Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Positive resolution and semantic resolution. *) | |
(* ========================================================================= *) | |
let allpositive = new_definition | |
`allpositive cl <=> !p. p IN cl ==> positive p`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Various simple lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let NOT_NEGATIVE_ATOM = prove | |
(`!p a. ~(negative (Atom p a))`, | |
REWRITE_TAC[negative; Not_DEF; form_DISTINCT]);; | |
let NEGATIVE_NOT = prove | |
(`!p. negative(Not p)`, | |
MESON_TAC[negative]);; | |
let CLAUSE_FINITE = prove | |
(`!c. clause c ==> FINITE c`, | |
SIMP_TAC[clause]);; | |
let POSITIVE_LITERAL_ATOM = prove | |
(`!p. literal(p) /\ positive(p) <=> atom(p)`, | |
REWRITE_TAC[literal; positive; negative] THEN | |
MESON_TAC[Not_DEF; form_DISTINCT; ATOM]);; | |
let PHOLDS_ATOM = prove | |
(`!v p. atom(p) ==> (pholds v p <=> v p)`, | |
SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM; PHOLDS]);; | |
let PHOLDS_ALLTRUE_POSLIT = prove | |
(`!p. literal p /\ positive p ==> pholds (\x. T) p`, | |
REWRITE_TAC[literal; ATOM; positive; negative] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PHOLDS] THEN | |
ASM_MESON_TAC[atom; Not_DEF; form_DISTINCT]);; | |
let PHOLDS_ALLFALSE_NEGLIT = prove | |
(`!p. literal p /\ negative p ==> pholds (\x. F) p`, | |
REWRITE_TAC[literal; ATOM; positive; negative] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[PHOLDS] THEN | |
ASM_MESON_TAC[atom; Not_DEF; form_DISTINCT]);; | |
let PHOLDS_ALLTRUE_POSCLAUSE = prove | |
(`!c. clause(c) /\ allpositive c /\ ~(c = {}) ==> pholds (\x. T) (interp c)`, | |
SIMP_TAC[clause; PHOLDS_INTERP; allpositive; EXTENSION; NOT_IN_EMPTY] THEN | |
MESON_TAC[PHOLDS_ALLTRUE_POSLIT]);; | |
let PHOLDS_ALLFALSE_NONPOSCLAUSE = prove | |
(`!c. clause(c) /\ ~allpositive c ==> pholds (\x. F) (interp c)`, | |
SIMP_TAC[clause; PHOLDS_INTERP; allpositive; EXTENSION; NOT_IN_EMPTY] THEN | |
MESON_TAC[PHOLDS_ALLFALSE_NEGLIT; positive]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Main lemma from Robinson's original proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let PRESOLUTION_LEMMA = prove | |
(`!s. FINITE s /\ (!c. c IN s ==> clause c) /\ | |
~psatisfiable (IMAGE interp s) /\ ~({} IN s) | |
==> ?c1 c2 p. c1 IN s /\ c2 IN s /\ | |
(allpositive c1 \/ allpositive c2) /\ | |
p IN c1 /\ ~~p IN c2 /\ | |
~((resolve p c1 c2) IN s)`, | |
REPEAT STRIP_TAC THEN | |
ABBREV_TAC `P = {c | c IN s /\ allpositive c}` THEN | |
ABBREV_TAC `N = {c | c IN s /\ ~(allpositive c)}` THEN | |
SUBGOAL_THEN `~(P:(form->bool)->bool = {})` ASSUME_TAC THENL | |
[EXPAND_TAC "P" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; TAUT `~(a /\ b) <=> a ==> ~b`] THEN | |
DISCH_TAC THEN | |
UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN | |
REWRITE_TAC[psatisfiable] THEN EXISTS_TAC `\p:form. F` THEN | |
ASM_SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM; PHOLDS_ALLFALSE_NONPOSCLAUSE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(N:(form->bool)->bool = {})` ASSUME_TAC THENL | |
[EXPAND_TAC "N" THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; TAUT `~(a /\ b) <=> a ==> ~b`] THEN | |
DISCH_TAC THEN | |
UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN | |
REWRITE_TAC[psatisfiable] THEN EXISTS_TAC `\p:form. T` THEN | |
SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC PHOLDS_ALLTRUE_POSCLAUSE THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `?n v. v psatisfies (IMAGE interp P) /\ v HAS_SIZE n` | |
MP_TAC THENL | |
[EXISTS_TAC `CARD((UNIONS P):form->bool)` THEN | |
EXISTS_TAC `(UNIONS P):form->bool` THEN | |
REWRITE_TAC[HAS_SIZE] THEN CONJ_TAC THENL | |
[REWRITE_TAC[psatisfies; IN_IMAGE; IN_UNIONS; LEFT_IMP_EXISTS_THM] THEN | |
GEN_TAC THEN X_GEN_TAC `c:form->bool` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 SUBST1_TAC ASSUME_TAC) THEN | |
SUBGOAL_THEN `FINITE(c:form->bool)` ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP] THEN | |
SUBGOAL_THEN `~(c:form->bool = {})` MP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN DISCH_TAC THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `positive q` ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive]; ALL_TAC] THEN | |
SUBGOAL_THEN `atom q` MP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[clause; literal; positive; negative]; ALL_TAC] THEN | |
SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM; PHOLDS] THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN | |
GEN_REWRITE_TAC I [GSYM IN] THEN REWRITE_TAC[IN_UNIONS] THEN | |
ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `FINITE(P:(form->bool)->bool)` MP_TAC THENL | |
[EXPAND_TAC "P" THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `s:(form->bool)->bool` THEN | |
ASM_SIMP_TAC[SUBSET; IN_ELIM_THM]; ALL_TAC] THEN | |
SIMP_TAC[FINITE_UNIONS] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
REWRITE_TAC[NOT_EXISTS_THM; RIGHT_IMP_FORALL_THM] THEN | |
REWRITE_TAC[TAUT `a ==> ~(b /\ c) <=> a /\ c ==> ~b`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `?m c. c IN N /\ | |
~(pholds v (interp c)) /\ | |
{p | p IN c /\ negative p} HAS_SIZE m` | |
MP_TAC THENL | |
[GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN | |
UNDISCH_TAC `~psatisfiable (IMAGE interp s)` THEN | |
REWRITE_TAC[psatisfiable; NOT_EXISTS_THM; NOT_FORALL_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `v:form->bool`) THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM; IN_IMAGE; NOT_FORALL_THM] THEN | |
REWRITE_TAC[NOT_IMP] THEN GEN_TAC THEN | |
REWRITE_TAC[LEFT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:form->bool` THEN | |
STRIP_TAC THEN EXISTS_TAC `CARD {p | p IN k /\ negative p}` THEN | |
ASM_REWRITE_TAC[HAS_SIZE] THEN CONJ_TAC THENL | |
[EXPAND_TAC "N" THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `(k:form->bool) IN P` ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[IN_IMAGE; psatisfies]; ALL_TAC] THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `k:form->bool` THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_MESON_TAC[clause]; | |
ALL_TAC] THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
DISCH_THEN(X_CHOOSE_THEN `m:num` (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:form->bool` STRIP_ASSUME_TAC) THEN | |
MP_TAC(ASSUME `(k:form->bool) IN N`) THEN EXPAND_TAC "N" THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(MP_TAC o CONJUNCT2) THEN | |
REWRITE_TAC[allpositive; NOT_FORALL_THM; NOT_IMP; positive] THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` MP_TAC) THEN REWRITE_TAC[negative] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `l:form` SUBST_ALL_TAC) THEN | |
SUBGOAL_THEN `clause k` ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
SUBGOAL_THEN `atom l` ASSUME_TAC THENL | |
[SUBGOAL_THEN `literal(Not l)` MP_TAC THENL | |
[ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM; literal; Not_DEF; form_INJ; atom]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `v(l:form) = T` ASSUME_TAC THENL | |
[UNDISCH_TAC `~pholds v (interp k)` THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE; NOT_EXISTS_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `Not l`) THEN ASM_REWRITE_TAC[PHOLDS] THEN | |
FIRST_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I [ATOM]) THEN | |
ASM_REWRITE_TAC[PHOLDS]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`?j. j IN P /\ l IN j /\ ~(pholds v (interp (j DELETE l)))` | |
MP_TAC THENL | |
[FIRST_ASSUM(MP_TAC o SPECL | |
[`n - 1`; `\p:form. if p = l then F else v(p)`]) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> n - 1 < n`) THEN | |
DISCH_THEN SUBST_ALL_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_SIZE_0]) THEN | |
REWRITE_TAC[EXTENSION] THEN DISCH_THEN(MP_TAC o SPEC `l:form`) THEN | |
REWRITE_TAC[NOT_IN_EMPTY] THEN ASM_REWRITE_TAC[IN]; | |
ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN | |
ASM_REWRITE_TAC[HAS_SIZE] THEN | |
SUBGOAL_THEN `(\p:form. if p = l then F else v(p)) = v DELETE l` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_DELETE] THEN GEN_TAC THEN | |
REWRITE_TAC[IN] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[FINITE_DELETE; CARD_DELETE] THEN | |
ASM_REWRITE_TAC[IN]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[TAUT `~a ==> b <=> ~b ==> a`] THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN | |
REWRITE_TAC[TAUT `~(a /\ b /\ ~c) <=> a /\ b ==> c`] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[psatisfies] THEN GEN_TAC THEN REWRITE_TAC[IN_IMAGE] THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `c:form->bool` THEN | |
DISCH_THEN(ASSUME_TAC o CONJUNCT2) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `clause c /\ clause(c DELETE l)` MP_TAC THENL | |
[MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[clause; IN_DELETE; FINITE_DELETE]; ALL_TAC] THEN | |
SIMP_TAC[clause; PHOLDS_INTERP] THEN | |
REWRITE_TAC[GSYM clause] THEN STRIP_TAC THEN | |
ASM_CASES_TAC `l:form IN c` THEN ASM_REWRITE_TAC[] THENL | |
[MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN | |
SIMP_TAC[IN_DELETE] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
SUBGOAL_THEN `atom q` MP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[POSITIVE_LITERAL_ATOM; allpositive; clause]; | |
ALL_TAC] THEN | |
SIMP_TAC[PHOLDS_ATOM] THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `v psatisfies IMAGE interp P` THEN | |
REWRITE_TAC[psatisfies] THEN DISCH_THEN(MP_TAC o SPEC `interp c`) THEN | |
REWRITE_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `c:form->bool`) THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `q:form` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `atom q` MP_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[POSITIVE_LITERAL_ATOM; allpositive; clause]; | |
ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PHOLDS_ATOM]]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:form->bool` STRIP_ASSUME_TAC) THEN | |
MAP_EVERY EXISTS_TAC [`j:form->bool`; `k:form->bool`; `l:form`] THEN | |
REWRITE_TAC[GSYM negative; GSYM positive] THEN | |
CONJ_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[negate] THEN CONJ_TAC THENL | |
[COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive; positive]; ALL_TAC] THEN | |
FIRST_ASSUM(fun th -> MP_TAC(SPEC `m - 1` th) THEN ANTS_TAC) THENL | |
[MATCH_MP_TAC(ARITH_RULE `~(n = 0) ==> n - 1 < n`) THEN | |
DISCH_THEN SUBST_ALL_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [HAS_SIZE_0]) THEN | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY] THEN | |
DISCH_THEN(MP_TAC o SPEC `Not l`) THEN | |
ASM_REWRITE_TAC[IN_ELIM_THM; negative] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `resolve l j k`) THEN | |
ONCE_REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `~pholds v (interp (resolve l j k))` ASSUME_TAC THENL | |
[UNDISCH_TAC `~pholds v (interp k)` THEN | |
UNDISCH_TAC `~pholds v (interp (j DELETE l))` THEN | |
SUBGOAL_THEN `clause j` ASSUME_TAC THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[clause]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; CLAUSE_FINITE; RESOLVE_CLAUSE; | |
FINITE_DELETE] THEN | |
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[SUBGOAL_THEN `~(resolve l j k IN P)` MP_TAC THENL | |
[ASM_MESON_TAC[psatisfies; IN_IMAGE]; ALL_TAC] THEN | |
UNDISCH_TAC `resolve l j k IN s` THEN | |
MAP_EVERY EXPAND_TAC ["P"; "N"] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN CONV_TAC TAUT; ALL_TAC] THEN | |
SUBGOAL_THEN `{p | p IN resolve l j k /\ negative p} = | |
{p | p IN k /\ negative p} DELETE (Not l)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; resolve; IN_UNION] THEN | |
SUBGOAL_THEN `~~l = Not l` SUBST1_TAC THENL | |
[REWRITE_TAC[negate] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[allpositive; positive]; ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[EXTENSION; IN_ELIM_THM]) THEN | |
GEN_TAC THEN MATCH_MP_TAC(TAUT | |
`(a ==> ~e) ==> ((a /\ b \/ c /\ d) /\ e <=> (c /\ e) /\ d)`) THEN | |
REWRITE_TAC[GSYM positive] THEN | |
ASM_MESON_TAC[allpositive]; ALL_TAC] THEN | |
SUBGOAL_THEN `FINITE {p | p IN k /\ negative p}` MP_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `k:form->bool` THEN | |
ASM_SIMP_TAC[CLAUSE_FINITE; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN | |
SIMP_TAC[HAS_SIZE; CARD_DELETE; FINITE_DELETE] THEN | |
DISCH_TAC THEN UNDISCH_TAC `{p | p IN k /\ negative p} HAS_SIZE m` THEN | |
SIMP_TAC[HAS_SIZE] THEN DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[negative]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Inductive definition of *positive* propositional resolution. *) | |
(* ------------------------------------------------------------------------- *) | |
let pposresproof_RULES,pposresproof_INDUCT,pposresproof_CASES = | |
new_inductive_definition | |
`(!cl. cl IN hyps ==> pposresproof hyps cl) /\ | |
(!p cl1 cl2. | |
pposresproof hyps cl1 /\ pposresproof hyps cl2 /\ | |
(allpositive cl1 \/ allpositive cl2) /\ | |
p IN cl1 /\ ~~p IN cl2 | |
==> pposresproof hyps (resolve p cl1 cl2))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Its completeness. *) | |
(* ------------------------------------------------------------------------- *) | |
let POSRESPROOF_FINITE = prove | |
(`!hyps. FINITE hyps /\ (!cl. cl IN hyps ==> clause cl) | |
==> FINITE {cl | pposresproof hyps cl}`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{t | t SUBSET (UNIONS hyps)} :(form->bool)->bool` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_POWERSET THEN RULE_ASSUM_TAC(REWRITE_RULE[clause]) THEN | |
ASM_SIMP_TAC[FINITE_UNIONS]; ALL_TAC] THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN | |
MATCH_MP_TAC pposresproof_INDUCT THEN CONJ_TAC THENL | |
[MESON_TAC[IN_UNIONS]; | |
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]]);; | |
let PPOSRESPROOF_REFUTATION_COMPLETE_FINITE = prove | |
(`FINITE hyps /\ | |
(!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable {interp cl | cl IN hyps}) | |
==> pposresproof hyps {}`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `hyps:(form->bool)->bool` POSRESPROOF_FINITE) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
MP_TAC(SPEC `{cl | pposresproof hyps cl}` PRESOLUTION_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~psatisfiable (IMAGE interp {cl | pposresproof hyps cl})` | |
ASSUME_TAC THENL | |
[UNDISCH_TAC `~psatisfiable {interp cl | cl IN hyps}` THEN | |
REWRITE_TAC[TAUT `~a ==> ~b <=> b ==> a`] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] | |
PSATISFIABLE_MONO) THEN | |
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[pposresproof_RULES]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
MATCH_MP_TAC(TAUT `~c /\ a ==> (a /\ ~b ==> c) ==> b`) THEN | |
CONJ_TAC THENL [MESON_TAC[pposresproof_RULES]; ALL_TAC] THEN | |
MATCH_MP_TAC pposresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lift to the non-finite case by compactness. *) | |
(* ------------------------------------------------------------------------- *) | |
let PPOSRESPROOF_MONO = prove | |
(`!hyps1 hyps2 c. | |
pposresproof hyps1 c /\ hyps1 SUBSET hyps2 ==> pposresproof hyps2 c`, | |
GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC pposresproof_INDUCT THEN | |
MESON_TAC[pposresproof_RULES; SUBSET]);; | |
let PPOSRESPROOF_REFUTATION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable {interp cl | cl IN hyps}) | |
==> pposresproof hyps {}`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC PPOSRESPROOF_MONO THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP UNPSATISFIABLE_FINITE_SUBSET) THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:form->bool` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN | |
`?h. FINITE h /\ h SUBSET hyps /\ t SUBSET {interp cl | cl IN h}` | |
MP_TAC THENL | |
[REWRITE_TAC[IMAGE_CLAUSE] THEN MATCH_MP_TAC FINITE_SUBSET_IMAGE_IMP THEN | |
ASM_REWRITE_TAC[GSYM IMAGE_CLAUSE]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC PPOSRESPROOF_REFUTATION_COMPLETE_FINITE THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`~(psatisfiable t)`; `t SUBSET {interp cl | cl IN h}`] THEN | |
REWRITE_TAC[PSATISFIABLE_MONO; TAUT `b ==> ~c ==> ~a <=> a /\ b ==> c`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Generalization to semantic resolution at the propositional level. *) | |
(* ------------------------------------------------------------------------- *) | |
let psemresproof_RULES,psemresproof_INDUCT,psemresproof_CASES = | |
new_inductive_definition | |
`(!cl. cl IN hyps ==> psemresproof v hyps cl) /\ | |
(!p cl1 cl2. | |
psemresproof v hyps cl1 /\ psemresproof v hyps cl2 /\ | |
(~pholds v (interp cl1) \/ ~pholds v (interp cl2)) /\ | |
p IN cl1 /\ ~~p IN cl2 | |
==> psemresproof v hyps (resolve p cl1 cl2))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Proof by propositional variable flipping. *) | |
(* ------------------------------------------------------------------------- *) | |
let propflip = new_definition | |
`propflip w p = if (negative p = pholds w p) then p else ~~p`;; | |
let PHOLDS_LITERAL_PROPFLIP = prove | |
(`!p w. literal(p) ==> (pholds w p <=> pholds (\x. F) (propflip w p))`, | |
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; | |
let PROPFLIP_INVOLUTE = prove | |
(`!w p. literal p ==> (propflip w (propflip w p) = p)`, | |
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM] THENL | |
[ASM_CASES_TAC `w(Atom q l):bool` THEN | |
ASM_REWRITE_TAC[negate; NOT_NEGATIVE_ATOM; NEGATIVE_NOT; PHOLDS] THEN | |
REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL]; | |
ASM_CASES_TAC `w(Atom q' l):bool` THEN | |
ASM_REWRITE_TAC[negate; NOT_NEGATIVE_ATOM; NEGATIVE_NOT; PHOLDS] THEN | |
REWRITE_TAC[Not_DEF; form_INJ; SELECT_REFL] THEN | |
ASM_REWRITE_TAC[NOT_NEGATIVE_ATOM; PHOLDS]]);; | |
let PROPFLIP_INJ = prove | |
(`!w p q. literal p /\ literal q /\ (propflip w p = propflip w q) | |
==> (p = q)`, | |
MESON_TAC[PROPFLIP_INVOLUTE]);; | |
let PROPFLIP_NEGATE = prove | |
(`!w p. literal p ==> (propflip w (~~p) = ~~(propflip w p))`, | |
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; NEGATE_NEG] THEN | |
SIMP_TAC[NEGATE_ATOM; atom] THEN REWRITE_TAC[PHOLDS; NEGATIVE_NOT] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; NEGATE_NEG] THEN | |
SIMP_TAC[NEGATE_ATOM; atom] THEN | |
COND_CASES_TAC THEN SIMP_TAC[NEGATE_ATOM; atom; NEGATE_NEG]);; | |
let PROPFLIP_RESOLVE = prove | |
(`!cl1 cl2 p w. | |
clause cl1 /\ clause cl2 /\ p IN cl1 | |
==> (IMAGE (propflip w) (resolve p cl1 cl2) = | |
resolve (propflip w p) | |
(IMAGE (propflip w) cl1) (IMAGE (propflip w) cl2))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[resolve; IMAGE_UNION] THEN BINOP_TAC THEN | |
(REWRITE_TAC[EXTENSION; IN_IMAGE; IN_DELETE] THEN | |
X_GEN_TAC `q:form` THEN EQ_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[PROPFLIP_NEGATE; clause]] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `r:form` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[PROPFLIP_INJ; clause; PROPFLIP_NEGATE; NEGATE_LITERAL]));; | |
let PPOSRESPROOF_CLAUSE = prove | |
(`!hyps. (!c. c IN hyps ==> clause c) | |
==> !c. pposresproof hyps c ==> clause c`, | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC pposresproof_INDUCT THEN | |
ASM_SIMP_TAC[RESOLVE_CLAUSE]);; | |
let PSEMRESPROOF_CLAUSE = prove | |
(`!hyps w. (!c. c IN hyps ==> clause c) | |
==> !c. psemresproof w hyps c ==> clause c`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC psemresproof_INDUCT THEN | |
ASM_SIMP_TAC[RESOLVE_CLAUSE]);; | |
let LITERAL_PROPFLIP = prove | |
(`!p w. literal p ==> literal (propflip w p)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[propflip] THEN | |
COND_CASES_TAC THEN SIMP_TAC[NEGATE_LITERAL]);; | |
let CLAUSE_IMAGE_PROPFLIP = prove | |
(`!cl w. clause cl ==> clause (IMAGE (propflip w) cl)`, | |
SIMP_TAC[clause; FINITE_IMAGE] THEN | |
MESON_TAC[LITERAL_PROPFLIP; IN_IMAGE]);; | |
let PHOLDS_LITERAL_PROPFLIP_SAME = prove | |
(`!p w. literal(p) ==> (pholds w (propflip w p) <=> ~(positive p))`, | |
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; positive] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; | |
let PHOLDS_IMAGE_PROPFLIP_SAME = prove | |
(`!v cl. clause cl | |
==> (pholds v (interp (IMAGE (propflip v) cl)) <=> ~(allpositive cl))`, | |
SIMP_TAC[clause; PHOLDS_INTERP; FINITE_IMAGE; allpositive] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN | |
SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[NOT_IMP; NOT_FORALL_THM] THEN | |
MESON_TAC[PHOLDS_LITERAL_PROPFLIP_SAME]);; | |
let PPOSRESPROOF_PSEMRESPROOF = prove | |
(`!hyps. (!c. c IN hyps ==> clause c) | |
==> !w cl. pposresproof hyps cl | |
==> psemresproof w (IMAGE (IMAGE (propflip w)) hyps) | |
(IMAGE (propflip w) cl)`, | |
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN | |
SUBGOAL_THEN | |
`!cl. pposresproof hyps cl | |
==> clause cl /\ psemresproof w (IMAGE (IMAGE (propflip w)) hyps) | |
(IMAGE (propflip w) cl)` | |
(fun th -> SIMP_TAC[th]) THEN | |
MATCH_MP_TAC pposresproof_INDUCT THEN | |
ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[psemresproof_RULES; IN_IMAGE]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PROPFLIP_RESOLVE] THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psemresproof_RULES)) THEN | |
ASM_SIMP_TAC[PHOLDS_IMAGE_PROPFLIP_SAME] THEN | |
ASM_MESON_TAC[PROPFLIP_NEGATE; clause; NEGATE_LITERAL; IN_IMAGE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence refutation completeness. *) | |
(* ------------------------------------------------------------------------- *) | |
let PHOLDS_ATOM_PROPFLIP_DIFF = prove | |
(`!p v w. atom(p) ==> (pholds v (propflip w p) <=> ~(v p = w p))`, | |
SIMP_TAC[ATOM; LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[propflip; NOT_NEGATIVE_ATOM; positive; negate; PHOLDS] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS]);; | |
let PHOLDS_LITERAL_PROPFLIP_DIFF = prove | |
(`!p v w. literal(p) | |
==> (pholds v (propflip w p) <=> pholds (\x. ~(v x = w x)) p)`, | |
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[propflip] THEN REWRITE_TAC[PHOLDS] THEN | |
REWRITE_TAC[NEGATIVE_NOT; NOT_NEGATIVE_ATOM; positive] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[PHOLDS_NEGATE; PHOLDS]);; | |
let PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF = prove | |
(`!v cl. clause cl | |
==> (pholds v (interp (IMAGE (propflip w) cl)) <=> | |
pholds (\x. ~(v x = w x)) (interp cl))`, | |
SIMP_TAC[clause; PHOLDS_INTERP; FINITE_IMAGE] THEN | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[IN_IMAGE; LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[UNWIND_THM2; GSYM CONJ_ASSOC] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
GEN_TAC THEN REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
ASM_SIMP_TAC[PHOLDS_LITERAL_PROPFLIP_DIFF]);; | |
let PSATISFIABLE_CLAUSES_PROPFLIP = prove | |
(`!w s. (!c. c IN s ==> clause c) | |
==> (psatisfiable (IMAGE (interp o IMAGE (propflip w)) s) <=> | |
psatisfiable (IMAGE interp s))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[psatisfiable; IMAGE_o] THEN EQ_TAC THEN | |
DISCH_THEN(X_CHOOSE_THEN `v:form->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\p:form. ~(v(p):bool = w(p))` THEN | |
ASM_SIMP_TAC[IN_IMAGE; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THENL | |
[ASM_SIMP_TAC[GSYM PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF]; | |
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE_PROPFLIP_DIFF] THEN | |
REWRITE_TAC[TAUT `~(~(a <=> b) <=> b) <=> a`] THEN | |
CONV_TAC(ONCE_DEPTH_CONV ETA_CONV)] THEN | |
ASM_MESON_TAC[IN_IMAGE]);; | |
let PSEMRESPROOF_MONO = prove | |
(`!w hyps1 hyps2 c. | |
psemresproof w hyps1 c /\ hyps1 SUBSET hyps2 | |
==> psemresproof w hyps2 c`, | |
GEN_TAC THEN GEN_TAC THEN GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC psemresproof_INDUCT THEN | |
MESON_TAC[psemresproof_RULES; SUBSET]);; | |
let PROPFLIP_INVOLUTE_CLAUSE = prove | |
(`!w cl. clause cl ==> (IMAGE (propflip w) (IMAGE (propflip w) cl) = cl)`, | |
REWRITE_TAC[clause] THEN REPEAT STRIP_TAC THEN | |
GEN_REWRITE_TAC I [EXTENSION] THEN REWRITE_TAC[IN_IMAGE] THEN | |
ASM_MESON_TAC[PROPFLIP_INVOLUTE]);; | |
let PSEMRESPROOF_REFUTATION_COMPLETE = prove | |
(`!hyps w. (!cl. cl IN hyps ==> clause cl) /\ | |
~(psatisfiable {interp cl | cl IN hyps}) | |
==> psemresproof w hyps {}`, | |
let lemma = prove | |
(`{interp cl | cl IN hyps} = IMAGE interp hyps`, | |
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN MESON_TAC[]) in | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[lemma] THEN | |
ASM_SIMP_TAC[GSYM PSATISFIABLE_CLAUSES_PROPFLIP] THEN | |
REWRITE_TAC[IMAGE_o; GSYM lemma] THEN | |
SUBGOAL_THEN `!cl. cl IN IMAGE (IMAGE (propflip w)) hyps ==> clause cl` | |
MP_TAC THENL | |
[ASM_SIMP_TAC[CLAUSE_IMAGE_PROPFLIP; IN_IMAGE; LEFT_IMP_EXISTS_THM]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[TAUT `a ==> b ==> c <=> a /\ b ==> a ==> c`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP PPOSRESPROOF_REFUTATION_COMPLETE) THEN | |
ONCE_REWRITE_TAC[TAUT `b ==> a ==> c <=> a /\ b ==> c`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP] | |
PPOSRESPROOF_PSEMRESPROOF)) THEN | |
DISCH_THEN(MP_TAC o SPEC `w:form->bool`) THEN REWRITE_TAC[IMAGE_CLAUSES] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] | |
PSEMRESPROOF_MONO) THEN | |
SIMP_TAC[SUBSET; IN_IMAGE; LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN | |
ASM_MESON_TAC[PROPFLIP_INVOLUTE_CLAUSE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lifting positive resolution to first order level. *) | |
(* ------------------------------------------------------------------------- *) | |
let posresproof_RULES,posresproof_INDUCT,posresproof_CASES = | |
new_inductive_definition | |
`(!cl. cl IN hyps ==> posresproof hyps cl) /\ | |
(!cl1 cl2 cl2' ps1 ps2 i. | |
posresproof hyps cl1 /\ posresproof hyps cl2 /\ | |
(allpositive cl1 \/ allpositive cl2) /\ | |
(IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ | |
ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ | |
(?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ | |
(mgu (ps1 UNION {~~p | p IN ps2}) = i) | |
==> posresproof hyps | |
(IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; | |
let POSRESPROOF_CLAUSE = prove | |
(`(!cl. cl IN hyps ==> clause cl) | |
==> !cl. posresproof hyps cl ==> clause cl`, | |
let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in | |
DISCH_TAC THEN MATCH_MP_TAC posresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN | |
EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; | |
let ALLPOSITIVE_INSTANCE_OF = prove | |
(`!cl1 cl2. cl1 instance_of cl2 /\ allpositive cl1 ==> allpositive cl2`, | |
REWRITE_TAC[allpositive; instance_of] THEN REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[] THEN MESON_TAC[positive; NEGATIVE_FORMSUBST; IN_IMAGE]);; | |
let POSRESOLUTION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). | |
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ | |
M satisfies (IMAGE interp hyps)) | |
==> posresproof hyps {}`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`~(psatisfiable | |
{interp cl | | |
cl IN {IMAGE(formsubst v) cl | v,cl | cl IN hyps}})` | |
MP_TAC THENL | |
[REWRITE_TAC[psatisfiable] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC th THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN | |
REWRITE_TAC[psatisfies] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] | |
PPOSRESPROOF_REFUTATION_COMPLETE)) THEN | |
ANTS_TAC THENL | |
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!cl0. pposresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps} cl0 | |
==> ?cl. posresproof hyps cl /\ cl0 instance_of cl` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN | |
MESON_TAC[INSTANCE_OF_EMPTY]] THEN | |
MATCH_MP_TAC pposresproof_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN | |
MESON_TAC[posresproof_RULES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) | |
MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) | |
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN | |
MP_TAC(SPECL | |
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; | |
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] | |
LIFTING_LEMMA) THEN | |
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN | |
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; POSRESPROOF_CLAUSE]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[renaming] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN | |
ANTS_TAC THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[POSRESPROOF_CLAUSE]; | |
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; POSRESPROOF_CLAUSE]; | |
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN | |
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN | |
EXISTS_TAC `termsubst k o (j:num->term)` THEN | |
SUBGOAL_THEN | |
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` | |
MP_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; | |
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN | |
ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` | |
MP_TAC)) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN | |
REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; FINITE_SUBSET]; | |
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[POSRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; | |
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL posresproof_RULES)) THEN | |
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[ALLPOSITIVE_INSTANCE_OF]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lift semantic resolution to first order level as well. *) | |
(* ------------------------------------------------------------------------- *) | |
let semresproof_RULES,semresproof_INDUCT,semresproof_CASES = | |
new_inductive_definition | |
`(!cl. cl IN hyps ==> semresproof M hyps cl) /\ | |
(!cl1 cl2 cl2' ps1 ps2 i. | |
semresproof M hyps cl1 /\ semresproof M hyps cl2 /\ | |
(~(!v:num->A. holds M v (interp cl1)) \/ | |
~(!v:num->A. holds M v (interp cl2))) /\ | |
(IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ | |
ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ | |
(?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ | |
(mgu (ps1 UNION {~~p | p IN ps2}) = i) | |
==> semresproof M hyps | |
(IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; | |
let SEMRESPROOF_CLAUSE = prove | |
(`(!c. c IN hyps ==> clause c) ==> (!c. semresproof M hyps c ==> clause c)`, | |
let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in | |
DISCH_TAC THEN MATCH_MP_TAC semresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN | |
EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; | |
let QFREE_HOLDS_PHOLDS = prove | |
(`!p. qfree(p) ==> (holds M v p <=> pholds (holds M v) p)`, | |
MATCH_MP_TAC form_INDUCTION THEN SIMP_TAC[HOLDS; PHOLDS; qfree]);; | |
let LIFTING_FALSIFY = prove | |
(`!p M w. qfree(p) /\ (!v. holds M v p) | |
==> pholds (holds M w) (formsubst i p)`, | |
SIMP_TAC[GSYM QFREE_HOLDS_PHOLDS; QFREE_FORMSUBST; HOLDS_FORMSUBST]);; | |
let LIFTING_FALSITY_CLAUSE = prove | |
(`clause A /\ (!v:num->A. holds M v (interp A)) /\ A' instance_of A | |
==> pholds (holds M w) (interp A')`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [instance_of]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `i:num->term` SUBST1_TAC) THEN | |
SUBGOAL_THEN `pholds (holds M (w:num->A)) (formsubst i (interp A))` | |
MP_TAC THENL [ASM_MESON_TAC[LIFTING_FALSIFY; QFREE_INTERP]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; IMAGE_FORMSUBST_CLAUSE; FINITE_IMAGE; | |
CLAUSE_FINITE; PHOLDS_FORMSUBST; QFREE_INTERP] THEN | |
ASM_MESON_TAC[IN_IMAGE; clause; QFREE_LITERAL; PHOLDS_FORMSUBST]);; | |
let SEMRESOLUTION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). | |
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ | |
M satisfies (IMAGE interp hyps)) | |
==> !M:(A->bool)#(num->A list->A)#(num->A list->bool). | |
semresproof M hyps {}`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`~(psatisfiable | |
{interp cl | | |
cl IN {IMAGE(formsubst v) cl | v,cl | | |
cl IN hyps /\ | |
(!x. v(x) IN herbase (functions (IMAGE interp hyps)))}})` | |
MP_TAC THENL | |
[REWRITE_TAC[psatisfiable] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC th THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN | |
REWRITE_TAC[psatisfies] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] | |
PSEMRESPROOF_REFUTATION_COMPLETE)) THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL | |
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o SPEC `holds M (@x:num->A. T)`) THEN | |
ABBREV_TAC `w = @x:num->A. T` THEN | |
ABBREV_TAC | |
`ghyps = {IMAGE(formsubst v) cl | v,cl | | |
cl IN hyps /\ | |
(!x. v(x) IN herbase (functions (IMAGE interp hyps)))}` THEN | |
SUBGOAL_THEN | |
`!cl0. psemresproof (holds M (w:num->A)) ghyps cl0 | |
==> ?cl. semresproof M hyps cl /\ cl0 instance_of cl` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN | |
MESON_TAC[INSTANCE_OF_EMPTY]] THEN | |
MATCH_MP_TAC psemresproof_INDUCT THEN CONJ_TAC THENL | |
[EXPAND_TAC "ghyps" THEN | |
REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN | |
MESON_TAC[semresproof_RULES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC) | |
MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `B:form->bool` STRIP_ASSUME_TAC) | |
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN | |
MP_TAC(SPECL | |
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; | |
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] | |
LIFTING_LEMMA) THEN | |
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN | |
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; SEMRESPROOF_CLAUSE]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[renaming] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN | |
ANTS_TAC THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMRESPROOF_CLAUSE]; | |
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SEMRESPROOF_CLAUSE]; | |
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; | |
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN | |
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN | |
EXISTS_TAC `termsubst k o (j:num->term)` THEN | |
SUBGOAL_THEN | |
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` | |
MP_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; | |
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN | |
ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` | |
MP_TAC)) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN | |
REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; FINITE_SUBSET]; | |
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[SEMRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET; | |
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL semresproof_RULES)) THEN | |
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[SEMRESPROOF_CLAUSE; LIFTING_FALSITY_CLAUSE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* More refined variant based on genuine models and valuations. *) | |
(* ------------------------------------------------------------------------- *) | |
let semresproof2_RULES,semresproof2_INDUCT,semresproof2_CASES = | |
new_inductive_definition | |
`(!cl. cl IN hyps ==> semresproof2 M hyps cl) /\ | |
(!cl1 cl2 cl2' ps1 ps2 i. | |
semresproof2 M hyps cl1 /\ semresproof2 M hyps cl2 /\ | |
(~(!v:num->A. valuation M v ==> holds M v (interp cl1)) \/ | |
~(!v:num->A. valuation M v ==> holds M v (interp cl2))) /\ | |
(IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\ | |
ps1 SUBSET cl1 /\ ps2 SUBSET cl2' /\ ~(ps1 = {}) /\ ~(ps2 = {}) /\ | |
(?i. Unifies i (ps1 UNION {~~p | p IN ps2})) /\ | |
(mgu (ps1 UNION {~~p | p IN ps2}) = i) | |
==> semresproof2 M hyps | |
(IMAGE (formsubst i) ((cl1 DIFF ps1) UNION (cl2' DIFF ps2))))`;; | |
let SEMRESPROOF2_CLAUSE = prove | |
(`(!c. c IN hyps ==> clause c) ==> (!c. semresproof2 M hyps c ==> clause c)`, | |
let lemma = prove (`s DIFF t SUBSET s`,SET_TAC[]) in | |
DISCH_TAC THEN MATCH_MP_TAC semresproof2_INDUCT THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[clause; IMAGE_UNION; FINITE_UNION] THEN | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[clause; FINITE_IMAGE; lemma; FINITE_SUBSET]; ALL_TAC] THEN | |
EXPAND_TAC "cl2'" THEN REWRITE_TAC[IN_IMAGE; IN_UNION; IN_DIFF] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[FORMSUBST_LITERAL]);; | |
let QFREE_HOLDS_PHOLDS = prove | |
(`!p. qfree(p) ==> (holds M v p <=> pholds (holds M v) p)`, | |
MATCH_MP_TAC form_INDUCTION THEN SIMP_TAC[HOLDS; PHOLDS; qfree]);; | |
let LIFTING_FALSIFY = prove | |
(`!p M w. qfree(p) /\ | |
(!v. valuation M v ==> holds M v p) /\ | |
(!x f l. (f,LENGTH l) IN functions_term(i x) /\ | |
ALL (\a. a IN Dom(M)) l | |
==> Fun M f l IN Dom(M)) | |
==> !w. valuation M w ==> pholds (holds M w) (formsubst i p)`, | |
SIMP_TAC[GSYM QFREE_HOLDS_PHOLDS; QFREE_FORMSUBST; HOLDS_FORMSUBST] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[valuation; o_THM] THEN X_GEN_TAC `v:num` THEN | |
MATCH_MP_TAC INTERPRETATION_TERMVAL THEN ASM_REWRITE_TAC[] THEN | |
ASM_REWRITE_TAC[interpretation]);; | |
let LIFTING_FALSITY_CLAUSE = prove | |
(`clause A /\ (A' = IMAGE (formsubst i) A) /\ | |
(!v:num->A. valuation M v ==> holds M v (interp A)) /\ | |
(!x f l. (f,LENGTH l) IN functions_term(i x) /\ | |
ALL (\a. a IN Dom(M)) l | |
==> Fun M f l IN Dom(M)) | |
==> !w. valuation M w ==> pholds (holds M w) (interp A')`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `pholds (holds M (w:num->A)) (formsubst i (interp A))` | |
MP_TAC THENL | |
[UNDISCH_TAC `valuation M (w:num->A)` THEN | |
SPEC_TAC(`w:num->A`,`w:num->A`) THEN | |
MATCH_MP_TAC LIFTING_FALSIFY THEN ASM_REWRITE_TAC[] THEN | |
ASM_SIMP_TAC[QFREE_INTERP]; ALL_TAC] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP; IMAGE_FORMSUBST_CLAUSE; FINITE_IMAGE; | |
CLAUSE_FINITE; PHOLDS_FORMSUBST; QFREE_INTERP] THEN | |
ASM_MESON_TAC[IN_IMAGE; clause; QFREE_LITERAL; PHOLDS_FORMSUBST]);; | |
let FUNCTIONS_FORM_INTERP = prove | |
(`!s. FINITE s ==> (functions_form(interp s) = functions s)`, | |
REWRITE_TAC[interp] THEN | |
SUBGOAL_THEN | |
`!l. functions_form(ITLIST (||) l False) = functions(set_of_list l)` | |
(fun th -> MESON_TAC[SET_OF_LIST_OF_SET; th]) THEN | |
LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ITLIST; And_DEF; Or_DEF; Not_DEF; | |
functions_form; set_of_list] THENL | |
[REWRITE_TAC[functions; NOT_IN_EMPTY; EXTENSION; IN_ELIM_THM; IN_UNIONS]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[functions; IN_INSERT; EXTENSION; IN_ELIM_THM; IN_UNIONS; | |
IN_UNION] THEN | |
MESON_TAC[]);; | |
let FUNCTIONS_IMAGE_INTERP = prove | |
(`!s. (!c. c IN s ==> FINITE(c)) | |
==> (functions (IMAGE interp s) = UNIONS {functions p | p IN s})`, | |
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN | |
REWRITE_TAC[functions_form; functions; IN_UNIONS; | |
IN_ELIM_THM; IN_IMAGE] THEN | |
GEN_REWRITE_TAC I [FORALL_PAIR_THM] THEN | |
ONCE_REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ c <=> b /\ a /\ c`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[UNWIND_THM2; GSYM CONJ_ASSOC] THEN | |
REWRITE_TAC[GSYM functions] THEN | |
ASM_MESON_TAC[FUNCTIONS_FORM_INTERP]);; | |
let FUNCTIONS_RESOLVE = prove | |
(`functions(resolve p cl1 cl2) SUBSET (functions cl1 UNION functions cl2)`, | |
REWRITE_TAC[SUBSET; functions; IN_UNION; resolve; IN_DIFF; IN_UNION; | |
IN_UNIONS; IN_ELIM_THM; IN_DELETE] THEN | |
MESON_TAC[]);; | |
let PSEMRESPROOF_FUNCTIONS = prove | |
(`(!c. c IN hyps ==> clause c) | |
==> !c. psemresproof M hyps c | |
==> functions c SUBSET functions(IMAGE interp hyps)`, | |
DISCH_TAC THEN | |
MATCH_MP_TAC psemresproof_INDUCT THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_SIMP_TAC[FUNCTIONS_IMAGE_INTERP; | |
PSEMRESPROOF_CLAUSE; CLAUSE_FINITE] THEN | |
REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `functions cl1 UNION functions cl2` THEN | |
REWRITE_TAC[FUNCTIONS_RESOLVE] THEN ASM_MESON_TAC[SUBSET; IN_UNION]);; | |
let FUNCTIONS_TERM_NOCONSTANTS = prove | |
(`!t. ~(?c. c,0 IN functions_term t) ==> ~(FVT t = {})`, | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[functions_term; NOT_IN_EMPTY; FVT] THEN CONJ_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL; LENGTH; IN_INSERT; MAP; LIST_UNION] THENL | |
[MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[IN_UNION; EMPTY_UNION] THEN MESON_TAC[]);; | |
let HERBASE = prove | |
(`!t. t IN herbase fns <=> | |
functions_term t SUBSET fns /\ | |
(FVT(t) = if ?c. c,0 IN fns then {} else {0})`, | |
GEN_TAC THEN EQ_TAC THEN SPEC_TAC(`t:term`,`t:term`) THENL | |
[GEN_REWRITE_TAC (BINDER_CONV o LAND_CONV) [IN] THEN | |
MATCH_MP_TAC herbase_INDUCT THEN | |
SIMP_TAC[FVT; functions_term; EMPTY_SUBSET] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `tms:term list`] THEN STRIP_TAC THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_INSERT; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN | |
ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `y:num` THEN | |
REWRITE_TAC[IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM; GSYM CONJ_ASSOC] THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ a /\ b`] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[TAUT `a /\ b <=> ~(b ==> ~a)`] THEN | |
ASM_SIMP_TAC[] THEN REWRITE_TAC[NOT_IMP] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[NOT_IN_EMPTY] THEN | |
SUBGOAL_THEN `~(tms:term list = [])` | |
(fun th -> ASM_MESON_TAC[th; list_CASES; MEM; LENGTH_EQ_NIL]) THEN | |
ASM_MESON_TAC[LENGTH]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL | |
[REWRITE_TAC[functions_term; EMPTY_SUBSET; FVT] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[IN; herbase_RULES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`f:num`; `tms:term list`] THEN | |
REWRITE_TAC[GSYM ALL_MEM] THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[IN] THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL herbase_RULES)) THEN | |
UNDISCH_TAC `functions_term (Fn f tms) SUBSET fns` THEN | |
REWRITE_TAC[SUBSET; functions_term; IN_INSERT; IN_LIST_UNION] THEN | |
SIMP_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`; | |
FORALL_AND_THM] THEN | |
MATCH_MP_TAC(TAUT `(a ==> a') /\ (b ==> b') ==> a /\ b ==> a' /\ b'`) THEN | |
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM ALL_MEM; GSYM EX_MEM; MEM_MAP] THEN | |
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [SWAP_FORALL_THM] THEN | |
GEN_REWRITE_TAC LAND_CONV [SWAP_FORALL_THM] THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `t:term` THEN | |
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> c ==> a /\ b ==> d`] THEN | |
SIMP_TAC[] THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `functions_term t`) THEN REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [GSYM IN] THEN | |
FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[TAUT | |
`a ==> b ==> c <=> a /\ b ==> c`]) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[SUBSET; IN]; ALL_TAC] THEN | |
UNDISCH_TAC `FVT(Fn f tms) = (if ?c:num. c,0 IN fns then {} else {0})` THEN | |
REWRITE_TAC[FVT] THEN COND_CASES_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_LIST_UNION; MEM_MAP; NOT_IN_EMPTY; | |
GSYM EX_MEM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `~(FVT t = {})` MP_TAC THENL | |
[ASM_MESON_TAC[FUNCTIONS_TERM_NOCONSTANTS]; ALL_TAC] THEN | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_SING] THEN | |
REWRITE_TAC[IN_LIST_UNION; MEM_MAP; NOT_IN_EMPTY; | |
GSYM EX_MEM] THEN ASM_MESON_TAC[]);; | |
let HERBASE_LEMMA = prove | |
(`functions_form q SUBSET fns /\ | |
(!v. i(v) IN herbase fns) /\ | |
~(j(x) IN herbase fns) /\ | |
x IN FV(p) | |
==> ~(formsubst j p = formsubst i q)`, | |
REWRITE_TAC[HERBASE] THEN | |
REWRITE_TAC[DE_MORGAN_THM] THEN REPEAT STRIP_TAC THENL | |
[SUBGOAL_THEN `functions_form(formsubst i q) SUBSET fns /\ | |
~(functions_form(formsubst j p) SUBSET fns)` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
UNDISCH_TAC `~(functions_term (j(x:num)) SUBSET fns)` THEN | |
REWRITE_TAC[SUBSET] THEN REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `fn:num#num` THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `?y. y IN FVT(j(x:num)) /\ !z:num. ~(y IN FVT(i z))` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `~(FV(formsubst j p) = FV(formsubst i q))` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
REWRITE_TAC[EXTENSION; NOT_FORALL_THM; IN_ELIM_THM; FORMSUBST_FV] THEN | |
ASM_MESON_TAC[]] THEN | |
ASM_REWRITE_TAC[] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[UNDISCH_TAC | |
`~(FVT(j(x:num)) = (if ?c:num. c,0 IN fns then {} else {0}))` THEN | |
ASM_REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
UNDISCH_TAC | |
`~(FVT(j(x:num)) = (if ?c:num. c,0 IN fns then {} else {0}))` THEN | |
ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `~(FVT(j(x:num)) = {})` MP_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_SING] THEN MESON_TAC[]] THEN | |
MATCH_MP_TAC FUNCTIONS_TERM_NOCONSTANTS THEN | |
SUBGOAL_THEN `functions_term(j(x:num)) SUBSET fns` | |
(fun th -> ASM_MESON_TAC[th; SUBSET]) THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `functions_form(formsubst j p)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN | |
REWRITE_TAC[SUBSET; IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM; SUBSET] THEN | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN ASM_MESON_TAC[SUBSET]);; | |
let SEMRESOLUTION_COMPLETE = prove | |
(`(!cl. cl IN hyps ==> clause cl) /\ | |
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool). | |
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\ | |
M satisfies (IMAGE interp hyps)) | |
==> !M:(A->bool)#(num->A list->A)#(num->A list->bool). | |
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) | |
==> semresproof2 M hyps {}`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN | |
`~(psatisfiable | |
{interp cl | | |
cl IN {IMAGE(formsubst v) cl | v,cl | | |
cl IN hyps /\ | |
(!x. v(x) IN herbase (functions (IMAGE interp hyps)))}})` | |
MP_TAC THENL | |
[REWRITE_TAC[psatisfiable] THEN | |
FIRST_X_ASSUM(fun th -> MP_TAC th THEN | |
MATCH_MP_TAC(TAUT `(b ==> a) ==> ~a ==> ~b`)) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN | |
REWRITE_TAC[psatisfies] THEN | |
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM; IN_IMAGE] THEN | |
ASM_SIMP_TAC[PHOLDS_INTERP_IMAGE] THEN MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] | |
PSEMRESPROOF_REFUTATION_COMPLETE)) THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN ANTS_TAC THENL | |
[SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN | |
ASM_SIMP_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN | |
FIRST_ASSUM(X_CHOOSE_TAC `w:num->A` o MATCH_MP VALUATION_EXISTS) THEN | |
DISCH_THEN(MP_TAC o SPEC `holds M (w:num->A)`) THEN | |
ABBREV_TAC | |
`ghyps = {IMAGE(formsubst v) cl | v,cl | | |
cl IN hyps /\ | |
(!x. v(x) IN herbase (functions (IMAGE interp hyps)))}` THEN | |
SUBGOAL_THEN | |
`!cl0. psemresproof (holds M (w:num->A)) ghyps cl0 | |
==> ?cl. semresproof2 M hyps cl /\ | |
?i. (!x. i(x) IN herbase(functions(IMAGE interp hyps))) /\ | |
(cl0 = IMAGE (formsubst i) cl)` | |
MP_TAC THENL | |
[ALL_TAC; | |
DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN | |
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN | |
MESON_TAC[INSTANCE_OF_EMPTY; instance_of]] THEN | |
ONCE_REWRITE_TAC[TAUT `a ==> b <=> a ==> a /\ b`] THEN | |
MATCH_MP_TAC psemresproof_INDUCT THEN CONJ_TAC THENL | |
[SIMP_TAC[CONJUNCT1(SPEC_ALL psemresproof_RULES)] THEN | |
EXPAND_TAC "ghyps" THEN | |
REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN | |
MESON_TAC[semresproof2_RULES]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`p:form`; `A':form->bool`; `B':form->bool`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC | |
(X_CHOOSE_THEN `A:form->bool` MP_TAC)) MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (CONJUNCTS_THEN2 ASSUME_TAC | |
(X_CHOOSE_THEN `B:form->bool` MP_TAC)) MP_TAC) THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `k1:num->term` (STRIP_ASSUME_TAC o GSYM)) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `k2:num->term` (STRIP_ASSUME_TAC o GSYM)) THEN | |
CONJ_TAC THENL [ASM_SIMP_TAC[psemresproof_RULES]; ALL_TAC] THEN | |
MP_TAC(SPECL | |
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`; | |
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`] | |
LIFTING_LEMMA) THEN | |
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN | |
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN | |
ANTS_TAC THENL | |
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; SEMRESPROOF2_CLAUSE]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[renaming] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN | |
ANTS_TAC THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMRESPROOF2_CLAUSE]; | |
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SEMRESPROOF2_CLAUSE]; | |
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[instance_of]; | |
SUBGOAL_THEN `B' instance_of B` MP_TAC THENL | |
[ASM_MESON_TAC[instance_of]; ALL_TAC] THEN | |
REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN | |
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN | |
EXISTS_TAC `termsubst k o (j:num->term)` THEN | |
SUBGOAL_THEN | |
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))` | |
MP_TAC THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM]; | |
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN | |
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN | |
ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool` | |
MP_TAC)) THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN | |
REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; FINITE_SUBSET]; | |
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE]; | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[SEMRESPROOF2_CLAUSE; clause; QFREE_LITERAL; SUBSET; | |
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]]; | |
ALL_TAC] THEN | |
DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(CONJUNCT2(SPEC_ALL semresproof2_RULES)) THEN | |
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_disj o concl) THEN | |
MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN | |
UNDISCH_TAC `valuation M (w:num->A)` THEN | |
MATCH_MP_TAC(TAUT | |
`(d ==> a ==> b) /\ (e ==> a ==> c) | |
==> a ==> ~b \/ ~c ==> ~d \/ ~e`) THEN | |
CONJ_TAC THEN DISCH_TAC THEN SPEC_TAC(`w:num->A`,`w:num->A`) THEN | |
MATCH_MP_TAC(GEN_ALL LIFTING_FALSITY_CLAUSE) THENL | |
[MAP_EVERY EXISTS_TAC [`A:form->bool`; `k2:num->term`]; | |
MAP_EVERY EXISTS_TAC [`B:form->bool`; `k1:num->term`]] THEN | |
(ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[SEMRESPROOF2_CLAUSE]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation] o | |
REWRITE_RULE[language]) THEN | |
ASM_REWRITE_TAC[]) | |
THENL | |
[UNDISCH_TAC `f,LENGTH(l:A list) IN functions_term (k2(x:num))`; | |
UNDISCH_TAC `f,LENGTH(l:A list) IN functions_term (k1(x:num))`] THEN | |
SPEC_TAC(`f:num,LENGTH(l:A list)`,`fn:num#num`) THEN | |
REWRITE_TAC[GSYM SUBSET] THEN MATCH_MP_TAC HERBASE_FUNCTIONS THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
UNDISCH_TAC | |
`resolve p A' B' instance_of | |
IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1}))) | |
(A DIFF A1 UNION C DIFF B1)` THEN | |
REWRITE_TAC[instance_of] THEN | |
DISCH_THEN(X_CHOOSE_TAC `i:num->term`) THEN | |
ABBREV_TAC `D = IMAGE (formsubst (mgu (A1 UNION {~~ l | l IN B1}))) | |
(A DIFF A1 UNION C DIFF B1)` THEN | |
ABBREV_TAC | |
`i' = \x:num. if i(x) IN herbase (functions (IMAGE interp hyps)) | |
then i(x) | |
else @x. x IN herbase (functions (IMAGE interp hyps))` THEN | |
EXISTS_TAC `i':num->term` THEN CONJ_TAC THENL | |
[GEN_TAC THEN EXPAND_TAC "i'" THEN REWRITE_TAC[] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[] THEN CONV_TAC SELECT_CONV THEN | |
REWRITE_TAC[HERBASE_NONEMPTY]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!p x. p IN D /\ x IN FV(p) ==> (i'(x):term = i(x))` | |
MP_TAC THENL | |
[ALL_TAC; | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[EXTENSION; IN_IMAGE] THEN | |
MESON_TAC[FORMSUBST_VALUATION]] THEN | |
SUBGOAL_THEN `!p x. p IN D /\ x IN FV(p) | |
==> i(x) IN herbase(functions (IMAGE interp hyps))` | |
MP_TAC THENL | |
[ALL_TAC; | |
EXPAND_TAC "i'" THEN SIMP_TAC[] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[] THEN | |
ASM_MESON_TAC[]] THEN | |
SUBGOAL_THEN | |
`!p. p IN D ==> ?v q. (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ | |
functions_form q SUBSET | |
functions(IMAGE interp hyps) /\ | |
(formsubst i p = formsubst v q)` | |
(fun th -> ASM_MESON_TAC[th; HERBASE_LEMMA]) THEN | |
SUBGOAL_THEN | |
`!p. p IN D ==> functions_form(formsubst i p) SUBSET | |
functions(IMAGE interp ghyps) /\ | |
?v q. (!x. v x IN herbase(functions(IMAGE interp hyps))) /\ | |
(formsubst i p = formsubst v q)` | |
MP_TAC THENL | |
[X_GEN_TAC `q:form` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `(formsubst i q) IN resolve p A' B'` ASSUME_TAC THENL | |
[ASM_MESON_TAC[EXTENSION; IN_IMAGE]; ALL_TAC] THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
UNDISCH_TAC `(formsubst i q) IN resolve p A' B'` THEN | |
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN | |
MAP_EVERY EXPAND_TAC ["A'"; "B'"] THEN ASM_MESON_TAC[IN_IMAGE]] THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `functions(resolve p A' B')` THEN CONJ_TAC THENL | |
[REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `psemresproof (holds M (w:num->A)) ghyps (resolve p A' B')` | |
MP_TAC THENL | |
[MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psemresproof_RULES)) THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
SPEC_TAC(`resolve p A' B'`,`cl:form->bool`) THEN | |
MATCH_MP_TAC PSEMRESPROOF_FUNCTIONS THEN | |
EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE]; ALL_TAC] THEN | |
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `q:form` THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (X_CHOOSE_THEN `ii:num->term` MP_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `r:form` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN | |
MAP_EVERY EXISTS_TAC [`ii:num->term`; `r:form`] THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `functions_form(formsubst i q)` THEN CONJ_TAC THENL | |
[ASM_REWRITE_TAC[] THEN REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN | |
SIMP_TAC[SUBSET; IN_UNION]; ALL_TAC] THEN | |
MATCH_MP_TAC SUBSET_TRANS THEN | |
EXISTS_TAC `functions(IMAGE interp ghyps)` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN | |
`functions(IMAGE interp ghyps) = UNIONS {functions p | p IN ghyps}` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC FUNCTIONS_IMAGE_INTERP THEN | |
ASM_SIMP_TAC[CLAUSE_FINITE] THEN EXPAND_TAC "ghyps" THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[FINITE_IMAGE; CLAUSE_FINITE]; ALL_TAC] THEN | |
REWRITE_TAC[SUBSET; IN_UNIONS; IN_ELIM_THM] THEN | |
X_GEN_TAC `fn:num#num` THEN | |
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `cl:form->bool` | |
(CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC)) THEN | |
EXPAND_TAC "ghyps" THEN REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN | |
DISCH_THEN(X_CHOOSE_THEN `vv:num->term` MP_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `c:form->bool` MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC SUBST_ALL_TAC) THEN | |
UNDISCH_TAC `fn IN functions (IMAGE (formsubst vv) c)` THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [functions] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_IMAGE] THEN | |
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC ASSUME_TAC)) THEN | |
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 MP_TAC SUBST_ALL_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `s:form` | |
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN | |
UNDISCH_TAC `fn IN functions_form (formsubst vv s)` THEN | |
REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL | |
[ASM_SIMP_TAC[FUNCTIONS_IMAGE_INTERP; CLAUSE_FINITE] THEN | |
REWRITE_TAC[IN_UNIONS; functions; IN_ELIM_THM] THEN | |
EXISTS_TAC `UNIONS {functions_form f | f IN c}` THEN | |
CONJ_TAC THENL | |
[EXISTS_TAC `c:form->bool` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM] THEN ASM_MESON_TAC[]; | |
ALL_TAC] THEN | |
ASM_MESON_TAC[HERBASE_FUNCTIONS; SUBSET]);; | |