove(`!P:A->B->bool. (!x. TAGB(! y. P x y)) <=> (!y x. P x y)`, | |
REWRITE_TAC[SWAP_FORALL_THM;tagb]) in | |
let SWAP_EXISTS_THM = iprove | |
`!P:A->B->bool. (?x. TAGB (?y. P x y)) <=> (?y x. P x y)` in | |
(* ! /\ ! -> ! /\ *) | |
let AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ TAGB (!x. Q x) <=> | |
(!x. P x /\ Q x))`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let LEFT_AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ Q) <=> | |
(!x. P x /\ Q )`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_AND_FORALL_TAG = prove(`!P Q. P /\ TAGB (!x. Q x) <=> | |
(!x. P /\ Q x)`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let TRIV_OR_FORALL_TAG = prove | |
(`!P Q. TAGB (!x:A. P) \/ TAGB (!x:A. Q) <=> (!x:A. P \/ Q)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_IMP_FORALL_TAG = prove | |
(`!P Q. (P ==> TAGB (!x:A. Q x)) <=> (!x. P ==> Q x)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let OR_EXISTS_THM = iprove | |
`!P Q. TAGB (?x. P x) \/ TAGB (?x. Q x) <=> (?x:A. P x \/ Q x)` in | |
let LEFT_OR_EXISTS_THM = iprove | |
`!P Q. TAGB (?x. P x) \/ Q <=> (?x:A. P x \/ Q)` in | |
let RIGHT_OR_EXISTS_THM = iprove | |
`!P Q. P \/ TAGB (?x. Q x) <=> (?x:A. P \/ Q x)` in | |
let LEFT_AND_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)` in | |
let RIGHT_AND_EXISTS_THM = iprove | |
`!P Q. P /\ TAGB (?x:A. Q x) <=> (?x:A. P /\ Q x)` in | |
let TRIV_AND_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P) /\ TAGB (?x:A. Q) <=> (?x:A. P /\ Q)` in | |
let LEFT_IMP_EXISTS_THM = iprove | |
`!P Q. (TAGB (?x:A. P x) ==> Q) <=> (!x. P x ==> Q)` in | |
let TRIV_FORALL_IMP_THM = iprove | |
`!P Q. (TAGB (?x:A. P) ==> TAGB (!x:A. Q)) <=> (!x:A. P ==> Q) ` in | |
let TRIV_EXISTS_IMP_THM = iprove | |
`!P Q. (TAGB(!x:A. P) ==> TAGB (?x:A. Q)) <=> (?x:A. P ==> Q) ` in | |
let NOT_EXISTS_TAG = prove( | |
`!P. ~(TAGB(?x:A. P x)) <=> (!x. ~(P x))`, | |
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in | |
let LEFT_OR_FORALL_TAG = prove | |
(`!P Q. TAGB(!x:A. P x) \/ Q <=> (!x. P x \/ Q)`, | |
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in | |
let RIGHT_OR_FORALL_TAG = prove | |
(`!P Q. P \/ TAGB(!x:A. Q x) <=> (!x. P \/ Q x)`, | |
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in | |
let LEFT_IMP_FORALL_TAG = prove | |
(`!P Q. (TAGB(!x:A. P x) ==> Q) <=> (?x. P x ==> Q)`, | |
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in | |
let RIGHT_IMP_EXISTS_TAG = prove | |
(`!P Q. (P ==> TAGB(?x:A. Q x)) <=> (?x:A. P ==> Q x)`, | |
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in | |
fun var_name tm -> | |
REWRITE_RULE [tagb] | |
(TOP_SWEEP_CONV | |
(GEN_REWRITE_CONV I | |
[NOT_FORALL_TAG;SKOLEM_TAG;SKOLEM_TAG2; | |
SWAP_FORALL_TAG;SWAP_EXISTS_THM; | |
SWAP_EXISTS_THM; | |
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG; | |
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG; | |
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM; | |
LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; | |
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM; | |
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG; | |
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG; | |
RIGHT_IMP_EXISTS_TAG; | |
]) | |
(tag_quant var_name tm));; | |
(* same, but never pass a quantifier past another. No Skolem, etc. *) | |
let quant_left_noswap_CONV = | |
(* ~! -> ?~ *) | |
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let NOT_FORALL_TAG = prove(`!P. ~(TAGB(!x. P x)) <=> (?x:A. ~(P x))`, | |
REWRITE_TAC[tagb;NOT_FORALL_THM]) in | |
let SKOLEM_TAG = | |
prove(`!P. (?y. TAGB (!(x:A). P x ((y:A->B) x))) <=> | |
( (!(x:A). ?y. P x ((y:B))))`,REWRITE_TAC[tagb;SKOLEM_THM]) in | |
let SKOLEM_TAG2 = | |
prove(`!P. (!x:A. TAGB(?y:B. P x y)) <=> (?y. !x. P x (y x))`, | |
REWRITE_TAC[tagb;SKOLEM_THM]) in | |
(* !1 !2 -> !2 !1 *) | |
let SWAP_FORALL_TAG = | |
prove(`!P:A->B->bool. (!x. TAGB(! y. P x y)) <=> (!y x. P x y)`, | |
REWRITE_TAC[SWAP_FORALL_THM;tagb]) in | |
let SWAP_EXISTS_THM = iprove | |
`!P:A->B->bool. (?x. TAGB (?y. P x y)) <=> (?y x. P x y)` in | |
(* ! /\ ! -> ! /\ *) | |
let AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ TAGB (!x. Q x) <=> | |
(!x. P x /\ Q x))`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let LEFT_AND_FORALL_TAG = prove(`!P Q. (TAGB (!x. P x) /\ Q) <=> | |
(!x. P x /\ Q )`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_AND_FORALL_TAG = prove(`!P Q. P /\ TAGB (!x. Q x) <=> | |
(!x. P /\ Q x)`,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let TRIV_OR_FORALL_TAG = prove | |
(`!P Q. TAGB (!x:A. P) \/ TAGB (!x:A. Q) <=> (!x:A. P \/ Q)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_IMP_FORALL_TAG = prove | |
(`!P Q. (P ==> TAGB (!x:A. Q x)) <=> (!x. P ==> Q x)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let OR_EXISTS_THM = iprove | |
`!P Q. TAGB (?x. P x) \/ TAGB (?x. Q x) <=> (?x:A. P x \/ Q x)` in | |
let LEFT_OR_EXISTS_THM = iprove | |
`!P Q. TAGB (?x. P x) \/ Q <=> (?x:A. P x \/ Q)` in | |
let RIGHT_OR_EXISTS_THM = iprove | |
`!P Q. P \/ TAGB (?x. Q x) <=> (?x:A. P \/ Q x)` in | |
let LEFT_AND_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P x) /\ Q <=> (?x:A. P x /\ Q)` in | |
let RIGHT_AND_EXISTS_THM = iprove | |
`!P Q. P /\ TAGB (?x:A. Q x) <=> (?x:A. P /\ Q x)` in | |
let TRIV_AND_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P) /\ TAGB (?x:A. Q) <=> (?x:A. P /\ Q)` in | |
let LEFT_IMP_EXISTS_THM = iprove | |
`!P Q. (TAGB (?x:A. P x) ==> Q) <=> (!x. P x ==> Q)` in | |
let TRIV_FORALL_IMP_THM = iprove | |
`!P Q. (TAGB (?x:A. P) ==> TAGB (!x:A. Q)) <=> (!x:A. P ==> Q) ` in | |
let TRIV_EXISTS_IMP_THM = iprove | |
`!P Q. (TAGB(!x:A. P) ==> TAGB (?x:A. Q)) <=> (?x:A. P ==> Q) ` in | |
let NOT_EXISTS_TAG = prove( | |
`!P. ~(TAGB(?x:A. P x)) <=> (!x. ~(P x))`, | |
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in | |
let LEFT_OR_FORALL_TAG = prove | |
(`!P Q. TAGB(!x:A. P x) \/ Q <=> (!x. P x \/ Q)`, | |
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in | |
let RIGHT_OR_FORALL_TAG = prove | |
(`!P Q. P \/ TAGB(!x:A. Q x) <=> (!x. P \/ Q x)`, | |
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in | |
let LEFT_IMP_FORALL_TAG = prove | |
(`!P Q. (TAGB(!x:A. P x) ==> Q) <=> (?x. P x ==> Q)`, | |
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in | |
let RIGHT_IMP_EXISTS_TAG = prove | |
(`!P Q. (P ==> TAGB(?x:A. Q x)) <=> (?x:A. P ==> Q x)`, | |
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in | |
fun var_name tm -> | |
REWRITE_RULE [tagb] | |
(TOP_SWEEP_CONV | |
(GEN_REWRITE_CONV I | |
[NOT_FORALL_TAG; (* SKOLEM_TAG;SKOLEM_TAG2; *) | |
(* SWAP_FORALL_TAG;SWAP_EXISTS_THM; | |
SWAP_EXISTS_THM; *) | |
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG; | |
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG; | |
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM; | |
LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; | |
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM; | |
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG; | |
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG; | |
RIGHT_IMP_EXISTS_TAG; | |
]) | |
(tag_quant var_name tm));; | |
let quant_right_CONV = | |
(* ~! -> ?~ *) | |
let iprove f = prove(f,REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let NOT_FORALL_TAG = prove(`!P. TAGB(?x:A. ~(P x)) <=> ~((!x. P x))`, | |
REWRITE_TAC[tagb;GSYM NOT_FORALL_THM]) in | |
let SKOLEM_TAG = | |
prove(`!P. ( TAGB(!(x:A). ?y. P x ((y:B)))) <=> | |
(?y. (!(x:A). P x ((y:A->B) x)))`, | |
REWRITE_TAC[tagb;GSYM SKOLEM_THM]) | |
in | |
let SKOLEM_TAG2 = | |
prove(`!P. TAGB(?y. !x. P x (y x)) <=> (!x:A. (?y:B. P x y))`, | |
REWRITE_TAC[tagb;GSYM SKOLEM_THM]) in | |
(* !1 !2 -> !2 !1.. *) | |
let SWAP_FORALL_TAG = | |
prove(`!P:A->B->bool. TAGB(!y x. P x y) <=> (!x. (! y. P x y))`, | |
REWRITE_TAC[GSYM SWAP_FORALL_THM;tagb]) in | |
let SWAP_EXISTS_THM = iprove | |
`!P:A->B->bool. TAGB (?y x. P x y) <=> (?x. (?y. P x y))` in | |
(* ! /\ ! -> ! /\ *) | |
let AND_FORALL_TAG = iprove`!P Q. TAGB(!x. P x /\ Q x) <=> | |
((!x. P x) /\ (!x. Q x))` in | |
let LEFT_AND_FORALL_TAG = prove(`!P Q. | |
TAGB(!x. P x /\ Q ) <=> ((!x. P x) /\ Q)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_AND_FORALL_TAG = prove(`!P Q. | |
TAGB(!x. P /\ Q x) <=> P /\ (!x. Q x)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let TRIV_OR_FORALL_TAG = prove | |
(`!P Q. TAGB(!x:A. P \/ Q) <=>(!x:A. P) \/ (!x:A. Q)`, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let RIGHT_IMP_FORALL_TAG = prove | |
(`!P Q. TAGB (!x. P ==> Q x) <=> (P ==> (!x:A. Q x)) `, | |
REWRITE_TAC[tagb] THEN ITAUT_TAC) in | |
let OR_EXISTS_THM = iprove | |
`!P Q. TAGB(?x:A. P x \/ Q x) <=> (?x. P x) \/ (?x. Q x) ` in | |
let LEFT_OR_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P x \/ Q) <=> (?x. P x) \/ Q ` in | |
let RIGHT_OR_EXISTS_THM = iprove | |
`!P Q.TAGB (?x:A. P \/ Q x) <=> P \/ (?x. Q x)` in | |
let LEFT_AND_EXISTS_THM = iprove | |
`!P Q.TAGB (?x:A. P x /\ Q) <=> (?x:A. P x) /\ Q` in | |
let RIGHT_AND_EXISTS_THM = iprove | |
`!P Q. TAGB (?x:A. P /\ Q x) <=> P /\ (?x:A. Q x) ` in | |
let TRIV_AND_EXISTS_THM = iprove | |
`!P Q. TAGB(?x:A. P /\ Q) <=> (?x:A. P) /\ (?x:A. Q) ` in (* *) | |
let LEFT_IMP_EXISTS_THM = iprove | |
`!P Q. TAGB(!x. P x ==> Q) <=> ( (?x:A. P x) ==> Q) ` in (* *) | |
let TRIV_FORALL_IMP_THM = iprove | |
`!P Q. TAGB(!x:A. P ==> Q) <=> ( (?x:A. P) ==> (!x:A. Q)) ` in | |
let TRIV_EXISTS_IMP_THM = iprove | |
`!P Q. TAGB(?x:A. P ==> Q) <=> ((!x:A. P) ==> (?x:A. Q)) ` in | |
let NOT_EXISTS_TAG = prove( | |
`!P. TAGB(!x. ~(P x)) <=> ~((?x:A. P x)) `, | |
REWRITE_TAC[tagb;NOT_EXISTS_THM]) in | |
let LEFT_OR_FORALL_TAG = prove | |
(`!P Q. TAGB(!x. P x \/ Q) <=> (!x:A. P x) \/ Q `, | |
REWRITE_TAC[tagb;LEFT_OR_FORALL_THM]) in | |
let RIGHT_OR_FORALL_TAG = prove | |
(`!P Q. TAGB(!x. P \/ Q x) <=> P \/ (!x:A. Q x) `, | |
REWRITE_TAC[tagb;RIGHT_OR_FORALL_THM]) in | |
let LEFT_IMP_FORALL_TAG = prove | |
(`!P Q. TAGB(?x. P x ==> Q) <=> ((!x:A. P x) ==> Q) `, | |
REWRITE_TAC[tagb;LEFT_IMP_FORALL_THM]) in | |
let RIGHT_IMP_EXISTS_TAG = prove | |
(`!P Q. TAGB(?x:A. P ==> Q x) <=> (P ==> (?x:A. Q x)) `, | |
REWRITE_TAC[tagb;RIGHT_IMP_EXISTS_THM]) in | |
fun var_name tm -> | |
REWRITE_RULE [tagb] | |
(TOP_SWEEP_CONV | |
(GEN_REWRITE_CONV I | |
[NOT_FORALL_TAG;SKOLEM_TAG;SKOLEM_TAG2; | |
SWAP_FORALL_TAG;SWAP_EXISTS_THM; | |
SWAP_EXISTS_THM; | |
AND_FORALL_TAG;LEFT_AND_FORALL_TAG;RIGHT_AND_FORALL_TAG; | |
TRIV_OR_FORALL_TAG;RIGHT_IMP_FORALL_TAG; | |
OR_EXISTS_THM;LEFT_OR_EXISTS_THM;RIGHT_OR_EXISTS_THM; | |
LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; | |
TRIV_AND_EXISTS_THM;LEFT_IMP_EXISTS_THM;TRIV_FORALL_IMP_THM; | |
TRIV_EXISTS_IMP_THM;NOT_EXISTS_TAG; | |
LEFT_OR_FORALL_TAG;RIGHT_OR_FORALL_TAG;LEFT_IMP_FORALL_TAG; | |
RIGHT_IMP_EXISTS_TAG; | |
]) | |
(tag_quant var_name tm));; | |
(* ------------------------------------------------------------------ *) | |
(* Dropping Superfluous Quantifiers . | |
Example: ?u. (u = t) /\ ... | |
We can eliminate the u. | |
*) | |
(* ------------------------------------------------------------------ *) | |
let mark_term = new_definition `mark_term (u:A) = u`;; | |
(*** JRH replaced Comb and Abs with explicit constructors ***) | |
let rec markq qname tm = | |
match tm with | |
Var (a,b) -> if (a=qname) then mk_icomb (`mark_term:A->A`,tm) else tm | |
|Const(_,_) -> tm | |
|Comb(s,b) -> mk_comb(markq qname s,markq qname b) | |
|Abs (x,t) -> mk_abs(x,markq qname t);; | |
let rec getquants tm = | |
if (is_forall tm) then | |
(fst (dest_var (fst (dest_forall tm)))):: | |
(getquants (snd (dest_forall tm))) | |
else if (is_exists tm) then | |
(fst (dest_var (fst (dest_exists tm)))):: | |
(getquants (snd (dest_exists tm))) | |
else match tm with | |
Comb(s,b) -> (getquants s) @ (getquants b) | |
| Abs (x,t) -> (getquants t) | |
| _ -> [];; | |
(* can loop if there are TWO *) | |
let rewrite_conjs = [ | |
prove_by_refinement (`!A B C. (A /\ B) /\ C <=> A /\ B /\ C`,[REWRITE_TAC[CONJ_ACI]]); | |
prove_by_refinement (`!u. (mark_term (u:A) = mark_term u) <=> T`,[MESON_TAC[]]); | |
prove_by_refinement (`!u t. (t = mark_term (u:A)) <=> (mark_term u = t)`,[MESON_TAC[]]); | |
prove_by_refinement (`!u a b. (mark_term (u:A) = a) /\ (mark_term u = b) <=> (mark_term u = a) /\ (a = b)`,[MESON_TAC[]]); | |
prove_by_refinement (`!u a b B. (mark_term (u:A) = a) /\ (mark_term u = b) /\ B <=> (mark_term u = a) /\ (a = b) /\ B`,[MESON_TAC[]]); | |
prove_by_refinement (`!u t A C. A /\ (mark_term (u:A) = t) /\ C <=> | |
(mark_term u = t) /\ A /\ C`,[MESON_TAC[]]); | |
prove_by_refinement (`!A u t. A /\ (mark_term (u:A) = t) <=> | |
(mark_term u = t) /\ A `,[MESON_TAC[]]); | |
prove_by_refinement (`!u t C D. (((mark_term (u:A) = t) /\ C) ==> D) <=> | |
((mark_term (u:A) = t) ==> C ==> D)`,[MESON_TAC[]]); | |
prove_by_refinement (`!A u t B. (A ==> (mark_term (u:A) = t) ==> B) <=> | |
((mark_term (u:A) = t) ==> A ==> B)`,[MESON_TAC[]]); | |
];; | |
let higher_conjs = [ | |
prove_by_refinement (`!C u t. ((mark_term u = t) ==> C (mark_term u)) <=> | |
((mark_term u = t) ==> C (t:A))`,[MESON_TAC[mark_term]]); | |
prove_by_refinement (`!C u t. ((mark_term u = t) /\ C (mark_term u)) <=> | |
((mark_term u = t) /\ C (t:A))`,[MESON_TAC[mark_term]]); | |
];; | |
let dropq_conv = | |
let drop_exist = | |
REWRITE_CONV [prove_by_refinement (`!t. ?(u:A). (u = t)`,[MESON_TAC[]])] in | |
fun qname tm -> | |
let quanlist = getquants tm in | |
let quantleft_CONV = EVERY_CONV | |
(map (REPEATC o quant_left_noswap_CONV) quanlist) in | |
let qname_conv tm = prove(mk_eq(tm,markq qname tm), | |
REWRITE_TAC[mark_term]) in | |
let conj_conv = REWRITE_CONV rewrite_conjs in | |
let quantright_CONV = (REPEATC (quant_right_CONV qname)) in | |
let drop_mark_CONV = REWRITE_CONV [mark_term] in | |
(quantleft_CONV THENC qname_conv THENC conj_conv THENC | |
(ONCE_REWRITE_CONV higher_conjs) | |
THENC drop_mark_CONV THENC quantright_CONV THENC | |
drop_exist ) tm ;; | |
(* Examples : *) | |
dropq_conv "u" `!P Q R . (?(u:B). (?(x:A). (u = P x) /\ (Q x)) /\ (R u))`;; | |
dropq_conv "t" `!P Q R. (!(t:B). (?(x:A). P x /\ (t = Q x)) ==> R t)`;; | |
dropq_conv "u" `?u v. | |
((t * (a + &1) + (&1 - t) *a = u) /\ | |
(t * (b + &0) + (&1 - t) * b = v)) /\ | |
a < u /\ | |
u < r /\ | |
(v = b)`;; | |
(* ------------------------------------------------------------------ *) | |
(* SOME GENERAL TACTICS FOR THE ASSUMPTION LIST *) | |
(* ------------------------------------------------------------------ *) | |
let (%) i = HYP (string_of_int i);; | |
let WITH i rule = (H_VAL (rule) (HYP (string_of_int i))) ;; | |
let (UND:int -> tactic) = | |
fun i (asl,w) -> | |
let name = "Z-"^(string_of_int i) in | |
try let thm= assoc name asl in | |
let tm = concl (thm) in | |
let (_,asl') = partition (fun t-> ((=) name (fst t))) asl in | |
null_meta,[asl',mk_imp(tm,w)], | |
fun i [th] -> MP th (INSTANTIATE_ALL i thm) | |
with Failure _ -> failwith "UND";; | |
let KILL i = | |
(UND i) THEN (DISCH_THEN (fun t -> ALL_TAC));; | |
let USE i rule = (WITH i rule) THEN (KILL i);; | |
let CHO i = (UND i) THEN (DISCH_THEN CHOOSE_TAC);; | |
let X_CHO i t = (UND i) THEN (DISCH_THEN (X_CHOOSE_TAC t));; | |
let AND i = (UND i) THEN | |
(DISCH_THEN (fun t-> (ASSUME_TAC (CONJUNCT1 t) | |
THEN (ASSUME_TAC (CONJUNCT2 t)))));; | |
let JOIN i j = | |
(H_VAL2 CONJ ((%)i) ((%)j)) THEN (KILL i) THEN (KILL j);; | |
let COPY i = WITH i I;; | |
let REP n tac = EVERY (replicate tac n);; | |
let REWR i = (UND i) THEN (ASM_REWRITE_TAC[]) THEN DISCH_TAC;; | |
let LEFT i t = (USE i (CONV_RULE (quant_left_CONV t)));; | |
let RIGHT i t = (USE i (CONV_RULE (quant_right_CONV t)));; | |
let LEFT_TAC t = ((CONV_TAC (quant_left_CONV t)));; | |
let RIGHT_TAC t = ( (CONV_TAC (quant_right_CONV t)));; | |
let INR = REWRITE_RULE[IN];; | |
(* | |
let rec REP n tac = if (n<=0) then ALL_TAC | |
else (tac THEN (REP (n-1) tac));; (* doesn't seem to work? *) | |
let COPY i = (UNDISCH_WITH i) THEN (DISCH_THEN (fun t->ALL_TAC));; | |
MANIPULATING ASSUMPTIONS. (MAKE 0= GOAL) | |
COPY: int -> tactic Make a copy in adjacent slot. | |
EXPAND: int -> tactic. | |
conjunction -> two separate. | |
exists/goal-forall -> choose. | |
goal-if-then -> discharge | |
EXPAND_TERM: int -> term -> tactic. | |
constant -> expand definition || other rewrites associated. | |
ADD: term -> tactic. | |
SIMPLIFY: int -> tactic. Apply simplification rules. | |
*) | |
let CONTRAPOSITIVE_TAC = MATCH_MP_TAC (TAUT `(~q ==> ~p) ==> (p ==> q)`) | |
THEN REWRITE_TAC[];; | |
let REWRT_TAC = (fun t-> REWRITE_TAC[t]);; | |
let (REDUCE_CONV,REDUCE_TAC) = | |
let list = [ | |
(* reals *) REAL_NEG_GE0; | |
REAL_HALF_DOUBLE; | |
REAL_SUB_REFL ; | |
REAL_NEG_NEG; | |
REAL_LE; LE_0; | |
REAL_ADD_LINV;REAL_ADD_RINV; | |
REAL_NEG_0; | |
REAL_NEG_LE0; | |
REAL_NEG_GE0; | |
REAL_LE_NEGL; | |
REAL_LE_NEGR; | |
REAL_LE_NEG2; | |
REAL_NEG_EQ_0; | |
REAL_SUB_RNEG; | |
REAL_ARITH `!(x:real). (--x = x) <=> (x = &.0)`; | |
REAL_ARITH `!(a:real) b. (a - b + b) = a`; | |
REAL_ADD_LID; | |
REAL_ADD_RID ; | |
REAL_INV_0; | |
REAL_OF_NUM_EQ; | |
REAL_OF_NUM_LE; | |
REAL_OF_NUM_LT; | |
REAL_OF_NUM_ADD; | |
REAL_OF_NUM_MUL; | |
REAL_POS; | |
REAL_MUL_RZERO; | |
REAL_MUL_LZERO; | |
REAL_LE_01; | |
REAL_SUB_RZERO; | |
REAL_LE_SQUARE; | |
REAL_MUL_RID; | |
REAL_MUL_LID; | |
REAL_ABS_ZERO; | |
REAL_ABS_NUM; | |
REAL_ABS_1; | |
REAL_ABS_NEG; | |
REAL_ABS_POS; | |
ABS_ZERO; | |
ABS_ABS; | |
REAL_NEG_LT0; | |
REAL_NEG_GT0; | |
REAL_LT_NEG2; | |
REAL_NEG_MUL2; | |
REAL_OF_NUM_POW; | |
REAL_LT_INV_EQ; | |
REAL_POW_1; | |
REAL_INV2; | |
prove (`(--. (&.n) < (&.m)) <=> (&.0 < (&.n) + (&.m))`,REAL_ARITH_TAC); | |
prove (`(--. (&.n) <= (&.m)) <=> (&.0 <= (&.n) + (&.m))`,REAL_ARITH_TAC); | |
prove (`(--. (&.n) = (&.m)) <=> ((&.n) + (&.m) = (&.0))`,REAL_ARITH_TAC); | |
prove (`((&.n) < --.(&.m)) <=> ((&.n) + (&.m) <. (&.0))`,REAL_ARITH_TAC); | |
prove (`((&.n) <= --.(&.m)) <=> ((&.n) + (&.m) <=. (&.0))`,REAL_ARITH_TAC); | |
prove (`((&.n) = --.(&.m)) <=> ((&.n) + (&.m) = (&.0))`,REAL_ARITH_TAC); | |
prove (`((&.n) < --.(&.m) + &.r) <=> ((&.n) + (&.m) < (&.r))`,REAL_ARITH_TAC); | |
prove (`(--. x = --. y) <=> (x = y)`,REAL_ARITH_TAC); | |
prove (`(--(&.n) < --.(&.m) + &.r) <=> ( (&.m) < &.n + (&.r))`,REAL_ARITH_TAC); | |
prove (`(--. x = --. y) <=> (x = y)`,REAL_ARITH_TAC); | |
prove (`((--. (&.1))* x < --. y <=> y < x)`,REAL_ARITH_TAC ); | |
prove (`((--. (&.1))* x <= --. y <=> y <= x)`,REAL_ARITH_TAC ); | |
(* num *) | |
EXP_1; | |
EXP_LT_0; | |
ADD_0; | |
ARITH_RULE `0+| m = m`; | |
ADD_EQ_0; | |
prove (`(0 = m +|n) <=> (m = 0)/\ (n=0)`,MESON_TAC[ADD_EQ_0]); | |
EQ_ADD_LCANCEL_0; | |
EQ_ADD_RCANCEL_0; | |
LT_ADD; | |
LT_ADDR; | |
ARITH_RULE `(0 = j -| i) <=> (j <=| i)`; | |
ARITH_RULE `(j -| i = 0) <=> (j <=| i)`; | |
ARITH_RULE `0 -| i = 0`; | |
ARITH_RULE `(i<=| j) /\ (j <=| i) <=> (i = j)`; | |
ARITH_RULE `0 <| 1`; | |
(* SUC *) | |
NOT_SUC; | |
SUC_INJ; | |
PRE; | |
ADD_CLAUSES; | |
MULT; | |
MULT_CLAUSES; | |
LE; LT; | |
ARITH_RULE `SUC b -| 1 = b`; | |
ARITH_RULE `SUC b -| b = 1`; | |
prove(`&.(SUC x) - &.x = &.1`, | |
REWRITE_TAC [REAL_ARITH `(a -. b=c) <=> (a = b+.c)`; | |
REAL_OF_NUM_ADD;REAL_OF_NUM_EQ] THEN ARITH_TAC); | |
(* (o) *) | |
o_DEF; | |
(* I *) | |
I_THM; | |
I_O_ID; | |
(* pow *) | |
REAL_POW_1; | |
REAL_POW_ONE; | |
(* INT *) | |
INT_ADD_LINV; | |
INT_ADD_RINV; | |
INT_ADD_SUB2; | |
INT_EQ_NEG2; | |
INT_LE_NEG2; | |
INT_LE_NEGL; | |
INT_LE_NEGR; | |
INT_LT_NEG2; | |
INT_LT_NEG2; | |
INT_NEG_NEG; | |
INT_NEG_0; | |
INT_NEG_EQ_0; | |
INT_NEG_GE0; | |
INT_NEG_GT0; | |
INT_NEG_LE0; | |
INT_NEG_LT0; | |
GSYM INT_NEG_MINUS1; | |
INT_NEG_MUL2; | |
INT_NEG_NEG; | |
(* sets *) | |
] in | |
(REWRITE_CONV list,REWRITE_TAC list);; | |
(* prove by squaring *) | |
let REAL_POW_2_LE = prove_by_refinement( | |
`!x y. (&.0 <= x) /\ (&.0 <= y) /\ (x pow 2 <=. y pow 2) ==> (x <=. y)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MP_TAC (SPECL[` (x:real) pow 2`;`(y:real)pow 2`] SQRT_MONO_LE); | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[REAL_POW_LE]; | |
ASM_SIMP_TAC[POW_2_SQRT]; | |
]);; | |
(* }}} *) | |
(* prove by squaring *) | |
let REAL_POW_2_LT = prove_by_refinement( | |
`!x y. (&.0 <= x) /\ (&.0 <= y) /\ (x pow 2 <. y pow 2) ==> (x <. y)`, | |
(* {{{ proof *) | |
[ | |
DISCH_ALL_TAC; | |
MP_TAC (SPECL[` (x:real) pow 2`;`(y:real)pow 2`] SQRT_MONO_LT); | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[REAL_POW_LE]; | |
ASM_SIMP_TAC[POW_2_SQRT]; | |
]);; | |
(* }}} *) | |
let SQUARE_TAC = | |
FIRST[ | |
MATCH_MP_TAC REAL_LE_LSQRT; | |
MATCH_MP_TAC REAL_POW_2_LT; | |
MATCH_MP_TAC REAL_POW_2_LE | |
] | |
THEN REWRITE_TAC[];; | |
(****) | |
let SPEC2_TAC t = SPEC_TAC (t,t);; | |
let IN_ELIM i = (USE i (REWRITE_RULE[IN]));; | |
let rec range i n = | |
if (n>0) then (i::(range (i+1) (n-1))) else [];; | |
(* in elimination *) | |
let (IN_OUT_TAC: tactic) = | |
fun (asl,g) -> (REWRITE_TAC [IN] THEN | |
(EVERY (map (IN_ELIM) (range 0 (length asl))))) (asl,g);; | |
let (IWRITE_TAC : thm list -> tactic) = | |
fun thlist -> REWRITE_TAC (map INR thlist);; | |
let (IWRITE_RULE : thm list -> thm -> thm) = | |
fun thlist -> REWRITE_RULE (map INR thlist);; | |
let IMATCH_MP imp ant = MATCH_MP (INR imp) (INR ant);; | |
let IMATCH_MP_TAC imp = MATCH_MP_TAC (INR imp);; | |
let GBETA_TAC = (CONV_TAC (TOP_DEPTH_CONV GEN_BETA_CONV));; | |
let GBETA_RULE = (CONV_RULE (TOP_DEPTH_CONV GEN_BETA_CONV));; | |
(* breaks antecedent into multiple cases *) | |
let REP_CASES_TAC = | |
REPEAT (DISCH_THEN (REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC));; | |
let TSPEC t i = TYPE_THEN t (USE i o SPEC);; | |
let IMP_REAL t i = (USE i (MATCH_MP (REAL_ARITH t)));; | |
(* goes from f = g to fz = gz *) | |
let TAPP z i = TYPE_THEN z (fun u -> (USE i(fun t -> AP_THM t u)));; | |
(* ONE NEW TACTIC -- DOESN'T WORK!! DON'T USE.... | |
let CONCL_TAC t = let co = snd (dest_imp (concl t)) in | |
SUBGOAL_TAC co THEN (TRY (IMATCH_MP_TAC t));; | |
*) | |
(* subgoal the antecedent of a THM, in order to USE the conclusion *) | |
let ANT_TAC t = let (ant,co) = (dest_imp (concl t)) in | |
SUBGOAL_TAC ant | |
THENL [ALL_TAC;DISCH_THEN (fun u-> MP_TAC (MATCH_MP t u))];; | |
let TH_INTRO_TAC tl th = TYPEL_THEN tl (fun t-> ANT_TAC (ISPECL t th));; | |
let THM_INTRO_TAC tl th = TYPEL_THEN tl | |
(fun t-> | |
let s = ISPECL t th in | |
if is_imp (concl s) then ANT_TAC s else ASSUME_TAC s);; | |
let (DISCH_THEN_FULL_REWRITE:tactic) = | |
DISCH_THEN (fun t-> REWRITE_TAC[t] THEN | |
(RULE_ASSUM_TAC (REWRITE_RULE[t])));; | |
let FULL_REWRITE_TAC t = (REWRITE_TAC t THEN (RULE_ASSUM_TAC (REWRITE_RULE t)));; | |
(* ------------------------------------------------------------------ *) | |
let BASIC_TAC = | |
[ GEN_TAC; | |
IMATCH_MP_TAC (TAUT ` (a ==> b ==> C) ==> ( a /\ b ==> C)`); | |
DISCH_THEN (CHOOSE_THEN MP_TAC); | |
FIRST_ASSUM (fun t-> UNDISCH_TAC (concl t) THEN | |
(DISCH_THEN CHOOSE_TAC)); | |
FIRST_ASSUM (fun t -> | |
(if (length (CONJUNCTS t) < 2) then failwith "BASIC_TAC" | |
else UNDISCH_TAC (concl t))); | |
DISCH_TAC; | |
];; | |
let REP_BASIC_TAC = REPEAT (CHANGED_TAC (FIRST BASIC_TAC));; | |
(* ------------------------------------------------------------------ *) | |
let USE_FIRST rule = | |
FIRST_ASSUM (fun t -> (UNDISCH_TAC (concl t) THEN | |
(DISCH_THEN (ASSUME_TAC o rule))));; | |
let WITH_FIRST rule = | |
FIRST_ASSUM (fun t -> ASSUME_TAC (rule t));; | |
let UNDF t = (TYPE_THEN t UNDISCH_FIND_TAC );; | |
let GRABF t ttac = (UNDF t THEN (DISCH_THEN ttac));; | |
let USEF t rule = | |
(TYPE_THEN t (fun t' -> UNDISCH_FIND_THEN t' | |
(fun u -> ASSUME_TAC (rule u))));; | |
(* ------------------------------------------------------------------ *) | |
(* UNIFY_EXISTS_TAC *) | |
(* ------------------------------------------------------------------ *) | |
let rec EXISTSL_TAC tml = match tml with | |
a::tml' -> EXISTS_TAC a THEN EXISTSL_TAC tml' | | |
[] -> ALL_TAC;; | |
(* | |
Goal: ?x1....xn. P1 /\ ... /\ Pm | |
Try to pick ALL of x1...xn to unify ONE or more Pi with terms | |
appearing in the assumption list, trying term_unify on | |
each Pi with each assumption. | |
*) | |
let (UNIFY_EXISTS_TAC:tactic) = | |
let run_one wc assum (varl,sofar) = | |
if varl = [] then (varl,sofar) else | |
try ( | |
let wc' = instantiate ([],sofar,[]) wc in | |
let (_,ins,_) = term_unify varl wc' assum in | |
let insv = map snd ins in | |
( subtract varl insv , union sofar ins ) | |
) with failure -> (varl,sofar) in | |
let run_onel asl wc (varl,sofar) = | |
itlist (run_one wc) asl (varl,sofar) in | |
let run_all varl sofar wcl asl = | |
itlist (run_onel asl) wcl (varl,sofar) in | |
let full_unify (asl,w) = | |
let (varl,ws) = strip_exists w in | |
let vargl = map genvar (map type_of varl) in | |
let wg = instantiate ([],zip vargl varl,[]) ws in | |
let wcg = conjuncts wg in | |
let (vargl',sofar) = run_all vargl [] wcg ( asl) in | |
if (vargl' = []) then | |
map (C rev_assoc sofar) (map (C rev_assoc (zip vargl varl)) varl) | |
else failwith "full_unify: unification not found " in | |
fun (asl,w) -> | |
try( | |
let asl' = map (concl o snd) asl in | |
let asl'' = flat (map (conjuncts ) asl') in | |
let varsub = full_unify (asl'',w) in | |
EXISTSL_TAC varsub (asl,w) | |
) with failure -> failwith "UNIFY_EXIST_TAC: unification not found.";; | |
(* partial example *) | |
let unify_exists_tac_example = try(prove_by_refinement( | |
`!C a b v A R TX U SS. (A v /\ (a = v) /\ (C:num->num->bool) a b /\ R a ==> | |
?v v'. TX v' /\ U v v' /\ C v' v /\ SS v)`, | |
(* {{{ proof *) | |
[ | |
REP_BASIC_TAC; | |
UNIFY_EXISTS_TAC; (* v' -> a and v -> b *) | |
(* not finished. Here is a variant approach. *) | |
REP_GEN_TAC; | |
DISCH_TAC; | |
UNIFY_EXISTS_TAC; | |
])) with failure -> (REFL `T`);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* UNIFY_EXISTS conversion *) | |
(* ------------------------------------------------------------------ *) | |
(* | |
FIRST argument is the "certificate" | |
second arg is the goal. | |
Example: | |
UNIFY_EXISTS `(f:num->bool) x` `?t. (f:num->bool) t` | |
*) | |
let (UNIFY_EXISTS:thm -> term -> thm) = | |
let run_one wc assum (varl,sofar) = | |
if varl = [] then (varl,sofar) else | |
try ( | |
let wc' = instantiate ([],sofar,[]) wc in | |
let (_,ins,_) = term_unify varl wc' assum in | |
let insv = map snd ins in | |
( subtract varl insv , union sofar ins ) | |
) with failure -> (varl,sofar) in | |
let run_onel asl wc (varl,sofar) = | |
itlist (run_one wc) asl (varl,sofar) in | |
let run_all varl sofar wcl asl = | |
itlist (run_onel asl) wcl (varl,sofar) in | |
let full_unify (t,w) = | |
let (varl,ws) = strip_exists w in | |
let vargl = map genvar (map type_of varl) in | |
let wg = instantiate ([],zip vargl varl,[]) ws in | |
let wcg = conjuncts wg in | |
let (vargl',sofar) = run_all vargl [] wcg ( [concl t]) in | |
if (vargl' = []) then | |
map (C rev_assoc sofar) (map (C rev_assoc (zip vargl varl)) varl) | |
else failwith "full_unify: unification not found " in | |
fun t w -> | |
try( | |
if not(is_exists w) then failwith "UNIFY_EXISTS: not EXISTS" else | |
let varl' = (full_unify (t,w)) in | |
let (varl,ws) = strip_exists w in | |
let varsub = zip varl' varl in | |
let varlb = map (fun s-> chop_list s (rev varl)) | |
(range 1 (length varl)) in | |
let targets = map (fun s-> (instantiate ([],varsub,[]) | |
(list_mk_exists( rev (fst s), ws)) )) varlb in | |
let target_zip = zip (rev targets) varl' in | |
itlist (fun s th -> EXISTS s th) target_zip t | |
) with failure -> failwith "UNIFY_EXISTS: unification not found.";; | |
let unify_exists_example= | |
UNIFY_EXISTS (ARITH_RULE `2 = 0+2`) `(?x y. ((x:num) = y))`;; | |
(* now make a prover for it *) | |
(* ------------------------------------------------------------------ *) | |
(* | |
drop_ant_tac replaces | |
0 A ==>B | |
1 A | |
with | |
0 B | |
1 A | |
in hypothesis list | |
*) | |
let DROP_ANT_TAC pq = | |
UNDISCH_TAC pq THEN (UNDISCH_TAC (fst (dest_imp pq))) THEN | |
DISCH_THEN (fun pthm -> ASSUME_TAC pthm THEN | |
DISCH_THEN (fun pqthm -> ASSUME_TAC (MATCH_MP pqthm pthm )));; | |
let (DROP_ALL_ANT_TAC:tactic) = | |
fun (asl,w) -> | |
let imps = filter (is_imp) (map (concl o snd) asl) in | |
MAP_EVERY (TRY o DROP_ANT_TAC) imps (asl,w);; | |
let drop_ant_tac_example = prove_by_refinement( | |
`!A B C D E. (A /\ (A ==> B) /\ (C ==>D) /\ C) ==> (E \/ C \/ B)`, | |
(* {{{ proof *) | |
[ | |
REP_BASIC_TAC; | |
DROP_ALL_ANT_TAC; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
(* ------------------------------------------------------------------ *) | |
(* ASSUME tm, then prove it later. almost the same as asm-cases-tac *) | |
let (BACK_TAC : term -> tactic) = | |
fun tm (asl,w) -> | |
let ng = mk_imp (tm,w) in | |
(SUBGOAL_TAC ng THENL [ALL_TAC;DISCH_THEN IMATCH_MP_TAC ]) (asl,w);; | |
(* --- *) | |
(* Using hash numbers for tactics *) | |
(* --- *) | |
let label_of_hash ((asl,g):goal) (h:int) = | |
let one_label h (s,tm) = | |
if (h = hash_of_term (concl tm)) then | |
let s1 = String.sub s 2 (String.length s - 2) in | |
int_of_string s1 | |
else failwith "label_of_hash" in | |
tryfind (one_label h) asl;; | |
let HASHIFY m h w = m (label_of_hash w h) w;; | |
let UNDH = HASHIFY UND;; | |
let REWRH = HASHIFY REWR;; | |
let KILLH = HASHIFY KILL;; | |
let COPYH = HASHIFY COPY;; | |
let HASHIFY1 m h tm w = m (label_of_hash w h) tm w;; | |
let USEH = HASHIFY1 USE;; | |
let LEFTH = HASHIFY1 LEFT;; | |
let RIGHTH = HASHIFY1 RIGHT;; | |
let TSPECH tm h w = TSPEC tm (label_of_hash w h) w ;; | |