Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Basic definitions for and theorems about term rewriting. *) | |
(* ========================================================================= *) | |
let TRS_RULES,TRS_INDUCT,TRS_CASES = new_inductive_definition | |
`(!i l r. | |
(l,r) IN rws ==> TRS rws (termsubst i l) (termsubst i r)) /\ | |
(!s t f largs rargs. | |
TRS rws s t ==> TRS rws (Fn f (APPEND largs (CONS s rargs))) | |
(Fn f (APPEND largs (CONS t rargs))))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Nice general result justfying both deletion and right-simplification. *) | |
(* ------------------------------------------------------------------------- *) | |
let CONVERGENT_MODIFY_LEMMA = prove | |
(`!R S. SN R /\ | |
CR(RTC R) /\ | |
(!x y. S x y ==> TC R x y) /\ | |
(!x y. R x y ==> ?y'. S x y') | |
==> !y:A. NORMAL(R) y ==> !x. RTC R x y ==> RTC S x y`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN | |
REWRITE_TAC[SN_NOETHERIAN] THEN STRIP_TAC THEN | |
GEN_TAC THEN REWRITE_TAC[NORMAL; NOT_EXISTS_THM] THEN DISCH_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [RTC_CASES_R] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN | |
REWRITE_TAC[RTC_REFL] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN | |
UNDISCH_TAC `!x:A y:A. R x y ==> (?y':A. S x y')` THEN | |
DISCH_THEN(MP_TAC o SPECL [`x:A`; `u:A`]) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `v:A`) THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`x:A`; `v:A`]) THEN ASM_REWRITE_TAC[] THEN | |
DISCH_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN | |
DISCH_THEN(MP_TAC o SPECL [`x:A`; `y:A`; `v:A`]) THEN | |
ASM_REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_MESON_TAC[RTC_CASES_R; TC_RTC_CASES_R]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `z:A = y` SUBST_ALL_TAC THEN ASM_MESON_TAC[RTC_CASES_R]);; | |
let CONVERGENT_MODIFY = prove | |
(`!R S. SN R /\ | |
CR(RTC R) /\ | |
(!x:A y. S x y ==> TC R x y) /\ | |
(!x:A y. R x y ==> ?y'. S x y') | |
==> SN(S) /\ CR(RTC S)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[SN_WF] THEN MATCH_MP_TAC WF_SUBSET THEN | |
EXISTS_TAC `INV(TC(R:A->A->bool))` THEN ASM_REWRITE_TAC[INV] THEN | |
REWRITE_TAC[GSYM TC_INV; WF_TC] THEN ASM_REWRITE_TAC[GSYM SN_WF]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN MATCH_MP_TAC NEWMAN_LEMMA THEN ASM_REWRITE_TAC[WCR] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y1:A`; `y2:A`] THEN STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN | |
DISCH_THEN(MP_TAC o SPECL [`x:A`; `y1:A`; `y2:A`]) THEN ANTS_TAC THENL | |
[ASM_MESON_TAC[RTC_INC_TC]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z0:A` STRIP_ASSUME_TAC) THEN | |
MP_TAC(MATCH_MP SN_WN (ASSUME `SN(R:A->A->bool)`)) THEN | |
REWRITE_TAC[WN] THEN DISCH_THEN(MP_TAC o SPEC `z0:A`) THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[RTC_TRANS]);; | |
let EQUIVALENT_JOINABLE_MODIFY = prove | |
(`!R S. SN R /\ | |
CR(RTC R) /\ | |
(!x y. S x y ==> TC R x y) /\ | |
(!x y. R x y ==> ?y'. S x y') | |
==> (!x:A y. JOINABLE S x y = JOINABLE R x y)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[JOINABLE] THEN EQ_TAC THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THENL | |
[SUBGOAL_THEN `!x:A y. RTC S x y ==> RTC R x y` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
REWRITE_TAC[RTC; RC_CASES] THEN | |
SUBGOAL_THEN `!x:A y. TC S x y ==> TC R x y` | |
(fun th -> ASM_MESON_TAC[th]) THEN | |
GEN_REWRITE_TAC (funpow 2 BINDER_CONV o RAND_CONV o ONCE_DEPTH_CONV) | |
[GSYM TC_IDEMP] THEN | |
MATCH_MP_TAC TC_MONO THEN ASM_REWRITE_TAC[]; | |
FIRST_ASSUM(MP_TAC o MATCH_MP SN_WN) THEN REWRITE_TAC[WN] THEN | |
DISCH_THEN(MP_TAC o SPEC `z:A`) THEN | |
DISCH_THEN(X_CHOOSE_THEN `w:A` STRIP_ASSUME_TAC) THEN | |
MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN | |
DISCH_THEN(MP_TAC o SPEC `w:A`) THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[RTC_TRANS]]);; | |
let EQUIVALENT_RSTC_MODIFY = prove | |
(`!R S. SN R /\ | |
CR(RTC R) /\ | |
(!x y. S x y ==> TC R x y) /\ | |
(!x y. R x y ==> ?y'. S x y') | |
==> (!x:A y. RSTC S x y = RSTC R x y)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] CONVERGENT_MODIFY) THEN | |
ASM_REWRITE_TAC[] THEN | |
MP_TAC(SPECL [`R:A->A->bool`; `S:A->A->bool`] | |
EQUIVALENT_JOINABLE_MODIFY) THEN | |
ASM_SIMP_TAC[CR_RSTC_JOINABLE] THEN | |
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[]);; | |
let EQUIVALENT_MODIFY = prove | |
(`!R S. SN R /\ | |
CR(RTC R) /\ | |
(!x y. S x y ==> TC R x y) /\ | |
(!x y. R x y ==> ?y'. S x y') | |
==> SN(S) /\ CR(RTC S) /\ (!x:A y. RSTC S x y = RSTC R x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CONVERGENT_MODIFY THEN EXISTS_TAC `R:A->A->bool`; | |
MATCH_MP_TAC EQUIVALENT_RSTC_MODIFY] THEN | |
ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case of right simplification of rules. *) | |
(* ------------------------------------------------------------------------- *) | |
let EQUIVALENT_MODIFY_RIGHT = prove | |
(`!R S S'. | |
SN(\x y. R x y \/ S x y) /\ | |
CR(RTC(\x y. R x y \/ S x y)) /\ | |
(!s:A t. S s t ==> ?t'. S' s t') /\ | |
(!s t. S' s t ==> ?u. S s u /\ RTC (\x y. R x y \/ S x y) u t) | |
==> SN(\x y. R x y \/ S' x y) /\ | |
CR(RTC(\x y. R x y \/ S' x y)) /\ | |
(!x y. RSTC(\x y. R x y \/ S' x y) x y = | |
RSTC(\x y. R x y \/ S x y) x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC EQUIVALENT_MODIFY THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THENL | |
[MATCH_MP_TAC TC_INC THEN ASM_REWRITE_TAC[]; | |
FIRST_ASSUM(MP_TAC o C MATCH_MP (ASSUME `(S':A->A->bool) x y`)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THEN | |
GEN_REWRITE_TAC I [TC_RTC_CASES_R] THEN | |
EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And of deletion of joinable ones. *) | |
(* ------------------------------------------------------------------------- *) | |
let CONVERGENT_DELETE_LEFT = prove | |
(`!R S. SN(\x y. R x y \/ S x y) /\ | |
CR(RTC(\x y. R x y \/ S x y)) /\ | |
(!x:A y. S x y ==> ?z. R x z) | |
==> SN(R) /\ CR(RTC R) /\ | |
(!x y. RSTC(R) x y = RSTC(\x y. R x y \/ S x y) x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC EQUIVALENT_MODIFY THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN DISCH_TAC THEN | |
ASM_SIMP_TAC[TC_INC] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The case of left-simplification is harder; this lemma isn't enough. *) | |
(* But given the deletion result above, we don't need this anyway! *) | |
(* ------------------------------------------------------------------------- *) | |
let CONVERGENT_MODIFY_LEMMA = prove | |
(`!R S S' t. | |
SN(\x y. R x y \/ S x y \/ S' x y) /\ | |
CR(RTC(\x y. R x y \/ S x y)) /\ | |
(!s t. S s t | |
==> ?s' t'. RTC R s s' /\ RTC R t t' /\ | |
(S' s' t' \/ S' t' s')) /\ | |
NORMAL(\x y. R x y \/ S x y) t | |
==> !s:A. RTC (\x y. R x y \/ S x y) s t | |
==> RTC (\x y. R x y \/ S' x y) s t`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SN_TC] THEN | |
REWRITE_TAC[SN_NOETHERIAN] THEN STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
X_GEN_TAC `s:A` THEN DISCH_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [RTC_CASES_R] THEN | |
DISCH_THEN(DISJ_CASES_THEN2 SUBST1_TAC MP_TAC) THEN | |
REWRITE_TAC[RTC_REFL] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:A` STRIP_ASSUME_TAC) THENL | |
[FIRST_ASSUM(fun th -> MP_TAC(SPEC `u:A` th) THEN ANTS_TAC) THENL | |
[ONCE_REWRITE_TAC[TC_CASES_R] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
DISJ2_TAC THEN EXISTS_TAC `u:A` THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`s:A`; `u:A`]) THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`s':A`; `u':A`] THEN STRIP_TAC THENL | |
[FIRST_ASSUM(MP_TAC o SPEC `u':A`) THEN ANTS_TAC THENL | |
[ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN EXISTS_TAC `u:A` THEN | |
ASM_REWRITE_TAC[] THEN UNDISCH_TAC `RTC R (u:A) u'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN | |
DISCH_THEN(MP_TAC o SPECL [`s:A`; `u':A`; `t:A`]) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN | |
ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `RTC R (u:A) u'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; | |
ALL_TAC] THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN | |
ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `z:A = t` SUBST_ALL_TAC THENL | |
[UNDISCH_TAC `RTC (\x y. R x y \/ S x y) t (z:A)` THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
ASM_CASES_TAC `z:A = t` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL]) THEN | |
REWRITE_TAC[] THEN MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[RTC_CASES] THEN DISJ2_TAC THEN | |
EXISTS_TAC `u':A` THEN ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[RTC_CASES_L] THEN DISJ2_TAC THEN | |
EXISTS_TAC `s':A` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `RTC R (s:A) s'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN | |
ASM_CASES_TAC `s':A = s` THENL | |
[RULE_ASSUM_TAC(REWRITE_RULE[GSYM SN_NOETHERIAN; SN_WF]) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP WF_REFL) THEN | |
DISCH_THEN(MP_TAC o SPEC `s:A`) THEN REWRITE_TAC[INV] THEN | |
MATCH_MP_TAC(TAUT `a ==> ~a ==> b`) THEN | |
ONCE_REWRITE_TAC[TC_RTC_CASES_R] THEN EXISTS_TAC `u:A` THEN | |
ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[RTC_CASES_L] THEN DISJ2_TAC THEN EXISTS_TAC `u':A` THEN | |
UNDISCH_THEN `s':A = s` SUBST_ALL_TAC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `RTC R (u:A) u'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`u':A`; `u:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `s':A`) THEN ANTS_TAC THENL | |
[MATCH_MP_TAC RTC_NE_IMP_TC THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `RTC R (s:A) s'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [CR]) THEN | |
DISCH_THEN(MP_TAC o SPECL [`s:A`; `s':A`; `t:A`]) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[UNDISCH_TAC `RTC R (s:A) s'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]; | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN DISJ2_TAC THEN EXISTS_TAC `u:A` THEN | |
ASM_REWRITE_TAC[]]; | |
ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `z:A` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `z:A = t` SUBST_ALL_TAC THENL | |
[UNDISCH_TAC `RTC (\x y. R x y \/ S x y) t (z:A)` THEN | |
ONCE_REWRITE_TAC[RTC_CASES_R] THEN | |
ASM_CASES_TAC `z:A = t` THEN ASM_REWRITE_TAC[] THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NORMAL]) THEN | |
REWRITE_TAC[] THEN MESON_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[RTC_CASES] THEN DISJ2_TAC THEN | |
EXISTS_TAC `s':A` THEN ASM_REWRITE_TAC[] THEN | |
UNDISCH_TAC `RTC R (s:A) s'` THEN | |
MAP_EVERY (fun s -> SPEC_TAC(s,s)) [`s':A`; `s:A`] THEN | |
MATCH_MP_TAC RTC_MONO THEN SIMP_TAC[]);; | |