Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
45.8 kB
(* ========================================================================= *)
(* Set-of-support resolution. *)
(* ========================================================================= *)
let NEGATE_LITERAL = prove
(`!q. literal q ==> literal(~~q)`,
REWRITE_TAC[literal; ATOM] THEN REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[ATOM; NEGATE_ATOM; NEGATE_NEG]);;
let RESOLVE_CLAUSE = prove
(`!c1 c2 p. clause c1 /\ clause c2 ==> clause(resolve p c1 c2)`,
REWRITE_TAC[clause; resolve; FINITE_UNION; IN_UNION; IN_DELETE] THEN
MESON_TAC[DELETE_SUBSET; FINITE_SUBSET]);;
let PRESPROOF_CLAUSE = prove
(`!hyps cl. (!c. c IN hyps ==> clause c) /\ presproof hyps cl ==> clause cl`,
REWRITE_TAC[IMP_CONJ] THEN
GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC presproof_INDUCT THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);;
let RESOLVE_MONO = prove
(`!c1 c2 c1' c2' p.
c1 SUBSET c1' /\ c2 SUBSET c2'
==> (resolve p c1 c2) SUBSET (resolve p c1' c2')`,
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Resolution where one argument is a tautology. *)
(* ------------------------------------------------------------------------- *)
let RESOLVE_SYM = prove
(`!c1 c2 p. literal p ==> (resolve (~~p) c1 c2 = resolve p c2 c1)`,
SIMP_TAC[resolve; NEGATE_NEGATE; UNION_ACI]);;
let RESOLVE_TAUT_L = prove
(`!c1 c2 p. clause c1 /\ tautologous c1
==> tautologous(resolve p c1 c2) \/ c2 SUBSET (resolve p c1 c2)`,
REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
[FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;
let RESOLVE_TAUT_R = prove
(`!c1 c2 p. clause c2 /\ tautologous c2 /\ literal p
==> tautologous(resolve p c1 c2) \/ c1 SUBSET (resolve p c1 c2)`,
REWRITE_TAC[tautologous; SUBSET; resolve; IN_DELETE; IN_UNION; clause] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `q:form` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `(p = q) \/ (p = ~~q)` THENL
[FIRST_X_ASSUM(DISJ_CASES_THEN SUBST_ALL_TAC); ALL_TAC] THEN
ASM_MESON_TAC[NEGATE_REFL; NEGATE_NEGATE]);;
let SUBSET_TAUT = prove
(`!c1 c2. tautologous c1 /\ c1 SUBSET c2 ==> tautologous c2`,
REWRITE_TAC[tautologous; SUBSET] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* We need induction on size of proof; hence incorporate sizes. *)
(* ------------------------------------------------------------------------- *)
let npresproof_RULES,npresproof_INDUCT,npresproof_CASES =
new_inductive_definition
`(!cl. cl IN hyps ==> npresproof hyps cl 1) /\
(!p n1 n2 cl1 cl2.
npresproof hyps cl1 n1 /\
npresproof hyps cl2 n2 /\
p IN cl1 /\
~~ p IN cl2
==> npresproof hyps (resolve p cl1 cl2) (n1 + n2 + 1))`;;
let NPRESPROOF = prove
(`!hyps cl. presproof hyps cl <=> ?n. npresproof hyps cl n`,
GEN_TAC THEN REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN
REWRITE_TAC[FORALL_AND_THM; LEFT_IMP_EXISTS_THM] THEN CONJ_TAC THENL
[MATCH_MP_TAC presproof_INDUCT THEN MESON_TAC[npresproof_RULES];
MATCH_MP_TAC npresproof_INDUCT THEN MESON_TAC[presproof_RULES]]);;
let NPRESPROOF_CLAUSE = prove
(`!hyps cl n. (!c. c IN hyps ==> clause c) /\ npresproof hyps cl n
==> clause cl`,
MESON_TAC[NPRESPROOF; PRESPROOF_CLAUSE]);;
(* ------------------------------------------------------------------------- *)
(* Proofs with a given set of support. *)
(* ------------------------------------------------------------------------- *)
let psresproof_RULES,psresproof_INDUCT,psresproof_CASES =
new_inductive_definition
`(!c. c IN hyps /\ ~(tautologous c)
==> psresproof hyps sos (c IN sos) c) /\
(!c1 c2 s1 s2 p.
psresproof hyps sos s1 c1 /\
psresproof hyps sos s2 c2 /\
p IN c1 /\ ~~p IN c2 /\ (s1 \/ s2) /\ ~tautologous(resolve p c1 c2)
==> psresproof hyps sos T (resolve p c1 c2))`;;
(* ------------------------------------------------------------------------- *)
(* Transformation theorem. *)
(* ------------------------------------------------------------------------- *)
let PSRESPROOF_CLAUSE = prove
(`!hyps sos. (!c. c IN hyps ==> clause(c))
==> !s cl. psresproof hyps sos s cl ==> clause cl`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC psresproof_INDUCT THEN ASM_SIMP_TAC[RESOLVE_CLAUSE]);;
let SUPPORT_ASYMMETRIC = prove
(`!hyps sos A B C p q nb nc.
(!c. c IN hyps ==> clause c /\ ~tautologous c) /\
~tautologous(resolve p A (resolve q B C)) /\
psresproof hyps sos T A /\
npresproof (hyps DIFF sos) B nb /\
npresproof (hyps DIFF sos) C nc /\
p IN A /\ ~~p IN (resolve q B C) /\ q IN B /\ ~~ q IN C /\
~~p IN B /\ ~(q = ~~p) /\
(!m. m < nb + nc + 1
==> (!c1 c2 p.
psresproof hyps sos T c1 /\
npresproof (hyps DIFF sos) c2 m /\
p IN c1 /\
~~ p IN c2 /\
~tautologous (resolve p c1 c2)
==> (?cl'. cl' SUBSET resolve p c1 c2 /\
(psresproof hyps sos T cl' \/
(?m'. m' < m /\
npresproof (hyps DIFF sos) cl' m')))))
==> ?cl'. cl' SUBSET resolve p A (resolve q B C) /\
(psresproof hyps sos T cl' \/
?m. m < nb + nc + 1 /\ npresproof (hyps DIFF sos) cl' m)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `clause A /\ clause B /\ clause C` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[PSRESPROOF_CLAUSE; NPRESPROOF_CLAUSE; IN_DIFF];
ALL_TAC] THEN
SUBGOAL_THEN `literal p /\ literal q` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
ASM_CASES_TAC `tautologous (resolve q B C)` THENL
[ASM_MESON_TAC[RESOLVE_TAUT_R; RESOLVE_CLAUSE; clause]; ALL_TAC] THEN
ASM_CASES_TAC `p:form = q` THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
SUBGOAL_THEN `(resolve q A C) SUBSET (resolve q A (resolve q B C))`
ASSUME_TAC THENL
[MATCH_MP_TAC RESOLVE_MONO THEN REWRITE_TAC[SUBSET_REFL] THEN
ASM_MESON_TAC[RESOLVE_TAUT_L; tautologous]; ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN
DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `C:form->bool`; `q:form`]) THEN
ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL [ASM_MESON_TAC[SUBSET_TAUT]; ALL_TAC] THEN
ASM_MESON_TAC[SUBSET_TRANS; ARITH_RULE `x < c ==> x < b + c + 1`];
ALL_TAC] THEN
SUBGOAL_THEN
`~(~~p IN C)
==> (resolve q (resolve p A B) C) SUBSET (resolve p A (resolve q B C))`
ASSUME_TAC THENL
[MAP_EVERY UNDISCH_TAC
[`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`;
`q:form IN B`; `~~q IN C`] THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`~~p IN C ==> (resolve p A (resolve q (resolve p A B) C)) SUBSET
(resolve p A (resolve q B C))`
ASSUME_TAC THENL
[MAP_EVERY UNDISCH_TAC
[`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`;
`q:form IN B`; `~~q IN C`] THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`~~p IN C ==> ~~p IN (resolve q (resolve p A B) C)`
ASSUME_TAC THENL
[MAP_EVERY UNDISCH_TAC
[`p:form IN A`; `~~p IN B`; `~~p IN resolve q B C`;
`q:form IN B`; `~~q IN C`; `~(q = ~~ p)`; `~(p:form = q)`] THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE; SUBSET] THEN
ASM_MESON_TAC[NEGATE_NEGATE]; ALL_TAC] THEN
ASM_CASES_TAC `tautologous(resolve q (resolve p A B) C)` THENL
[SUBGOAL_THEN `~~p IN C`
(fun th -> RULE_ASSUM_TAC(REWRITE_RULE[th]) THEN ASSUME_TAC th) THEN
ASM_MESON_TAC[RESOLVE_TAUT_R; SUBSET_TRANS; RESOLVE_CLAUSE; SUBSET_TAUT];
ALL_TAC] THEN
ASM_CASES_TAC `tautologous(resolve p A B)` THENL
[ASM_CASES_TAC `~~p IN C` THENL
[REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN
SUBGOAL_THEN `(resolve p A C) SUBSET (resolve p A (resolve q B C))`
ASSUME_TAC THENL
[ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS;
RESOLVE_TAUT_L; RESOLVE_CLAUSE]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN
DISCH_THEN(MP_TAC o
SPECL [`A:form->bool`; `C:form->bool`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_MESON_TAC[SUBSET_TAUT]; ALL_TAC] THEN
ASM_MESON_TAC[SUBSET_TRANS; ARITH_RULE `x < nc ==> x < nb + nc + 1`];
ALL_TAC] THEN
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN
ASM_MESON_TAC[SUBSET_TRANS; RESOLVE_TAUT_L; RESOLVE_CLAUSE; ARITH_RULE
`nc < nb + nc + 1`];
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o SPEC `nb:num`) THEN
REWRITE_TAC[ARITH_RULE `nb < nb + nc + 1`] THEN
DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `B:form->bool`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `D:form->bool` (CONJUNCTS_THEN ASSUME_TAC)) THEN
ASM_CASES_TAC `q:form IN D` THENL
[ALL_TAC;
EXISTS_TAC `D:form->bool` THEN CONJ_TAC THENL
[MAP_EVERY UNDISCH_TAC
[`D SUBSET resolve p A B`; `~(q:form IN D)`;
`~(~~ p IN C)
==> resolve q (resolve p A B) C SUBSET
resolve p A (resolve q B C)`] THEN
REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN
MESON_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[ARITH_RULE `x < nb ==> x < nb + nc + 1`]] THEN
FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC;
DISCH_THEN(X_CHOOSE_THEN `nd:num` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `~~p IN C` THENL
[REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `nd + nc + 1`) THEN
REWRITE_TAC[LT_ADD_RCANCEL] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o SPECL
[`A:form->bool`; `resolve q D C`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[MATCH_MP_TAC(CONJUNCT2(SPEC_ALL npresproof_RULES)) THEN
ASM_REWRITE_TAC[];
SUBGOAL_THEN `~(~~p = ~~q)` MP_TAC THENL
[ASM_MESON_TAC[NEGATE_NEGATE]; ALL_TAC] THEN
UNDISCH_TAC `~~p IN C` THEN
REWRITE_TAC[resolve; IN_UNION; IN_DELETE] THEN MESON_TAC[];
ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL;
SUBSET_TRANS]];
ALL_TAC] THEN
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS;
ARITH_RULE `d < b /\ m < d + c ==> m < b + c`];
ALL_TAC] THEN
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN
EXISTS_TAC `resolve q D C` THEN CONJ_TAC THENL
[ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN
DISJ2_TAC THEN EXISTS_TAC `nd + nc + 1` THEN
ASM_REWRITE_TAC[LT_ADD_RCANCEL] THEN
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL npresproof_RULES)) THEN
ASM_REWRITE_TAC[]] THEN
DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o C MATCH_MP (ARITH_RULE `nc < nb + nc + 1`)) THEN
DISCH_THEN(MP_TAC o SPECL [`D:form->bool`; `C:form->bool`; `q:form`]) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `E:form->bool` MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (DISJ_CASES_THEN MP_TAC)) THENL
[DISCH_TAC THEN
ASM_CASES_TAC `~~p IN C` THENL
[ALL_TAC;
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o
C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN
EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN
ASM_CASES_TAC `~~p IN E` THENL
[EXISTS_TAC `resolve p A E` THEN CONJ_TAC THENL
[ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]; ALL_TAC] THEN
DISJ1_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN
REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS];
ALL_TAC] THEN
EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `resolve p A E` THEN
CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN
UNDISCH_TAC `~(~~p IN E)` THEN
REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `ne:num` STRIP_ASSUME_TAC) THEN
ASM_CASES_TAC `~~p IN C` THENL
[ALL_TAC;
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~(~~p IN C)`))) THEN
EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS;
ARITH_RULE `ne < nc ==> ne < nb + nc + 1`]] THEN
REPEAT(FIRST_X_ASSUM(ASSUME_TAC o C MATCH_MP (ASSUME `~~p IN C`))) THEN
ASM_CASES_TAC `~~p IN E` THENL
[ALL_TAC;
EXISTS_TAC `E:form->bool` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC SUBSET_TRANS THEN EXISTS_TAC `resolve p A E` THEN
CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS]] THEN
UNDISCH_TAC `~(~~p IN E)` THEN
REWRITE_TAC[resolve; SUBSET; IN_UNION; IN_DELETE] THEN MESON_TAC[];
ALL_TAC] THEN
ASM_MESON_TAC[ARITH_RULE `ne < nc ==> ne < nb + nc + 1`]] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `ne:num`) THEN
ASM_SIMP_TAC[ARITH_RULE `ne < nc ==> ne < nb + nc + 1`] THEN
DISCH_THEN(MP_TAC o SPECL [`A:form->bool`; `E:form->bool`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO; SUBSET_REFL; SUBSET_TRANS;
ARITH_RULE `m < ne /\ ne < nc ==> m < nb + nc + 1`]);;
let SUPPORT_SYMMETRIC = prove
(`!hyps sos A B C p q nb nc.
(!c. c IN hyps ==> clause c /\ ~tautologous c) /\
~tautologous(resolve p A (resolve q B C)) /\
psresproof hyps sos T A /\
npresproof (hyps DIFF sos) B nb /\
npresproof (hyps DIFF sos) C nc /\
p IN A /\ ~~p IN (resolve q B C) /\ q IN B /\ ~~ q IN C /\
(!m. m < nb + nc + 1
==> (!c1 c2 p.
psresproof hyps sos T c1 /\
npresproof (hyps DIFF sos) c2 m /\
p IN c1 /\
~~ p IN c2 /\
~tautologous (resolve p c1 c2)
==> (?cl'. cl' SUBSET resolve p c1 c2 /\
(psresproof hyps sos T cl' \/
(?m'. m' < m /\
npresproof (hyps DIFF sos) cl' m')))))
==> ?cl'. cl' SUBSET resolve p A (resolve q B C) /\
(psresproof hyps sos T cl' \/
?m. m < nb + nc + 1 /\ npresproof (hyps DIFF sos) cl' m)`,
REPEAT STRIP_TAC THEN MP_TAC(ASSUME `~~p IN (resolve q B C)`) THEN
DISCH_THEN(MP_TAC o REWRITE_RULE[resolve; IN_UNION; IN_DELETE]) THEN
STRIP_TAC THENL
[MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`;
`A:form->bool`; `B:form->bool`; `C:form->bool`;
`p:form`; `q:form`; `nb:num`; `nc:num`]
SUPPORT_ASYMMETRIC) THEN
ASM_REWRITE_TAC[];
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`;
`A:form->bool`; `C:form->bool`; `B:form->bool`;
`p:form`; `~~q`; `nc:num`; `nb:num`]
SUPPORT_ASYMMETRIC) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `clause A /\ clause B /\ clause C` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[PSRESPROOF_CLAUSE; NPRESPROOF_CLAUSE; IN_DIFF];
ALL_TAC] THEN
SUBGOAL_THEN `literal q` ASSUME_TAC THENL
[ASM_MESON_TAC[clause]; ALL_TAC] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[ARITH_RULE `a + b + 1 = b + a + 1`] THEN
ASM_SIMP_TAC[RESOLVE_SYM; NEGATE_NEGATE]]);;
let SUPPORT_LEMMA = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c /\ ~tautologous c)
==> !n c1 c2 p.
psresproof hyps sos T c1 /\
npresproof (hyps DIFF sos) c2 n /\
p IN c1 /\ ~~p IN c2 /\
~(tautologous(resolve p c1 c2))
==> ?cl'. cl' SUBSET (resolve p c1 c2) /\
(psresproof hyps sos T cl' \/
?m. m < n /\ npresproof (hyps DIFF sos) cl' m)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC num_WF THEN
X_GEN_TAC `n:num` THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`A:form->bool`; `Z:form->bool`; `p:form`] THEN
STRIP_TAC THEN
MP_TAC(ASSUME `npresproof (hyps DIFF sos) Z n`) THEN
GEN_REWRITE_TAC LAND_CONV [npresproof_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC) THEN
EXISTS_TAC `resolve p A Z` THEN REWRITE_TAC[SUBSET_REFL] THEN
DISJ1_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN
MAP_EVERY EXISTS_TAC [`T`; `F`] THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`]
psresproof_RULES) THEN
DISCH_THEN(MP_TAC o SPEC `Z:form->bool` o CONJUNCT1) THEN
RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF]) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC
[`q:form`; `nb:num`; `nc:num`; `B:form->bool`; `C:form->bool`] THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC) THEN STRIP_TAC THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`;
`A:form->bool`; `B:form->bool`; `C:form->bool`;
`p:form`; `q:form`; `nb:num`; `nc:num`]
SUPPORT_SYMMETRIC) THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Old stuff; should be able to recycle it. *)
(* ------------------------------------------------------------------------- *)
let SUPPORT_INDUCT_LEMMA = prove
(`!hyps sos p c1 c2.
(!c. c IN hyps ==> clause c /\ ~tautologous c) /\
psresproof hyps sos T c1 /\
presproof (hyps DIFF sos) c2 /\
p IN c1 /\ ~~p IN c2 /\ ~(tautologous(resolve p c1 c2))
==> ?cl'. cl' SUBSET (resolve p c1 c2) /\
(presproof (hyps DIFF sos) cl' \/
psresproof hyps sos T cl')`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`]
SUPPORT_LEMMA) THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NPRESPROOF]) THEN
DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
DISCH_THEN(MP_TAC o SPECL
[`n:num`; `c1:form->bool`; `c2:form->bool`; `p:form`]) THEN
ASM_REWRITE_TAC[] THEN MESON_TAC[NPRESPROOF]);;
let SUPPORT_INDUCT = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c /\ ~(tautologous c))
==> !cl. presproof hyps cl
==> clause cl /\
(~(tautologous cl)
==> ?cl'. cl' SUBSET cl /\
(presproof (hyps DIFF sos) cl' \/
psresproof hyps sos T cl'))`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC presproof_INDUCT THEN CONJ_TAC THENL
[X_GEN_TAC `cl:form->bool` THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN
EXISTS_TAC `cl:form->bool` THEN REWRITE_TAC[SUBSET_REFL] THEN
ASM_CASES_TAC `cl:form->bool IN sos` THENL
[ALL_TAC; ASM_MESON_TAC[presproof_RULES; IN_DIFF]] THEN
DISJ2_TAC THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`]
psresproof_RULES) THEN
DISCH_THEN(MP_TAC o SPEC `cl:form->bool` o CONJUNCT1) THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`p:form`; `c1:form->bool`; `c2:form->bool`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
ASM_SIMP_TAC[RESOLVE_CLAUSE] THEN DISCH_TAC THEN
ASM_CASES_TAC `tautologous c1` THENL
[SUBGOAL_THEN `~(tautologous c2)` ASSUME_TAC THENL
[ASM_MESON_TAC[RESOLVE_TAUT_L; SUBSET_TAUT]; ALL_TAC] THEN
ASM_MESON_TAC[RESOLVE_TAUT_L; SUBSET_TRANS; SUBSET_UNION]; ALL_TAC] THEN
ASM_CASES_TAC `tautologous c2` THENL
[ASM_MESON_TAC[RESOLVE_TAUT_R; clause; SUBSET_TRANS; SUBSET_UNION];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ASSUME `~(tautologous c2)`)) THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP (ASSUME `~(tautologous c1)`)) THEN
DISCH_THEN(X_CHOOSE_THEN `c1':form->bool`
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
DISCH_THEN(X_CHOOSE_THEN `c2':form->bool`
(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC)) THEN
ASM_CASES_TAC `p:form IN c1'` THENL
[ALL_TAC;
EXISTS_TAC `c1':form->bool` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
ASM_MESON_TAC[SUBSET]] THEN
ASM_CASES_TAC `~~p IN c2'` THENL
[ALL_TAC;
EXISTS_TAC `c2':form->bool` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[SUBSET; resolve; IN_UNION; IN_DELETE] THEN
ASM_MESON_TAC[SUBSET]] THEN
UNDISCH_THEN
`presproof (hyps DIFF sos) c1' \/ psresproof hyps sos T c1'`
DISJ_CASES_TAC THEN FIRST_X_ASSUM DISJ_CASES_TAC
THENL
[ASM_MESON_TAC[presproof_RULES; RESOLVE_MONO];
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`;
`~~p`; `c2':form->bool`; `c1':form->bool`]
SUPPORT_INDUCT_LEMMA) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_MESON_TAC[NEGATE_NEGATE; SUBSET_TAUT; RESOLVE_MONO;
clause; SUBSET; RESOLVE_SYM];
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_TAUT;
clause; SUBSET; RESOLVE_SYM]];
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`;
`p:form`; `c1':form->bool`; `c2':form->bool`]
SUPPORT_INDUCT_LEMMA) THEN
ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[RESOLVE_MONO; SUBSET_TRANS; SUBSET_TAUT];
EXISTS_TAC `resolve p c1' c2'` THEN ASM_SIMP_TAC[RESOLVE_MONO] THEN
DISJ2_TAC THEN MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THEN
REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SUBSET_TAUT; RESOLVE_MONO]]);;
let SUPPORT = prove
(`!sos hyps cl.
(!c. c IN hyps ==> clause c /\ ~(tautologous c)) /\
presproof hyps cl /\ ~(tautologous cl)
==> ?cl'. cl' SUBSET cl /\
(presproof (hyps DIFF sos) cl' \/ psresproof hyps sos T cl')`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`]
SUPPORT_INDUCT) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Slightly different formulation of the propositional case. *)
(* ------------------------------------------------------------------------- *)
let spresproof_RULES,spresproof_INDUCT,spresproof_CASES =
new_inductive_definition
`(!c. c IN hyps /\ c IN sos /\ ~(tautologous c)
==> spresproof hyps sos c) /\
(!c1 c2 p.
spresproof hyps sos c1 /\
(spresproof hyps sos c2 \/ c2 IN hyps) /\
p IN c1 /\ ~~p IN c2 /\
~(tautologous(resolve p c1 c2))
==> spresproof hyps sos (resolve p c1 c2))`;;
(* ------------------------------------------------------------------------- *)
(* Relation to previous version. *)
(* ------------------------------------------------------------------------- *)
let SPRESPROOF_PSRESPROOF = prove
(`!hyps sos. (!c. c IN hyps ==> clause c /\ ~(tautologous c))
==> !cl. spresproof hyps sos cl = psresproof hyps sos T cl`,
GEN_TAC THEN GEN_TAC THEN DISCH_TAC THEN
REWRITE_TAC[TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`] THEN
REWRITE_TAC[FORALL_AND_THM] THEN CONJ_TAC THENL
[MATCH_MP_TAC spresproof_INDUCT THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`hyps:(form->bool)->bool`; `sos:(form->bool)->bool`]
psresproof_RULES) THEN
DISCH_THEN(MP_TAC o SPEC `c:form->bool` o CONJUNCT1) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL psresproof_RULES)) THENL
[REPEAT(EXISTS_TAC `T`) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
MAP_EVERY EXISTS_TAC [`T`; `c2:form->bool IN sos`] THEN
ASM_SIMP_TAC[psresproof_RULES] THEN
MATCH_MP_TAC(CONJUNCT1(SPEC_ALL psresproof_RULES)) THEN
ASM_MESON_TAC[IN_DIFF]; ALL_TAC] THEN
SUBGOAL_THEN
`!s cl. psresproof hyps sos s cl
==> (if s then spresproof hyps sos cl
else cl IN hyps /\ ~(cl IN sos) /\ ~(tautologous cl))`
(fun th -> MP_TAC(SPEC `T` th) THEN REWRITE_TAC[]) THEN
MATCH_MP_TAC psresproof_INDUCT THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_MESON_TAC[spresproof_RULES]; ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
REWRITE_TAC[] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
MAP_EVERY BOOL_CASES_TAC [`s1:bool`; `s2:bool`] THEN
ASM_REWRITE_TAC[] THENL
[MESON_TAC[spresproof_RULES];
MESON_TAC[spresproof_RULES; IN_DIFF];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `resolve p c1 c2 = resolve (~~p) c2 c1` SUBST_ALL_TAC THENL
[ASM_MESON_TAC[RESOLVE_SYM; clause]; ALL_TAC] THEN
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL spresproof_RULES)) THEN
ASM_REWRITE_TAC[IN_DIFF] THEN ASM_MESON_TAC[NEGATE_NEGATE; clause]);;
let SPRESPROOF_CLAUSE_NONTAUT = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c /\ ~(tautologous c))
==> !c. spresproof hyps sos c ==> clause c /\ ~(tautologous c)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN
ASM_SIMP_TAC[RESOLVE_CLAUSE; IN_DIFF] THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);;
let SPRESPROOF_CLAUSE = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c)
==> !c. spresproof hyps sos c ==> clause c`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN
ASM_SIMP_TAC[RESOLVE_CLAUSE; IN_DIFF] THEN ASM_MESON_TAC[RESOLVE_CLAUSE]);;
let SPRESPROOF_MONO = prove
(`!hyps1 hyps2 sos cl.
spresproof hyps1 sos cl /\ hyps1 SUBSET hyps2
==> spresproof hyps2 sos cl`,
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN
ONCE_REWRITE_TAC[IMP_CONJ_ALT] THEN
REWRITE_TAC[SUBSET; RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC spresproof_INDUCT THEN
ASM_MESON_TAC[IN_DIFF; spresproof_RULES]);;
let SPRESPROOF_MONO_SOS = prove
(`!hyps1 hyps2 sos1 sos2 cl.
spresproof hyps1 sos1 cl /\ hyps1 SUBSET hyps2 /\ sos1 SUBSET sos2
==> spresproof hyps2 sos2 cl`,
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b /\ c ==> a ==> d`] THEN
REWRITE_TAC[SUBSET; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN
STRIP_TAC THEN MATCH_MP_TAC spresproof_INDUCT THEN
ASM_MESON_TAC[spresproof_RULES]);;
(* ------------------------------------------------------------------------- *)
(* Nicer statement of completeness. *)
(* ------------------------------------------------------------------------- *)
let TAUTOLOGOUS_SATISFIED = prove
(`!c d. clause c /\ tautologous c ==> pholds d (interp c)`,
SIMP_TAC[clause; tautologous; PHOLDS_INTERP] THEN MESON_TAC[PHOLDS_NEGATE]);;
let PRESPROOF_SOUND = prove
(`!asm. (!c. c IN asm ==> clause c) /\ presproof asm {}
==> ~psatisfiable (IMAGE interp asm)`,
MESON_TAC[PSATISFIABLE_MONO; PPRESPROOF_SOUND; IMAGE_SUBSET; PPRESPROOF]);;
let SPRESPROOF_REFUTATION_COMPLETE = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c) /\
~(psatisfiable {interp cl | cl IN hyps}) /\
psatisfiable {interp cl | cl IN (hyps DIFF sos)}
==> spresproof hyps sos {}`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`sos:(form->bool)->bool`;
`{c | c IN hyps /\ ~(tautologous c)}`;
`{}:(form->bool)`] SUPPORT) THEN
ANTS_TAC THENL
[REPEAT CONJ_TAC THENL
[ASM_SIMP_TAC[IN_ELIM_THM];
MATCH_MP_TAC PRESPROOF_REFUTATION_COMPLETE THEN CONJ_TAC THENL
[ASM_SIMP_TAC[IN_ELIM_THM]; ALL_TAC] THEN
UNDISCH_TAC `~psatisfiable {interp cl | cl IN hyps}` THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`; psatisfiable] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `d:form->bool` THEN
SIMP_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:form` THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `cl:form->bool` THEN
ASM_CASES_TAC `tautologous cl` THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[TAUTOLOGOUS_SATISFIED];
REWRITE_TAC[tautologous; NOT_IN_EMPTY]];
ALL_TAC] THEN
REWRITE_TAC[SUBSET_EMPTY; UNWIND_THM2] THEN STRIP_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ_ALT]
PRESPROOF_SOUND)) THEN
UNDISCH_TAC `psatisfiable {interp cl | cl IN hyps DIFF sos}` THEN
MATCH_MP_TAC(TAUT `(a ==> c) /\ b ==> a ==> (b ==> ~c) ==> d`) THEN
CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[IN_ELIM_THM; IN_DIFF]] THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[IMP_CONJ_ALT]
PSATISFIABLE_MONO) THEN
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_THM; IN_DIFF] THEN MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `spresproof {c | c IN hyps /\ ~tautologous c} sos {}`
MP_TAC THENL
[UNDISCH_TAC `psresproof {c | c IN hyps /\ ~tautologous c} sos T {}` THEN
MATCH_MP_TAC(TAUT `(b <=> a) ==> a ==> b`) THEN
SPEC_TAC(`{}:form->bool`,`cl:form->bool`) THEN
MATCH_MP_TAC SPRESPROOF_PSRESPROOF THEN ASM_SIMP_TAC[IN_ELIM_THM];
ALL_TAC] THEN
MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `(a /\ b ==> c) <=> b ==> a ==> c`]
SPRESPROOF_MONO) THEN
SIMP_TAC[IN_ELIM_THM; SUBSET]);;
(* ------------------------------------------------------------------------- *)
(* First order set-of-support resolution with no tautologies. *)
(* ------------------------------------------------------------------------- *)
let sresproof_RULES,sresproof_INDUCT,sresproof_CASES =
new_inductive_definition
`(!c. c IN hyps /\ c IN sos /\ ~(tautologous c)
==> sresproof hyps sos c) /\
(!cl1 cl2 cl2' ps1 ps2 i.
sresproof hyps sos cl1 /\
(sresproof hyps sos cl2 \/ cl2 IN hyps) /\
(IMAGE (formsubst (rename cl2 (FVS cl1))) cl2 = cl2') /\
ps1 SUBSET cl1 /\
ps2 SUBSET cl2' /\
~(ps1 = {}) /\
~(ps2 = {}) /\
(?i. Unifies i (ps1 UNION {~~ p | p IN ps2})) /\
(mgu (ps1 UNION {~~ p | p IN ps2}) = i) /\
~(tautologous(IMAGE (formsubst i) (cl1 DIFF ps1 UNION cl2' DIFF ps2)))
==> sresproof hyps sos
(IMAGE (formsubst i) (cl1 DIFF ps1 UNION cl2' DIFF ps2)))`;;
let SRESPROOF_CLAUSE = prove
(`!hyps sos.
(!c. c IN hyps ==> clause c)
==> !c. sresproof hyps sos c ==> clause c`,
REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC sresproof_INDUCT THEN
ASM_MESON_TAC[CLAUSE_UNION; CLAUSE_DIFF; IMAGE_FORMSUBST_CLAUSE]);;
(* ------------------------------------------------------------------------- *)
(* Lifting to first order level. *)
(* ------------------------------------------------------------------------- *)
let PSATISFIES_IMAGE_LEMMA = prove
(`(!c. c IN s ==> clause c)
==> !d. d psatisfies {formsubst v p | prop v /\ p IN IMAGE interp s} <=>
d psatisfies {interp cl | cl IN
{IMAGE (formsubst v) c | prop v /\ c IN s}}`,
STRIP_TAC THEN REWRITE_TAC[psatisfies; IN_ELIM_THM] THEN
GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[IN_IMAGE; PHOLDS_INTERP_IMAGE]);;
let SOS_RESOLUTION_COMPLETE = prove
(`(!cl. cl IN hyps ==> clause cl) /\ sos SUBSET hyps /\
~(?M:(term->bool)#(num->term list->term)#(num->term list->bool).
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\
M satisfies (IMAGE interp hyps)) /\
(?M:(A->bool)#(num->A list->A)#(num->A list->bool).
interpretation (language(IMAGE interp hyps)) M /\ ~(Dom M = {}) /\
M satisfies (IMAGE interp (hyps DIFF sos)))
==> sresproof hyps sos {}`,
REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPEC `IMAGE interp hyps` HERBRAND_THEOREM) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[REWRITE_TAC[IN_IMAGE] THEN ASM_MESON_TAC[QFREE_INTERP]; ALL_TAC] THEN
SUBGOAL_THEN
`?d. d psatisfies
{formsubst v p | v,p |
(!x. v x IN herbase (functions (IMAGE interp hyps))) /\
p IN IMAGE interp (hyps DIFF sos)}`
MP_TAC THENL
[FIRST_ASSUM(MP_TAC o MATCH_MP SATISFIES_INSTANCES) THEN
DISCH_THEN(MP_TAC o SPEC `IMAGE interp (hyps DIFF sos)`) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE
[TAUT `a /\ b /\ c ==> d <=> b ==> a /\ c ==> d`]
(GEN_ALL SATISFIES_PSATISFIES))) THEN
FIRST_ASSUM(X_CHOOSE_TAC `v:num->A` o MATCH_MP VALUATION_EXISTS) THEN
DISCH_THEN(MP_TAC o SPEC `v:num->A`) THEN ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL
[REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; IN_DIFF] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[QFREE_FORMSUBST; QFREE_INTERP; clause]; ALL_TAC] THEN
DISCH_THEN(fun th -> EXISTS_TAC (lhand(concl th)) THEN MP_TAC th) THEN
REWRITE_TAC[psatisfies] THEN
MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `p:form` THEN
MATCH_MP_TAC(TAUT `(a ==> b) ==> (b ==> c) ==> (a ==> c)`) THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE; language] THEN
MESON_TAC[HERBASE_SUBSET_TERMS]; ALL_TAC] THEN
ASM_SIMP_TAC[PSATISFIES_IMAGE_LEMMA; IMAGE_FORMSUBST_CLAUSE; IN_DIFF] THEN
REWRITE_TAC[GSYM IN_DIFF; psatisfies; GSYM psatisfiable] THEN
DISCH_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN
`spresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps}
{IMAGE (formsubst v) cl | v,cl | cl IN sos} {}`
MP_TAC THENL
[MATCH_MP_TAC SPRESPROOF_MONO_SOS THEN
EXISTS_TAC
`{IMAGE (formsubst v) c | v,c |
(!x. v x IN herbase(functions(IMAGE interp hyps))) /\
c IN hyps}` THEN
EXISTS_TAC
`{IMAGE (formsubst v) c | v,c |
(!x. v x IN herbase(functions(IMAGE interp hyps))) /\
c IN sos}` THEN
REPEAT CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[];
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN MESON_TAC[]] THEN
MATCH_MP_TAC SPRESPROOF_REFUTATION_COMPLETE THEN REPEAT CONJ_TAC THENL
[REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE];
ASM_REWRITE_TAC[];
ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (ONCE_REWRITE_RULE
[IMP_CONJ] PSATISFIABLE_MONO)) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_DIFF] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!cl0. spresproof {IMAGE (formsubst v) cl | v,cl | cl IN hyps}
{IMAGE (formsubst v) cl | v,cl | cl IN sos} cl0
==> ?cl. sresproof hyps sos cl /\ cl0 instance_of cl`
MP_TAC THENL
[ALL_TAC;
DISCH_THEN(MP_TAC o SPEC `{}:form->bool`) THEN
MATCH_MP_TAC(TAUT `(b ==> c) ==> (a ==> b) ==> (a ==> c)`) THEN
MESON_TAC[INSTANCE_OF_EMPTY]] THEN
MATCH_MP_TAC spresproof_INDUCT THEN CONJ_TAC THENL
[REWRITE_TAC[IN_IMAGE; instance_of; IN_ELIM_THM] THEN
ASM_MESON_TAC[sresproof_RULES; TAUTOLOGOUS_INSTANCE]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`A':form->bool`; `B':form->bool`; `p:form`] THEN
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `A:form->bool` STRIP_ASSUME_TAC)
MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
REWRITE_TAC[IN_ELIM_THM] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [SWAP_EXISTS_THM] THEN
REWRITE_TAC[OR_EXISTS_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `B:form->bool` MP_TAC) THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM] THEN
REWRITE_TAC[GSYM instance_of] THEN
REWRITE_TAC[TAUT `a /\ c \/ b /\ c <=> (a \/ b) /\ c`] THEN
DISCH_THEN(CONJUNCTS_THEN ASSUME_TAC) THEN
MP_TAC(SPECL
[`A:form->bool`; `IMAGE (formsubst (rename B (FVS A))) B`;
`A':form->bool`; `B':form->bool`; `resolve p A' B'`; `p:form`]
LIFTING_LEMMA) THEN
ABBREV_TAC `C = IMAGE (formsubst (rename B (FVS A))) B` THEN
MP_TAC(SPECL [`B:form->bool`; `FVS(A)`] rename) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[FVS_CLAUSE_FINITE; SRESPROOF_CLAUSE]; ALL_TAC] THEN
ASM_REWRITE_TAC[renaming] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[FUN_EQ_THM; o_THM; I_DEF; BETA_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `j:num->term` (ASSUME_TAC o CONJUNCT1)) THEN
ANTS_TAC THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[SRESPROOF_CLAUSE];
ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; SRESPROOF_CLAUSE];
ONCE_REWRITE_TAC[INTER_COMM] THEN ASM_REWRITE_TAC[];
UNDISCH_TAC `B' instance_of B` THEN REWRITE_TAC[instance_of] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num->term` SUBST1_TAC) THEN
EXPAND_TAC "C" THEN REWRITE_TAC[GSYM IMAGE_o] THEN
EXISTS_TAC `termsubst k o (j:num->term)` THEN
SUBGOAL_THEN
`termsubst k = termsubst (termsubst k o j) o termsubst (rename B (FVS A))`
MP_TAC THENL
[REWRITE_TAC[FUN_EQ_THM] THEN MATCH_MP_TAC term_INDUCT THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[termsubst; GSYM TERMSUBST_TERMSUBST; o_THM];
SIMP_TAC[termsubst; term_INJ; o_THM; GSYM MAP_o] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]];
ALL_TAC] THEN
REWRITE_TAC[GSYM FORMSUBST_TERMSUBST_LEMMA] THEN
REWRITE_TAC[EXTENSION; IN_IMAGE; o_THM] THEN
ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; QFREE_LITERAL]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `A1:form->bool` (X_CHOOSE_THEN `B1:form->bool`
MP_TAC)) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o SPEC `mgu (A1 UNION {~~ l | l IN B1})`) THEN
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
[MATCH_MP_TAC ISMGU_MGU THEN ASM_REWRITE_TAC[FINITE_UNION] THEN
REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; FINITE_SUBSET];
SUBGOAL_THEN `{~~l | l IN B1} = IMAGE (~~) B1` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[]; ALL_TAC] THEN
ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; FINITE_SUBSET; FINITE_IMAGE];
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN
ASM_MESON_TAC[SRESPROOF_CLAUSE; clause; QFREE_LITERAL; SUBSET;
IMAGE_FORMSUBST_CLAUSE; QFREE_NEGATE]];
ALL_TAC] THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN EXISTS_TAC (rand(concl th))) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(CONJUNCT2(SPEC_ALL sresproof_RULES)) THEN
EXISTS_TAC `B:form->bool` THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP TAUTOLOGOUS_INSTANCE) THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [instance_of]) THEN
REWRITE_TAC[NOT_IMP; NOT_FORALL_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Hence show that the given clause algorithm will find refutations. *)
(* ------------------------------------------------------------------------- *)
let SOS_GIVEN_GENERAL = prove
(`!used unused cl.
(!c. MEM c used ==> clause c) /\
(!c. MEM c unused ==> clause c) /\
sresproof (set_of_list(used) UNION set_of_list(unused))
(set_of_list unused) cl
==> clause cl /\
?n cl'. cl' subsumes cl /\ cl' IN level(used,unused) n`,
GEN_TAC THEN GEN_TAC THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN
MATCH_MP_TAC sresproof_INDUCT THEN CONJ_TAC THENL
[X_GEN_TAC `c:form->bool` THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_SET_OF_LIST]; ALL_TAC] THEN
EXISTS_TAC `0` THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEVEL_0) THEN
REWRITE_TAC[SUBSUMES; IN_UNION] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC
[`c1:form->bool`; `c2:form->bool`; `c2':form->bool`;
`ps1:form->bool`; `ps2:form->bool`; `i:num->term`] THEN
DISCH_THEN(CONJUNCTS_THEN2
(CONJUNCTS_THEN2 ASSUME_TAC (X_CHOOSE_TAC `n1:num`)) MP_TAC) THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN
SUBGOAL_THEN
`?n2. c2 IN set_of_list(used) \/
?cl'. cl' subsumes c2 /\ (cl' IN level (used,unused) n2)`
MP_TAC THENL
[FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THENL
[REWRITE_TAC[IN_UNION] THEN MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[IN_UNION] THEN DISCH_THEN DISJ_CASES_TAC THENL
[ASM_MESON_TAC[subsumes_REFL]; ALL_TAC] THEN
EXISTS_TAC `0` THEN FIRST_ASSUM(MP_TAC o MATCH_MP LEVEL_0) THEN
REWRITE_TAC[SUBSUMES] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `n2:num`) THEN
SUBGOAL_THEN
`?n cl1 cl2. cl1 subsumes c1 /\ cl2 subsumes c2 /\
cl1 IN level(used,unused) n /\
((cl2 = c2) /\ c2 IN set_of_list(used) \/
cl2 IN level(used,unused) n)`
MP_TAC THENL
[EXISTS_TAC `n1 + n2:num` THEN REWRITE_TAC[IN_UNION] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c /\ d <=> (a /\ c) /\ (b /\ d)`] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN CONJ_TAC THENL
[ASM_MESON_TAC[level_MONO_SUBSET; SUBSET; LE_ADD]; ALL_TAC] THEN
UNDISCH_TAC
`c2 IN set_of_list used \/
(?cl'. cl' subsumes c2 /\ cl' IN level (used,unused) n2)` THEN
REWRITE_TAC[IN_UNION] THEN STRIP_TAC THEN
ASM_MESON_TAC[subsumes_REFL; level_MONO_SUBSET; SUBSET;
ARITH_RULE `n <= m + n:num`];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `cl1:form->bool`; `cl2:form->bool`] THEN
SUBGOAL_THEN `clause c2` ASSUME_TAC THENL
[ASM_MESON_TAC[IN_SET_OF_LIST; IN_UNION]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> c ==> b) ==> c ==> a /\ b`) THEN
CONJ_TAC THENL
[ASM_MESON_TAC[IMAGE_FORMSUBST_CLAUSE; CLAUSE_UNION; CLAUSE_DIFF];
ALL_TAC] THEN
DISCH_TAC THEN STRIP_TAC THENL
[MP_TAC(SPECL [`c1:form->bool`; `cl1:form->bool`; `c2:form->bool`;
`IMAGE (formsubst i) (c1 DIFF ps1 UNION c2' DIFF ps2)`]
ISARESOLVENT_SUBSUME_L) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN
ASM_REWRITE_TAC[isaresolvent] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
MAP_EVERY EXISTS_TAC [`ps1:form->bool`; `ps2:form->bool`] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `r:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `SUC n` THEN
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP LEVEL_STEP) THEN
REWRITE_TAC[SUBSUMES; allntresolvents; IN_ELIM_THM; allresolvents] THEN
DISCH_THEN(MP_TAC o SPEC `r:form->bool`) THEN ANTS_TAC THENL
[CONJ_TAC THENL
[ALL_TAC;
ASM_MESON_TAC[TAUTOLOGOUS_INSTANCE; SUBSET_TAUT; subsumes]] THEN
MAP_EVERY EXISTS_TAC [`cl1:form->bool`; `c2:form->bool`] THEN
ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN
ASM_MESON_TAC[subsumes_TRANS; level_CLAUSE]; ALL_TAC] THEN
MP_TAC(SPECL [`c1:form->bool`; `cl1:form->bool`; `c2:form->bool`;
`cl2:form->bool`;
`IMAGE (formsubst i) (c1 DIFF ps1 UNION c2' DIFF ps2)`]
ISARESOLVENT_SUBSUME) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[level_CLAUSE]; ALL_TAC] THEN
ASM_REWRITE_TAC[isaresolvent] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
MAP_EVERY EXISTS_TAC [`ps1:form->bool`; `ps2:form->bool`] THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `r:form->bool` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `SUC n` THEN
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP LEVEL_STEP) THEN
REWRITE_TAC[SUBSUMES; allntresolvents; IN_ELIM_THM; allresolvents] THEN
DISCH_THEN(MP_TAC o SPEC `r:form->bool`) THEN ANTS_TAC THENL
[CONJ_TAC THENL
[ALL_TAC;
ASM_MESON_TAC[TAUTOLOGOUS_INSTANCE; SUBSET_TAUT; subsumes]] THEN
MAP_EVERY EXISTS_TAC [`cl1:form->bool`; `cl2:form->bool`] THEN
ASM_REWRITE_TAC[IN_UNION]; ALL_TAC] THEN
ASM_MESON_TAC[subsumes_TRANS; level_CLAUSE]);;
let SUBSUMES_EMPTY = prove
(`!c. (c subsumes {}) = (c = {})`,
REWRITE_TAC[subsumes; IN_IMAGE; NOT_IN_EMPTY; EXTENSION; SUBSET] THEN
MESON_TAC[]);;
let SOS_GIVEN = prove
(`!used unused.
(!c. MEM c used ==> clause c) /\
(!c. MEM c unused ==> clause c) /\
sresproof (set_of_list(used) UNION set_of_list(unused))
(set_of_list unused) {}
==> ?n. {} IN level(used,unused) n`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP SOS_GIVEN_GENERAL) THEN
SIMP_TAC[SUBSUMES_EMPTY; UNWIND_THM2]);;