Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Logic /herbrand.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.22 kB
(* ========================================================================= *)
(* Refinement of canonical model theorem to consider ground terms only. *)
(* ========================================================================= *)
let herbase_RULES,herbase_INDUCT,herbase_CASES = new_inductive_definition
`(~(?c. (c,0) IN fns) ==> herbase fns (V 0)) /\
(!f l. (f,LENGTH l) IN fns /\ ALL (herbase fns) l
==> herbase fns (Fn f l))`;;
(* ------------------------------------------------------------------------- *)
(* Canonical model based on the language of a set of formulas. *)
(* ------------------------------------------------------------------------- *)
let herbrand = new_definition
`herbrand (L:(num#num->bool)#(num#num->bool)) M <=>
(Dom M = herbase (FST L)) /\
(!f. Fun(M) f = Fn f)`;;
(* ------------------------------------------------------------------------- *)
(* Lemmas. *)
(* ------------------------------------------------------------------------- *)
let HERBRAND_INTERPRETATION = prove
(`!L M. herbrand L M ==> interpretation L M`,
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN
SIMP_TAC[herbrand; interpretation] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
ASM_SIMP_TAC[herbase_RULES]);;
let HERBASE_FUNCTIONS = prove
(`!fns t. t IN herbase fns ==> (functions_term t) SUBSET fns`,
GEN_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN
REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM ALL_MEM; GSYM EX_MEM;
MEM_MAP] THEN
MESON_TAC[]);;
let HERBASE_NONEMPTY = prove
(`!fns. ?t. t IN herbase fns`,
GEN_TAC THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[herbase_CASES] THEN
MESON_TAC[ALL; LENGTH]);;
let HERBRAND_NONEMPTY = prove
(`!L M. herbrand L M ==> ~(Dom M = {})`,
SIMP_TAC[herbrand; Dom_DEF; EXTENSION; NOT_IN_EMPTY] THEN
REWRITE_TAC[NOT_FORALL_THM; HERBASE_NONEMPTY]);;
(* ------------------------------------------------------------------------- *)
(* Mappings between models and propositional valuations. *)
(* ------------------------------------------------------------------------- *)
let herbrand_of_prop = new_definition
`herbrand_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) =
herbase(FST L),Fn,\p l. d(Atom p l)`;;
let PROP_OF_HERBRAND_OF_PROP = prove
(`!p l. prop_of_model (herbrand_of_prop L d) V (Atom p l) = d (Atom p l)`,
REWRITE_TAC[prop_of_model; herbrand_of_prop; holds; Pred_DEF] THEN
REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN
SPEC_TAC(`l:term list`,`l:term list`) THEN
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN
SPEC_TAC(`h:term`,`t:term`) THEN
MATCH_MP_TAC term_INDUCT THEN
REWRITE_TAC[termval; Fun_DEF] THEN
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);;
let HOLDS_HERBRAND_OF_PROP = prove
(`!p. qfree p ==> (holds (herbrand_of_prop L d) V p <=> pholds d p)`,
GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);;
let HOLDS_HERBRAND_OF_PROP_GENERAL = prove
(`qfree p ==> (holds (herbrand_of_prop L d) v p <=> pholds d (formsubst v p))`,
DISCH_THEN(fun th -> MP_TAC th THEN
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN
SPEC_TAC(`p:form`,`p:form`) THEN
MATCH_MP_TAC form_INDUCTION THEN
REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN
REPEAT GEN_TAC THEN STRIP_TAC THENL
[ALL_TAC;
REPEAT GEN_TAC THEN STRIP_TAC THEN
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN
REFL_TAC] THEN
REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; herbrand_of_prop; holds] THEN
REWRITE_TAC[Pred_DEF] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);;
let HERBRAND_HERBRAND_OF_PROP = prove
(`!d. herbrand L (herbrand_of_prop L d)`,
REWRITE_TAC[herbrand; herbrand_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);;
let INTERPRETATION_HERBRAND_OF_PROP = prove
(`!L d. interpretation L (herbrand_of_prop L d)`,
REWRITE_TAC[FORALL_PAIR_THM; interpretation; herbrand_of_prop; Fun_DEF;
Dom_DEF; IN; ETA_AX] THEN
MESON_TAC[herbase_RULES; IN]);;
(* ------------------------------------------------------------------------- *)
(* Same thing for satisfiability. *)
(* ------------------------------------------------------------------------- *)
let PSATISFIES_HERBRAND_INSTANCES = prove
(`(!p. p IN s ==> qfree p) /\
d psatisfies {formsubst v p | (!x. v x IN herbase(FST L)) /\ p IN s}
==> (herbrand_of_prop L d) satisfies s`,
REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
STRIP_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[herbrand_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p)` MP_TAC THENL
[ASM_MESON_TAC[HOLDS_HERBRAND_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p) <=>
holds (herbrand_of_prop L d)
(termval (herbrand_of_prop L d) V o v)
p`
SUBST1_TAC THENL
[REWRITE_TAC[HOLDS_FORMSUBST] THEN
ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY];
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN
GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN
MATCH_MP_TAC TERMVAL_TRIV THEN
REWRITE_TAC[herbrand_of_prop; Fun_DEF]]);;
(* ------------------------------------------------------------------------- *)
(* Hence the Herbrand theorem. *)
(* ------------------------------------------------------------------------- *)
let SATISFIES_SUBSET = prove
(`!M s t. s SUBSET t /\ M satisfies t ==> M satisfies s`,
REWRITE_TAC[satisfies; SUBSET] THEN MESON_TAC[]);;
let HERBASE_SUBSET_TERMS = prove
(`!t. t IN herbase fns ==> t IN terms fns`,
REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[terms_RULES]);;
let HERBRAND_THEOREM = prove
(`!s. (!p. p IN s ==> qfree p)
==> ((?M:(term->bool)#(num->term list->term)#(num->term list->bool).
interpretation (language s) M /\ ~(Dom M = {}) /\
M satisfies s) <=>
(?d. d psatisfies
{formsubst v p | (!x. v x IN herbase(functions s)) /\
p IN s}))`,
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[FIRST_ASSUM(X_CHOOSE_TAC `v:num->term` o MATCH_MP VALUATION_EXISTS) THEN
EXISTS_TAC `prop_of_model M (v:num->term)` THEN
MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; QFREE_FORMSUBST];
FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN
DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ]
SATISFIES_SUBSET) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; language] THEN
MESON_TAC[HERBASE_SUBSET_TERMS; SUBSET]];
EXISTS_TAC `herbrand_of_prop (language s) d` THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[INTERPRETATION_HERBRAND_OF_PROP];
REWRITE_TAC[herbrand_of_prop; Dom_DEF; language;
EXTENSION; NOT_IN_EMPTY] THEN
REWRITE_TAC[IN] THEN MESON_TAC[herbase_RULES; ALL; LENGTH];
ASM_SIMP_TAC[PSATISFIES_HERBRAND_INSTANCES; language]]]);;