Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Refinement of canonical model theorem to consider ground terms only. *) | |
(* ========================================================================= *) | |
let herbase_RULES,herbase_INDUCT,herbase_CASES = new_inductive_definition | |
`(~(?c. (c,0) IN fns) ==> herbase fns (V 0)) /\ | |
(!f l. (f,LENGTH l) IN fns /\ ALL (herbase fns) l | |
==> herbase fns (Fn f l))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Canonical model based on the language of a set of formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
let herbrand = new_definition | |
`herbrand (L:(num#num->bool)#(num#num->bool)) M <=> | |
(Dom M = herbase (FST L)) /\ | |
(!f. Fun(M) f = Fn f)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let HERBRAND_INTERPRETATION = prove | |
(`!L M. herbrand L M ==> interpretation L M`, | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
SIMP_TAC[herbrand; interpretation] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
ASM_SIMP_TAC[herbase_RULES]);; | |
let HERBASE_FUNCTIONS = prove | |
(`!fns t. t IN herbase fns ==> (functions_term t) SUBSET fns`, | |
GEN_TAC THEN REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN | |
REWRITE_TAC[functions_term; EMPTY_SUBSET] THEN | |
REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM ALL_MEM; GSYM EX_MEM; | |
MEM_MAP] THEN | |
MESON_TAC[]);; | |
let HERBASE_NONEMPTY = prove | |
(`!fns. ?t. t IN herbase fns`, | |
GEN_TAC THEN REWRITE_TAC[IN] THEN ONCE_REWRITE_TAC[herbase_CASES] THEN | |
MESON_TAC[ALL; LENGTH]);; | |
let HERBRAND_NONEMPTY = prove | |
(`!L M. herbrand L M ==> ~(Dom M = {})`, | |
SIMP_TAC[herbrand; Dom_DEF; EXTENSION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[NOT_FORALL_THM; HERBASE_NONEMPTY]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Mappings between models and propositional valuations. *) | |
(* ------------------------------------------------------------------------- *) | |
let herbrand_of_prop = new_definition | |
`herbrand_of_prop (L:((num#num)->bool)#((num#num)->bool)) (d:form->bool) = | |
herbase(FST L),Fn,\p l. d(Atom p l)`;; | |
let PROP_OF_HERBRAND_OF_PROP = prove | |
(`!p l. prop_of_model (herbrand_of_prop L d) V (Atom p l) = d (Atom p l)`, | |
REWRITE_TAC[prop_of_model; herbrand_of_prop; holds; Pred_DEF] THEN | |
REPEAT GEN_TAC THEN REPEAT AP_TERM_TAC THEN | |
MATCH_MP_TAC MAP_EQ_DEGEN THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[ALL] THEN | |
SPEC_TAC(`h:term`,`t:term`) THEN | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termval; Fun_DEF] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; | |
let HOLDS_HERBRAND_OF_PROP = prove | |
(`!p. qfree p ==> (holds (herbrand_of_prop L d) V p <=> pholds d p)`, | |
GEN_TAC THEN DISCH_THEN(fun th -> MP_TAC th THEN | |
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN | |
SPEC_TAC(`p:form`,`p:form`) THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN REFL_TAC);; | |
let HOLDS_HERBRAND_OF_PROP_GENERAL = prove | |
(`qfree p ==> (holds (herbrand_of_prop L d) v p <=> pholds d (formsubst v p))`, | |
DISCH_THEN(fun th -> MP_TAC th THEN | |
REWRITE_TAC[GSYM(MATCH_MP PHOLDS_PROP_OF_MODEL th)]) THEN | |
SPEC_TAC(`p:form`,`p:form`) THEN | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; pholds; qfree; PROP_OF_HERBRAND_OF_PROP] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THENL | |
[ALL_TAC; | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN (ANTE_RES_THEN SUBST1_TAC)) THEN | |
REFL_TAC] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[prop_of_model; herbrand_of_prop; holds] THEN | |
REWRITE_TAC[Pred_DEF] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN SIMP_TAC[GSYM TERMSUBST_TERMVAL; Fun_DEF]);; | |
let HERBRAND_HERBRAND_OF_PROP = prove | |
(`!d. herbrand L (herbrand_of_prop L d)`, | |
REWRITE_TAC[herbrand; herbrand_of_prop; Dom_DEF; Fun_DEF; FUN_EQ_THM]);; | |
let INTERPRETATION_HERBRAND_OF_PROP = prove | |
(`!L d. interpretation L (herbrand_of_prop L d)`, | |
REWRITE_TAC[FORALL_PAIR_THM; interpretation; herbrand_of_prop; Fun_DEF; | |
Dom_DEF; IN; ETA_AX] THEN | |
MESON_TAC[herbase_RULES; IN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Same thing for satisfiability. *) | |
(* ------------------------------------------------------------------------- *) | |
let PSATISFIES_HERBRAND_INSTANCES = prove | |
(`(!p. p IN s ==> qfree p) /\ | |
d psatisfies {formsubst v p | (!x. v x IN herbase(FST L)) /\ p IN s} | |
==> (herbrand_of_prop L d) satisfies s`, | |
REWRITE_TAC[satisfies; psatisfies; IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
STRIP_TAC THEN | |
REPEAT GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[herbrand_of_prop; Dom_DEF; valuation] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL[`formsubst v p`; `v:num->term`; `p:form`]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p)` MP_TAC THENL | |
[ASM_MESON_TAC[HOLDS_HERBRAND_OF_PROP; QFREE_FORMSUBST]; ALL_TAC] THEN | |
SUBGOAL_THEN `holds (herbrand_of_prop L d) V (formsubst v p) <=> | |
holds (herbrand_of_prop L d) | |
(termval (herbrand_of_prop L d) V o v) | |
p` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[HOLDS_FORMSUBST] THEN | |
ASM_MESON_TAC[INTER_EMPTY; QFREE_BV_EMPTY]; | |
MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN | |
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN | |
GEN_TAC THEN SPEC_TAC(`(v:num->term) x`,`t:term`) THEN | |
MATCH_MP_TAC TERMVAL_TRIV THEN | |
REWRITE_TAC[herbrand_of_prop; Fun_DEF]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the Herbrand theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let SATISFIES_SUBSET = prove | |
(`!M s t. s SUBSET t /\ M satisfies t ==> M satisfies s`, | |
REWRITE_TAC[satisfies; SUBSET] THEN MESON_TAC[]);; | |
let HERBASE_SUBSET_TERMS = prove | |
(`!t. t IN herbase fns ==> t IN terms fns`, | |
REWRITE_TAC[IN] THEN MATCH_MP_TAC herbase_INDUCT THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN REWRITE_TAC[terms_RULES]);; | |
let HERBRAND_THEOREM = prove | |
(`!s. (!p. p IN s ==> qfree p) | |
==> ((?M:(term->bool)#(num->term list->term)#(num->term list->bool). | |
interpretation (language s) M /\ ~(Dom M = {}) /\ | |
M satisfies s) <=> | |
(?d. d psatisfies | |
{formsubst v p | (!x. v x IN herbase(functions s)) /\ | |
p IN s}))`, | |
GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN STRIP_TAC THENL | |
[FIRST_ASSUM(X_CHOOSE_TAC `v:num->term` o MATCH_MP VALUATION_EXISTS) THEN | |
EXISTS_TAC `prop_of_model M (v:num->term)` THEN | |
MATCH_MP_TAC SATISFIES_PSATISFIES THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; QFREE_FORMSUBST]; | |
FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN | |
DISCH_THEN(MP_TAC o SPEC `s:form->bool`) THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] | |
SATISFIES_SUBSET) THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; language] THEN | |
MESON_TAC[HERBASE_SUBSET_TERMS; SUBSET]]; | |
EXISTS_TAC `herbrand_of_prop (language s) d` THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[INTERPRETATION_HERBRAND_OF_PROP]; | |
REWRITE_TAC[herbrand_of_prop; Dom_DEF; language; | |
EXTENSION; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN] THEN MESON_TAC[herbase_RULES; ALL; LENGTH]; | |
ASM_SIMP_TAC[PSATISFIES_HERBRAND_INSTANCES; language]]]);; | |