Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
119 kB
(* ========================================================================= *)
(* Various convenient background stuff not specifically to do with R^n. *)
(* *)
(* (c) Copyright, John Harrison 1998-2008 *)
(* (c) Copyright, Marco Maggesi 2014 *)
(* ========================================================================= *)
needs "Library/card.ml";;
needs "Library/floor.ml";;
prioritize_real();;
(* ------------------------------------------------------------------------- *)
(* A couple of extra tactics used in some proofs below. *)
(* ------------------------------------------------------------------------- *)
let ASSERT_TAC tm =
SUBGOAL_THEN tm STRIP_ASSUME_TAC;;
let EQ_TRANS_TAC tm =
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC tm THEN CONJ_TAC;;
(* ------------------------------------------------------------------------- *)
(* Miscellaneous lemmas. *)
(* ------------------------------------------------------------------------- *)
let FORALL_DIFF = prove
(`(!s:A->bool. P(UNIV DIFF s)) <=> (!s. P s)`,
MESON_TAC[COMPL_COMPL]);;
let EXISTS_DIFF = prove
(`(?s:A->bool. P(UNIV DIFF s)) <=> (?s. P s)`,
MESON_TAC[COMPL_COMPL]);;
let FORALL_DIFF_ALT = prove
(`!u:A->bool.
(!s. s SUBSET u ==> P(u DIFF s)) <=> (!s. s SUBSET u ==> P s)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN
X_GEN_TAC `s:A->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `u DIFF s:A->bool`) THEN
REWRITE_TAC[SUBSET_DIFF] THEN MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN ASM SET_TAC[]);;
let FORALL_DIFF_GEN = prove
(`!u:A->bool.
(!s. P(u DIFF s)) <=> (!s. s SUBSET u ==> P s)`,
GEN_TAC THEN EQ_TAC THEN DISCH_TAC THEN
X_GEN_TAC `s:A->bool` THEN TRY DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `u DIFF s:A->bool`) THEN
REWRITE_TAC[SUBSET_DIFF] THEN MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN ASM SET_TAC[]);;
let GE_REFL = prove
(`!n:num. n >= n`,
REWRITE_TAC[GE; LE_REFL]);;
let FORALL_SUC = prove
(`(!n. ~(n = 0) ==> P n) <=> (!n. P(SUC n))`,
MESON_TAC[num_CASES; NOT_SUC]);;
let SEQ_MONO_LEMMA = prove
(`!d e. (!n. n >= m ==> d(n) < e(n)) /\ (!n. n >= m ==> e(n) <= e(m))
==> !n:num. n >= m ==> d(n) < e(m)`,
MESON_TAC[GE; REAL_LTE_TRANS]);;
let REAL_HALF = prove
(`(!e. &0 < e / &2 <=> &0 < e) /\
(!e. e / &2 + e / &2 = e) /\
(!e. &2 * (e / &2) = e)`,
REAL_ARITH_TAC);;
let ABS_SQUARE_LT_1 = prove
(`!x. x pow 2 < &1 <=> abs(x) < &1`,
ONCE_REWRITE_TAC[GSYM REAL_ABS_NUM] THEN
REWRITE_TAC[REAL_LT_SQUARE_ABS] THEN REAL_ARITH_TAC);;
let ABS_SQUARE_LE_1 = prove
(`!x. x pow 2 <= &1 <=> abs(x) <= &1`,
ONCE_REWRITE_TAC[GSYM REAL_ABS_NUM] THEN
REWRITE_TAC[REAL_LT_SQUARE_ABS; GSYM REAL_NOT_LT] THEN REAL_ARITH_TAC);;
let ABS_SQUARE_EQ_1 = prove
(`!x. x pow 2 = &1 <=> abs(x) = &1`,
REWRITE_TAC[REAL_RING `x pow 2 = &1 <=> x = &1 \/ x = -- &1`] THEN
REAL_ARITH_TAC);;
let UPPER_BOUND_FINITE_SET = prove
(`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
METIS_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let UPPER_BOUND_FINITE_SET_REAL = prove
(`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> f(x) <= a`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
METIS_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;
let LOWER_BOUND_FINITE_SET = prove
(`!f:(A->num) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
METIS_TAC[LE_CASES; LE_REFL; LE_TRANS]);;
let LOWER_BOUND_FINITE_SET_REAL = prove
(`!f:(A->real) s. FINITE(s) ==> ?a. !x. x IN s ==> a <= f(x)`,
GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN
METIS_TAC[REAL_LE_TOTAL; REAL_LE_REFL; REAL_LE_TRANS]);;
let REAL_CONVEX_SUM_BOUND_LE = prove
(`!s d a b x:A->real.
(!i. i IN s ==> &0 <= x i) /\ sum s x = &1 /\
(!i. i IN s ==> abs(a i - b) <= d)
==> abs(sum s (\i. a i * x i) - b) <= d`,
REPEAT GEN_TAC THEN REWRITE_TAC[sum] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[GSYM sum; NEUTRAL_REAL_ADD; support; REAL_ENTIRE] THEN
REWRITE_TAC[SET_RULE
`{x | x IN s /\ ~(P x \/ Q x)} =
{x | x IN {y | y IN s /\ ~Q y} /\ ~P x}`] THEN
ABBREV_TAC `t = {i | i IN s /\ ~((x:A->real) i = &0)}` THEN
ASM_CASES_TAC `FINITE(t:A->bool)` THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN STRIP_TAC THEN
SUBGOAL_THEN
`(!i. i IN t ==> &0 <= (x:A->real) i) /\
(!i. i IN t ==> abs(a i - b) <= d)`
STRIP_ASSUME_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[SUM_RESTRICT_SET; MESON[REAL_MUL_LZERO]
`(if ~(a = &0) then a * x else &0) = a * x`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a - b = a - b * &1`] THEN
FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_LMUL] THEN
ASM_SIMP_TAC[GSYM SUM_SUB] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SUM_ABS o lhand o snd) THEN
ASM_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN
ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ARITH `&0 <= x ==> abs x = x`] THEN
TRANS_TAC REAL_LE_TRANS `sum t (\i:A. d * x i)` THEN CONJ_TAC THENL
[MATCH_MP_TAC SUM_LE THEN ASM_SIMP_TAC[REAL_LE_RMUL];
ASM_REWRITE_TAC[SUM_LMUL; REAL_MUL_RID; REAL_LE_REFL]]);;
let REAL_CONVEX_SUM_BOUND_LT = prove
(`!s d a b x:A->real.
(!i. i IN s ==> &0 <= x i) /\ sum s x = &1 /\
(!i. i IN s ==> abs(a i - b) < d)
==> abs(sum s (\i. a i * x i) - b) < d`,
REPEAT GEN_TAC THEN REWRITE_TAC[sum] THEN
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN
REWRITE_TAC[GSYM sum; NEUTRAL_REAL_ADD; support; REAL_ENTIRE] THEN
REWRITE_TAC[SET_RULE
`{x | x IN s /\ ~(P x \/ Q x)} =
{x | x IN {y | y IN s /\ ~Q y} /\ ~P x}`] THEN
ABBREV_TAC `t = {i | i IN s /\ ~((x:A->real) i = &0)}` THEN
ASM_CASES_TAC `FINITE(t:A->bool)` THEN ASM_SIMP_TAC[FINITE_RESTRICT] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN STRIP_TAC THEN
SUBGOAL_THEN
`(!i. i IN t ==> &0 < (x:A->real) i) /\
(!i. i IN t ==> abs(a i - b) < d)`
STRIP_ASSUME_TAC THENL
[EXPAND_TAC "t" THEN
SIMP_TAC[IN_ELIM_THM; REAL_ARITH `&0 < x <=> &0 <= x /\ ~(x = &0)`] THEN
ASM SET_TAC[];
ALL_TAC] THEN
REWRITE_TAC[SUM_RESTRICT_SET; MESON[REAL_MUL_LZERO]
`(if ~(a = &0) then a * x else &0) = a * x`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a - b = a - b * &1`] THEN
FIRST_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[GSYM SUM_LMUL] THEN
ASM_SIMP_TAC[GSYM SUM_SUB] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SUM_ABS o lhand o snd) THEN
ASM_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LET_TRANS) THEN
ASM_SIMP_TAC[REAL_ABS_MUL; REAL_ARITH `&0 < x ==> abs x = x`] THEN
TRANS_TAC REAL_LTE_TRANS `sum t (\i:A. d * x i)` THEN CONJ_TAC THENL
[MATCH_MP_TAC SUM_LT_ALL THEN ASM_SIMP_TAC[REAL_LT_RMUL_EQ] THEN
DISCH_THEN SUBST_ALL_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[SUM_CLAUSES]) THEN ASM_REAL_ARITH_TAC;
ASM_REWRITE_TAC[SUM_LMUL; REAL_MUL_RID; REAL_LE_REFL]]);;
let APPROACHABLE_LT_LE = prove
(`!P f. (?d. &0 < d /\ !x. f(x) < d ==> P x) =
(?d. &0 < d /\ !x. f(x) <= d ==> P x)`,
let lemma = prove
(`&0 < d ==> x <= d / &2 ==> x < d`,
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN REAL_ARITH_TAC) in
MESON_TAC[REAL_LT_IMP_LE; lemma; REAL_HALF]);;
let REAL_LE_BETWEEN = prove
(`!a b. a <= b <=> ?x. a <= x /\ x <= b`,
MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL]);;
let REAL_LET_BETWEEN = prove
(`!a b. a < b <=> (?x. a <= x /\ x < b)`,
MESON_TAC[REAL_LE_REFL; REAL_LET_TRANS]);;
let REAL_LTE_BETWEEN = prove
(`!a b. a < b <=> (?x. a < x /\ x <= b)`,
MESON_TAC[REAL_LE_REFL; REAL_LTE_TRANS]);;
let REAL_LT_BETWEEN = prove
(`!a b. a < b <=> ?x. a < x /\ x < b`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[REAL_LT_TRANS]] THEN
DISCH_TAC THEN EXISTS_TAC `(a + b) / &2` THEN
SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC);;
let REAL_LT_BETWEEN_GEN = prove
(`!s t:real->bool.
FINITE s /\ FINITE t
==> ((?x. (!a. a IN s ==> a < x) /\ (!b. b IN t ==> x < b)) <=>
!a b. a IN s /\ b IN t ==> a < b)`,
REPEAT GEN_TAC THEN
SIMP_TAC[MESON[REAL_SUP_LT_FINITE; NOT_IN_EMPTY]
`FINITE s ==> ((!a. a IN s ==> a < x) <=> s = {} \/ sup s < x)`] THEN
SIMP_TAC[MESON[REAL_LT_INF_FINITE; NOT_IN_EMPTY]
`FINITE t ==> ((!b. b IN t ==> x < b) <=> t = {} \/ x < inf t)`] THEN
STRIP_TAC THEN ASM_CASES_TAC `s:real->bool = {}` THEN
ASM_REWRITE_TAC[NOT_IN_EMPTY] THENL
[MESON_TAC[REAL_ARITH `s - &1 < s`]; ALL_TAC] THEN
ASM_CASES_TAC `t:real->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THENL
[MESON_TAC[REAL_ARITH `t < t + &1`]; ALL_TAC] THEN
REWRITE_TAC[GSYM REAL_LT_BETWEEN] THEN
ASM_SIMP_TAC[REAL_SUP_LT_FINITE; REAL_LT_INF_FINITE] THEN MESON_TAC[]);;
let TRIANGLE_LEMMA = prove
(`!x y z. &0 <= x /\ &0 <= y /\ &0 <= z /\ x pow 2 <= y pow 2 + z pow 2
==> x <= y + z`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[REAL_NOT_LE] THEN DISCH_TAC THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `(y + z) pow 2` THEN
ASM_SIMP_TAC[REAL_POW_LT2; REAL_LE_ADD; ARITH_EQ] THEN
ASM_SIMP_TAC[REAL_LE_MUL; REAL_POW_2; REAL_ARITH
`x * x + y * y <= (x + y) * (x + y) <=> &0 <= x * y`]);;
let LAMBDA_SKOLEM = prove
(`(!i. 1 <= i /\ i <= dimindex(:N) ==> ?x. P i x) =
(?x:A^N. !i. 1 <= i /\ i <= dimindex(:N) ==> P i (x$i))`,
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_TAC `x:num->A`) THEN
EXISTS_TAC `(lambda i. x i):A^N` THEN ASM_SIMP_TAC[LAMBDA_BETA];
DISCH_THEN(X_CHOOSE_TAC `x:A^N`) THEN
EXISTS_TAC `\i. (x:A^N)$i` THEN ASM_REWRITE_TAC[]]);;
let EPSILON_DELTA_MINIMAL = prove
(`!P:real->A->bool Q.
FINITE {x | Q x} /\
(!d e x. Q x /\ &0 < e /\ e < d ==> P d x ==> P e x) /\
(!x. Q x ==> ?d. &0 < d /\ P d x)
==> ?d. &0 < d /\ !x. Q x ==> P d x`,
REWRITE_TAC[IMP_IMP] THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `{x:A | Q x} = {}` THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EXTENSION]) THEN
REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM] THEN
DISCH_TAC THEN EXISTS_TAC `&1` THEN ASM_REWRITE_TAC[REAL_LT_01];
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `d:A->real` THEN DISCH_TAC THEN
EXISTS_TAC `inf(IMAGE d {x:A | Q x})` THEN
ASM_SIMP_TAC[REAL_LT_INF_FINITE; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
ASM_SIMP_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN
X_GEN_TAC `a:A` THEN DISCH_TAC THEN
SUBGOAL_THEN
`&0 < inf(IMAGE d {x:A | Q x}) /\ inf(IMAGE d {x | Q x}) <= d a`
MP_TAC THENL
[ASM_SIMP_TAC[REAL_LT_INF_FINITE; REAL_INF_LE_FINITE;
FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
ASM_MESON_TAC[REAL_LE_REFL];
REWRITE_TAC[REAL_LE_LT] THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(d:A->real) a` THEN ASM_SIMP_TAC[]]]);;
let HAS_SIZE_1_EXISTS = prove
(`!s. s HAS_SIZE 1 <=> ?!x. x IN s`,
REPEAT GEN_TAC THEN CONV_TAC(LAND_CONV HAS_SIZE_CONV) THEN
REWRITE_TAC[EXTENSION; IN_SING] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Characterizations of solvability of small systems of equations. *)
(* ------------------------------------------------------------------------- *)
let LINEAR_EQUATIONS_1_EQ = prove
(`!a b. (?x. a * x = b) <=> a = &0 ==> b = &0`,
REPEAT GEN_TAC THEN EQ_TAC THENL [CONV_TAC REAL_RING; ALL_TAC] THEN
ASM_CASES_TAC `b = &0` THEN
ASM_SIMP_TAC[REAL_FIELD `~(a = &0) ==> (a * x = b <=> x = b / a)`] THEN
MESON_TAC[REAL_MUL_RZERO]);;
let LINEAR_EQUATIONS_2_EQ = prove
(`!a b c d u v.
(?x y. a * x + b * y = u /\ c * x + d * y = v) <=>
(a * d = b * c ==> d * u = b * v /\ c * u = a * v) /\
(a = &0 /\ b = &0 /\ c = &0 /\ d = &0 ==> u = &0 /\ v = &0)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [CONV_TAC REAL_RING; ALL_TAC] THEN
ASM_CASES_TAC `u = &0 /\ v = &0` THEN ASM_REWRITE_TAC[] THENL
[ASM_METIS_TAC[REAL_MUL_RZERO; REAL_ADD_LID]; ALL_TAC] THEN
REWRITE_TAC[DE_MORGAN_THM] THEN STRIP_TAC THENL
[ALL_TAC;
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM];
ONCE_REWRITE_TAC[CONJ_SYM];
ONCE_REWRITE_TAC[CONJ_SYM] THEN
ONCE_REWRITE_TAC[REAL_ADD_SYM] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM]] THEN
ASM_SIMP_TAC[REAL_FIELD
`~(a = &0)
==> (a * x + b * y = u /\ c * x + d * y = v <=>
x = (u - b * y) / a /\ (a * d - b * c) * y = a * v - c * u)`] THEN
GEN_REWRITE_TAC I [SWAP_EXISTS_THM] THEN REWRITE_TAC[UNWIND_THM2] THEN
REWRITE_TAC[LINEAR_EQUATIONS_1_EQ] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Handy definitions and basic lemmas for real intervals. *)
(* ------------------------------------------------------------------------- *)
let is_realinterval = new_definition
`is_realinterval s <=>
!a b c. a IN s /\ b IN s /\ a <= c /\ c <= b ==> c IN s`;;
let IS_REALINTERVAL_EMPTY = prove
(`is_realinterval {}`,
REWRITE_TAC[is_realinterval; NOT_IN_EMPTY]);;
let IS_REALINTERVAL_UNION = prove
(`!s t. is_realinterval s /\ is_realinterval t /\ ~(s INTER t = {})
==> is_realinterval(s UNION t)`,
REWRITE_TAC[is_realinterval; IN_UNION; IN_INTER;
NOT_IN_EMPTY; EXTENSION] THEN
MESON_TAC[REAL_LE_TRANS; REAL_LE_TOTAL]);;
let IS_REALINTERVAL_UNIV = prove
(`is_realinterval (:real)`,
REWRITE_TAC[is_realinterval; IN_UNIV]);;
let IS_REALINTERVAL_INTER = prove
(`!s t. is_realinterval s /\ is_realinterval t
==> is_realinterval(s INTER t)`,
REWRITE_TAC[is_realinterval; IN_INTER] THEN MESON_TAC[]);;
let open_real_interval = new_definition
`open_real_interval(a:real,b:real) = {x:real | a < x /\ x < b}`;;
let closed_real_interval = define
`closed_real_interval[a:real,b:real] = {x:real | a <= x /\ x <= b}`;;
make_overloadable "real_interval" `:A`;;
overload_interface("real_interval",`open_real_interval`);;
overload_interface("real_interval",`closed_real_interval`);;
let real_interval = prove
(`real_interval(a,b) = {x | a < x /\ x < b} /\
real_interval[a,b] = {x | a <= x /\ x <= b}`,
REWRITE_TAC[open_real_interval; closed_real_interval]);;
let IN_REAL_INTERVAL = prove
(`!a b x. (x IN real_interval[a,b] <=> a <= x /\ x <= b) /\
(x IN real_interval(a,b) <=> a < x /\ x < b)`,
REWRITE_TAC[real_interval; IN_ELIM_THM]);;
let EMPTY_AS_REAL_INTERVAL = prove
(`{} = real_interval[&1,&0]`,
REWRITE_TAC[EXTENSION; IN_REAL_INTERVAL; NOT_IN_EMPTY] THEN REAL_ARITH_TAC);;
let REAL_INTERVAL_OPEN_SUBSET_CLOSED = prove
(`!a b. real_interval(a,b) SUBSET real_interval[a,b]`,
REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let REAL_INTERVAL_EQ_EMPTY = prove
(`(!a b. real_interval[a,b] = {} <=> b < a) /\
(!a b. real_interval(a,b) = {} <=> b <= a)`,
REWRITE_TAC[EXTENSION; IN_REAL_INTERVAL; NOT_IN_EMPTY] THEN
REWRITE_TAC[GSYM NOT_EXISTS_THM] THEN
REWRITE_TAC[GSYM REAL_LT_BETWEEN; GSYM REAL_LE_BETWEEN] THEN
REAL_ARITH_TAC);;
let REAL_INTERVAL_NE_EMPTY = prove
(`(!a b. ~(real_interval[a,b] = {}) <=> a <= b) /\
(!a b. ~(real_interval(a,b) = {}) <=> a < b)`,
REWRITE_TAC[REAL_INTERVAL_EQ_EMPTY; REAL_NOT_LE; REAL_NOT_LT]);;
let REAL_INTERVAL_SING = prove
(`!a. real_interval[a,a] = {a} /\ real_interval(a,a) = {}`,
REWRITE_TAC[EXTENSION; IN_SING; NOT_IN_EMPTY; IN_REAL_INTERVAL] THEN
REAL_ARITH_TAC);;
let ENDS_IN_REAL_INTERVAL = prove
(`(!a b. a IN real_interval[a,b] <=> ~(real_interval[a,b] = {})) /\
(!a b. b IN real_interval[a,b] <=> ~(real_interval[a,b] = {})) /\
(!a b. ~(a IN real_interval(a,b))) /\
(!a b. ~(b IN real_interval(a,b)))`,
REWRITE_TAC[IN_REAL_INTERVAL; REAL_INTERVAL_EQ_EMPTY] THEN REAL_ARITH_TAC);;
let IN_REAL_INTERVAL_REFLECT = prove
(`(!a b x. --x IN real_interval[--b,--a] <=> x IN real_interval[a,b]) /\
(!a b x. --x IN real_interval(--b,--a) <=> x IN real_interval(a,b))`,
REWRITE_TAC[IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let REFLECT_REAL_INTERVAL = prove
(`(!a b. IMAGE (--) (real_interval[a,b]) = real_interval[--b,--a]) /\
(!a b. IMAGE (--) (real_interval(a,b)) = real_interval(--b,--a))`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_IMAGE; IN_REAL_INTERVAL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `x:real = --y <=> --x = y`] THEN
REWRITE_TAC[UNWIND_THM1] THEN REAL_ARITH_TAC);;
let IS_REALINTERVAL_INTERVAL = prove
(`!a b. is_realinterval(real_interval(a,b)) /\
is_realinterval(real_interval[a,b])`,
REWRITE_TAC[is_realinterval; IN_REAL_INTERVAL] THEN REAL_ARITH_TAC);;
let ENDS_IN_UNIT_REAL_INTERVAL = prove
(`&0 IN real_interval[&0,&1] /\ &1 IN real_interval[&0,&1]`,
REWRITE_TAC[IN_REAL_INTERVAL; REAL_POS; REAL_LE_REFL]);;
let INTER_REAL_INTERVAL = prove
(`!a b c d.
real_interval[a,b] INTER real_interval[c,d] =
real_interval[max a c,min b d]`,
REWRITE_TAC[EXTENSION; IN_INTER; IN_REAL_INTERVAL] THEN
REAL_ARITH_TAC);;
let REAL_OPEN_CLOSED_INTERVAL = prove
(`!a b. real_interval(a,b) = real_interval[a,b] DIFF {a,b}`,
SIMP_TAC[EXTENSION; IN_DIFF; IN_REAL_INTERVAL; IN_INSERT; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let REAL_CLOSED_OPEN_INTERVAL = prove
(`!a b. a <= b ==> real_interval[a,b] = real_interval(a,b) UNION {a,b}`,
SIMP_TAC[EXTENSION; IN_UNION; IN_REAL_INTERVAL; IN_INSERT; NOT_IN_EMPTY] THEN
REAL_ARITH_TAC);;
let IS_REALINTERVAL_SING = prove
(`!a. is_realinterval {a}`,
REWRITE_TAC[is_realinterval; IN_SING] THEN REAL_ARITH_TAC);;
let IS_REALINTERVAL_CONTAINS_INTERVAL = prove
(`!s a b. is_realinterval s /\ a IN s /\ b IN s
==> real_interval[a,b] SUBSET s`,
REWRITE_TAC[SUBSET; is_realinterval; IN_REAL_INTERVAL] THEN
MESON_TAC[]);;
let IS_REALINTERVAL_SHRINK = prove
(`!s. is_realinterval (IMAGE (\x. x / (&1 + abs x)) s) <=>
is_realinterval s`,
REWRITE_TAC[is_realinterval; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
GEN_TAC THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[SET_RULE `y IN IMAGE f s <=> ?x. f x = y /\ x IN s`] THEN
REWRITE_TAC[MESON[REAL_SHRINK_GALOIS]
`(?x. x / (&1 + abs x) = c /\ x IN s) <=>
(?x. x / (&1 + abs x) = c) /\ (!x. x / (&1 + abs x) = c ==> x IN s)`] THEN
REWRITE_TAC[TAUT `(p ==> q /\ r) <=> (p ==> q) /\ (p ==> r)`] THEN
REWRITE_TAC[FORALL_AND_THM; RIGHT_IMP_FORALL_THM] THEN
MATCH_MP_TAC(TAUT `(q <=> r) /\ p ==> (p /\ q <=> r)`) THEN
CONJ_TAC THENL [MESON_TAC[REAL_SHRINK_LE]; ALL_TAC] THEN
MESON_TAC[REAL_SHRINK_RANGE; REAL_SHRINK_GROW; REAL_ARITH
`a <= x /\ x <= b /\ abs a < &1 /\ abs b < &1 ==> abs x < &1`]);;
let SUBSET_REAL_INTERVAL = prove
(`!a b c d.
(real_interval[a,b] SUBSET real_interval[c,d] <=>
b < a \/ c <= a /\ a <= b /\ b <= d) /\
(real_interval[a,b] SUBSET real_interval(c,d) <=>
b < a \/ c < a /\ a <= b /\ b < d) /\
(real_interval(a,b) SUBSET real_interval[c,d] <=>
b <= a \/ c <= a /\ a < b /\ b <= d) /\
(real_interval(a,b) SUBSET real_interval(c,d) <=>
b <= a \/ c <= a /\ a < b /\ b <= d)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUBSET; IN_REAL_INTERVAL] THEN
REPEAT CONJ_TAC THEN (EQ_TAC THENL [ALL_TAC; REAL_ARITH_TAC]) THEN
DISCH_THEN(fun th ->
MP_TAC(SPEC `(a + min b c) / &2` th) THEN
MP_TAC(SPEC `(max d a + b) / &2` th)) THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Converting between matrices/arrays and flattened vectors. We can consider *)
(* these as curry and uncurry for Cartesian powers. *)
(* ------------------------------------------------------------------------- *)
let vectorize = new_definition
`(vectorize:A^N^M->A^(M,N)finite_prod) =
\x. lambda i. x$(1 + (i - 1) DIV dimindex(:N))
$(1 + (i - 1) MOD dimindex(:N))`;;
let matrify = new_definition
`(matrify:A^(M,N)finite_prod->A^N^M) =
\x. lambda i j. x$((i - 1) * dimindex(:N) + j)`;;
let VECTORIZE_COMPONENT = prove
(`!m:A^N^M i.
1 <= i /\ i <= dimindex(:M) * dimindex(:N)
==> (vectorize m)$i = m$(1 + (i - 1) DIV dimindex(:N))
$(1 + (i - 1) MOD dimindex(:N))`,
SIMP_TAC[vectorize; LAMBDA_BETA; DIMINDEX_FINITE_PROD]);;
let MATRIFY_COMPONENT = prove
(`!v:A^(M,N)finite_prod i j.
1 <= i /\ i <= dimindex(:M) /\ 1 <= j /\ j <= dimindex(:N)
==> (matrify v)$i$j = v$((i - 1) * dimindex(:N) + j)`,
SIMP_TAC[matrify; LAMBDA_BETA]);;
let VECTORIZE_MATRIFY = prove
(`!a:A^(M,N)finite_prod. vectorize(matrify a) = a`,
GEN_TAC THEN SIMP_TAC[CART_EQ; vectorize; matrify; LAMBDA_BETA] THEN
REWRITE_TAC[DIMINDEX_FINITE_PROD] THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand) LAMBDA_BETA o lhand o lhand o snd) THEN
REWRITE_TAC[ARITH_RULE `1 <= 1 + x /\ 1 + y <= z <=> y < z`] THEN
SIMP_TAC[RDIV_LT_EQ; DIMINDEX_GE_1; LE_1] THEN
ANTS_TAC THENL [ASM_ARITH_TAC; DISCH_THEN SUBST1_TAC] THEN
W(MP_TAC o PART_MATCH (lhand o rand) LAMBDA_BETA o lhand o snd) THEN
REWRITE_TAC[ARITH_RULE `1 <= 1 + x /\ 1 + y <= z <=> y < z`] THEN
SIMP_TAC[DIVISION; DIMINDEX_GE_1; LE_1] THEN DISCH_THEN SUBST1_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[ADD_SUB2] THEN
MATCH_MP_TAC(ARITH_RULE
`1 <= i /\ i - 1 = d * n + m /\ m < n
==> d * n + 1 + m = i`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVISION THEN
SIMP_TAC[DIMINDEX_GE_1; LE_1]);;
let MATRIFY_VECTORIZE = prove
(`!m:A^N^M. matrify(vectorize m) = m`,
GEN_TAC THEN SIMP_TAC[CART_EQ; vectorize; matrify; LAMBDA_BETA] THEN
X_GEN_TAC `i:num` THEN STRIP_TAC THEN
X_GEN_TAC `j:num` THEN STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand) LAMBDA_BETA o lhand o snd) THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
TRANS_TAC LE_TRANS `(i - 1) * dimindex(:N) + dimindex(:N)` THEN
ASM_REWRITE_TAC[LE_ADD_LCANCEL] THEN
REWRITE_TAC[ARITH_RULE `x * n + n = (x + 1) * n`] THEN
ASM_SIMP_TAC[SUB_ADD; DIMINDEX_FINITE_PROD] THEN
ASM_SIMP_TAC[LE_MULT_RCANCEL; DIMINDEX_GE_1];
DISCH_THEN SUBST1_TAC] THEN
REWRITE_TAC[] THEN BINOP_TAC THENL
[AP_TERM_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `1 <= i /\ j = i - 1 ==> 1 + j = i`) THEN
ASM_REWRITE_TAC[] THENL
[MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `j - 1` THEN ASM_ARITH_TAC;
MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `i - 1` THEN ASM_ARITH_TAC]);;
let FORALL_VECTORIZE = prove
(`!P. (!x. P x) <=> (!x. P(vectorize x))`,
MESON_TAC[MATRIFY_VECTORIZE; VECTORIZE_MATRIFY]);;
let FORALL_MATRIFY = prove
(`!P. (!x. P x) <=> (!x. P(matrify x))`,
MESON_TAC[MATRIFY_VECTORIZE; VECTORIZE_MATRIFY]);;
let EXISTS_VECTORIZE = prove
(`!P. (?x. P x) <=> (?x. P(vectorize x))`,
MESON_TAC[MATRIFY_VECTORIZE; VECTORIZE_MATRIFY]);;
let EXISTS_MATRIFY = prove
(`!P. (?x. P x) <=> (?x. P(matrify x))`,
MESON_TAC[MATRIFY_VECTORIZE; VECTORIZE_MATRIFY]);;
let VECTORIZE_GSPEC = prove
(`!P:A^N^M->bool. {vectorize m | P m} = {v | P(matrify v)}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MESON_TAC[VECTORIZE_MATRIFY; MATRIFY_VECTORIZE]);;
let VECTORIZE_EQ = prove
(`!m1 m2:real^N^M. vectorize m1 = vectorize m2 <=> m1 = m2`,
MESON_TAC[MATRIFY_VECTORIZE]);;
let MATRIFY_EQ = prove
(`!m1 m2:real^(M,N)finite_prod. matrify m1 = matrify m2 <=> m1 = m2`,
MESON_TAC[VECTORIZE_MATRIFY]);;
(* ------------------------------------------------------------------------- *)
(* A generic notion of "hull" (convex, affine, conic hull and closure). *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("hull",(21,"left"));;
let hull = new_definition
`P hull s = INTERS {t | P t /\ s SUBSET t}`;;
let HULL_P = prove
(`!P s. P s ==> (P hull s = s)`,
REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM] THEN
MESON_TAC[SUBSET]);;
let P_HULL = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) ==> P(P hull s)`,
REWRITE_TAC[hull] THEN SIMP_TAC[IN_ELIM_THM]);;
let HULL_EQ = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
==> ((P hull s = s) <=> P s)`,
MESON_TAC[P_HULL; HULL_P]);;
let HULL_HULL = prove
(`!P s. P hull (P hull s) = P hull s`,
REWRITE_TAC[hull; EXTENSION; IN_INTERS; IN_ELIM_THM; SUBSET] THEN
MESON_TAC[]);;
let HULL_SUBSET = prove
(`!P s. s SUBSET (P hull s)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_MONO = prove
(`!P s t. s SUBSET t ==> (P hull s) SUBSET (P hull t)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_ANTIMONO = prove
(`!P Q s. P SUBSET Q ==> (Q hull s) SUBSET (P hull s)`,
REWRITE_TAC[SUBSET; hull; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[IN]);;
let HULL_UNIV = prove
(`!P:(A->bool)->bool. P hull UNIV = UNIV`,
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET_UNIV; HULL_SUBSET]);;
let HULL_MINIMAL = prove
(`!P s t. s SUBSET t /\ P t ==> (P hull s) SUBSET t`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let SUBSET_HULL = prove
(`!P s t. P t ==> ((P hull s) SUBSET t <=> s SUBSET t)`,
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN MESON_TAC[]);;
let HULL_UNIQUE = prove
(`!P s t. s SUBSET t /\ P t /\ (!t'. s SUBSET t' /\ P t' ==> t SUBSET t')
==> (P hull s = t)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
REWRITE_TAC[hull; SUBSET; IN_INTERS; IN_ELIM_THM] THEN
ASM_MESON_TAC[SUBSET_HULL; SUBSET]);;
let HULL_UNION_SUBSET = prove
(`!P s t. (P hull s) UNION (P hull t) SUBSET (P hull (s UNION t))`,
SIMP_TAC[UNION_SUBSET; HULL_MONO; SUBSET_UNION]);;
let HULL_UNION = prove
(`!P s t. P hull (s UNION t) = P hull (P hull s UNION P hull t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_UNION_LEFT = prove
(`!P s t:A->bool.
P hull (s UNION t) = P hull (P hull s UNION t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_UNION_RIGHT = prove
(`!P s t:A->bool.
P hull (s UNION t) = P hull (s UNION P hull t)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[hull] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM; UNION_SUBSET] THEN
MESON_TAC[SUBSET_HULL]);;
let HULL_INSERT = prove
(`!P a s. P hull (a INSERT s) = P hull (a INSERT P hull s)`,
ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN
ONCE_REWRITE_TAC[HULL_UNION] THEN REWRITE_TAC[HULL_HULL]);;
let HULL_REDUNDANT_EQ = prove
(`!P a s. a IN (P hull s) <=> (P hull (a INSERT s) = P hull s)`,
REWRITE_TAC[hull] THEN SET_TAC[]);;
let HULL_REDUNDANT = prove
(`!P a s. a IN (P hull s) ==> (P hull (a INSERT s) = P hull s)`,
REWRITE_TAC[HULL_REDUNDANT_EQ]);;
let HULL_INDUCT = prove
(`!P p s. (!x:A. x IN s ==> p x) /\ P {x | p x}
==> !x. x IN P hull s ==> p x`,
REPEAT GEN_TAC THEN
MP_TAC(ISPECL [`P:(A->bool)->bool`; `s:A->bool`; `{x:A | p x}`]
HULL_MINIMAL) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM]);;
let HULL_INC = prove
(`!P s x. x IN s ==> x IN P hull s`,
MESON_TAC[REWRITE_RULE[SUBSET] HULL_SUBSET]);;
let HULL_IMAGE_SUBSET = prove
(`!P f s. P(P hull s) /\ (!s. P s ==> P(IMAGE f s))
==> P hull (IMAGE f s) SUBSET (IMAGE f (P hull s))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[IMAGE_SUBSET; HULL_SUBSET]);;
let HULL_IMAGE_GALOIS = prove
(`!P f g s. (!s. P(P hull s)) /\
(!s. P s ==> P(IMAGE f s)) /\ (!s. P s ==> P(IMAGE g s)) /\
(!s t. s SUBSET IMAGE g t <=> IMAGE f s SUBSET t)
==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
ASM_SIMP_TAC[HULL_IMAGE_SUBSET] THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [GSYM th]) THEN
MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[HULL_SUBSET]);;
let HULL_IMAGE = prove
(`!P f s. (!s. P(P hull s)) /\ (!s. P(IMAGE f s) <=> P s) /\
(!x y:A. f x = f y ==> x = y) /\ (!y. ?x. f x = y)
==> P hull (IMAGE f s) = IMAGE f (P hull s)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
REWRITE_TAC[BIJECTIVE_LEFT_RIGHT_INVERSE] THEN
DISCH_THEN(X_CHOOSE_THEN `g:A->A` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC HULL_IMAGE_GALOIS THEN EXISTS_TAC `g:A->A` THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
X_GEN_TAC `s:A->bool` THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN ASM SET_TAC[]);;
let IS_HULL = prove
(`!P s. (!f. (!s. s IN f ==> P s) ==> P(INTERS f))
==> (P s <=> ?t. s = P hull t)`,
MESON_TAC[HULL_P; P_HULL]);;
let HULLS_EQ = prove
(`!P s t.
(!f. (!s. s IN f ==> P s) ==> P (INTERS f)) /\
s SUBSET P hull t /\ t SUBSET P hull s
==> P hull s = P hull t`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
CONJ_TAC THEN MATCH_MP_TAC HULL_MINIMAL THEN
ASM_SIMP_TAC[P_HULL]);;
let HULL_P_AND_Q = prove
(`!P Q. (!f. (!s. s IN f ==> P s) ==> P(INTERS f)) /\
(!f. (!s. s IN f ==> Q s) ==> Q(INTERS f)) /\
(!s. Q s ==> Q(P hull s))
==> (\x. P x /\ Q x) hull s = P hull (Q hull s)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC HULL_UNIQUE THEN ASM_SIMP_TAC[HULL_INC; SUBSET_HULL] THEN
ASM_MESON_TAC[P_HULL; HULL_SUBSET; SUBSET_TRANS]);;
let HULL_UNIONS_SUBSET = prove
(`!P f. UNIONS {P hull s | s IN f} SUBSET P hull (UNIONS f)`,
REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MONO THEN ASM SET_TAC[]);;
let HULL_INTERS_SUBSET = prove
(`!P f. P hull (INTERS f) SUBSET INTERS {P hull s | s IN f}`,
REWRITE_TAC[SUBSET_INTERS; FORALL_IN_GSPEC] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC HULL_MONO THEN ASM SET_TAC[]);;
let HULL_INTER_SUBSET = prove
(`!P s t. P hull (s INTER t) SUBSET (P hull s) INTER (P hull t)`,
REWRITE_TAC[hull; INTERS_GSPEC] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Handy lemmas switching between versions of limit arguments. *)
(* ------------------------------------------------------------------------- *)
let FORALL_POS_MONO = prove
(`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. ~(n = 0) ==> P(inv(&n)))
==> !e. &0 < e ==> P e`,
MESON_TAC[REAL_ARCH_INV; REAL_LT_TRANS]);;
let FORALL_POS_MONO_1 = prove
(`!P. (!d e. d < e /\ P d ==> P e) /\ (!n. P(inv(&n + &1)))
==> !e. &0 < e ==> P e`,
REWRITE_TAC[REAL_OF_NUM_SUC; GSYM FORALL_SUC; FORALL_POS_MONO]);;
let FORALL_POS_MONO_EQ = prove
(`!P. (!d e. d < e /\ P d ==> P e)
==> ((!e. &0 < e ==> P e) <=> (!n. ~(n = 0) ==> P(inv(&n))))`,
MESON_TAC[REAL_ARCH_INV; REAL_LT_INV_EQ; REAL_LT_TRANS; LE_1;
REAL_OF_NUM_LT]);;
let FORALL_POS_MONO_1_EQ = prove
(`!P. (!d e. d < e /\ P d ==> P e)
==> ((!e. &0 < e ==> P e) <=> (!n. P(inv(&n + &1))))`,
GEN_TAC THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP FORALL_POS_MONO_EQ) THEN
REWRITE_TAC[REAL_OF_NUM_SUC; GSYM FORALL_SUC]);;
let REAL_ARCH_RDIV_EQ_0 = prove
(`!x c. &0 <= x /\ &0 <= c /\ (!m. 0 < m ==> &m * x <= c) ==> x = &0`,
SIMP_TAC [GSYM REAL_LE_ANTISYM; GSYM REAL_NOT_LT] THEN REPEAT STRIP_TAC THEN
POP_ASSUM (STRIP_ASSUME_TAC o SPEC `c:real` o MATCH_MP REAL_ARCH) THEN
ASM_CASES_TAC `n=0` THENL
[POP_ASSUM SUBST_ALL_TAC THEN
RULE_ASSUM_TAC (REWRITE_RULE [REAL_MUL_LZERO]) THEN
ASM_MESON_TAC [REAL_LET_ANTISYM];
ASM_MESON_TAC [REAL_LET_ANTISYM; REAL_MUL_SYM; LT_NZ]]);;
(* ------------------------------------------------------------------------- *)
(* A slightly sharper indexing lemma. *)
(* ------------------------------------------------------------------------- *)
let FINITE_INDEX_NUMSEG_SPECIAL = prove
(`!s a:A.
FINITE s /\ a IN s
==> ?f. (!i j. i IN 1..CARD s /\ j IN 1..CARD s /\ f i = f j
==> i = j) /\
s = IMAGE f (1..CARD s) /\
f 1 = a`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`1..CARD(s:A->bool)`; `s:A->bool`; `1`; `a:A`]
CARD_EQ_BIJECTIONS_SPECIAL) THEN
ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]] THEN
ASM_REWRITE_TAC[FINITE_NUMSEG; CARD_NUMSEG_1; IN_NUMSEG; LE_REFL] THEN
ASM_SIMP_TAC[CARD_EQ_0; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
ASM SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Geometric progression. *)
(* ------------------------------------------------------------------------- *)
let SUM_GP_BASIC = prove
(`!x n. (&1 - x) * sum(0..n) (\i. x pow i) = &1 - x pow (SUC n)`,
GEN_TAC THEN INDUCT_TAC THEN REWRITE_TAC[SUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[real_pow; REAL_MUL_RID; LE_0] THEN
ASM_REWRITE_TAC[REAL_ADD_LDISTRIB; real_pow] THEN REAL_ARITH_TAC);;
let SUM_GP_MULTIPLIED = prove
(`!x m n. m <= n
==> ((&1 - x) * sum(m..n) (\i. x pow i) = x pow m - x pow (SUC n))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC
[SUM_OFFSET_0; REAL_POW_ADD; REAL_MUL_ASSOC; SUM_GP_BASIC; SUM_RMUL] THEN
REWRITE_TAC[REAL_SUB_RDISTRIB; GSYM REAL_POW_ADD; REAL_MUL_LID] THEN
ASM_SIMP_TAC[ARITH_RULE `m <= n ==> (SUC(n - m) + m = SUC n)`]);;
let SUM_GP = prove
(`!x m n.
sum(m..n) (\i. x pow i) =
if n < m then &0
else if x = &1 then &((n + 1) - m)
else (x pow m - x pow (SUC n)) / (&1 - x)`,
REPEAT GEN_TAC THEN
DISJ_CASES_TAC(ARITH_RULE `n < m \/ ~(n < m) /\ m <= n:num`) THEN
ASM_SIMP_TAC[SUM_TRIV_NUMSEG] THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC[REAL_POW_ONE; SUM_CONST_NUMSEG; REAL_MUL_RID]; ALL_TAC] THEN
MATCH_MP_TAC REAL_EQ_LCANCEL_IMP THEN EXISTS_TAC `&1 - x` THEN
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_SUB_0; SUM_GP_MULTIPLIED]);;
let SUM_GP_OFFSET = prove
(`!x m n. sum(m..m+n) (\i. x pow i) =
if x = &1 then &n + &1
else x pow m * (&1 - x pow (SUC n)) / (&1 - x)`,
REPEAT GEN_TAC THEN REWRITE_TAC[SUM_GP; ARITH_RULE `~(m + n < m:num)`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[REAL_OF_NUM_ADD] THEN AP_TERM_TAC THEN ARITH_TAC;
REWRITE_TAC[real_div; real_pow; REAL_POW_ADD] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Segment of natural numbers starting at a specific number. *)
(* ------------------------------------------------------------------------- *)
let from = new_definition
`from n = {m:num | n <= m}`;;
let FROM_0 = prove
(`from 0 = (:num)`,
REWRITE_TAC[from; LE_0] THEN SET_TAC[]);;
let IN_FROM = prove
(`!m n. m IN from n <=> n <= m`,
REWRITE_TAC[from; IN_ELIM_THM]);;
let FROM_MONO = prove
(`!m n. from m SUBSET from n <=> n <= m`,
REWRITE_TAC[SUBSET; IN_FROM] THEN MESON_TAC[LE_TRANS; LE_REFL]);;
let FROM_INTER_NUMSEG_GEN = prove
(`!k m n. (from k) INTER (m..n) = (if m < k then k..n else m..n)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
ARITH_TAC);;
let FROM_INTER_NUMSEG_MAX = prove
(`!m n p. from p INTER (m..n) = (MAX p m..n)`,
REWRITE_TAC[EXTENSION; IN_INTER; IN_NUMSEG; IN_FROM] THEN ARITH_TAC);;
let FROM_INTER_NUMSEG = prove
(`!k n. (from k) INTER (0..n) = k..n`,
REWRITE_TAC[from; IN_ELIM_THM; IN_INTER; IN_NUMSEG; EXTENSION] THEN
ARITH_TAC);;
let INFINITE_FROM = prove
(`!n. INFINITE(from n)`,
GEN_TAC THEN
SUBGOAL_THEN `from n = (:num) DIFF {i | i < n}`
(fun th -> SIMP_TAC[th; INFINITE_DIFF_FINITE; FINITE_NUMSEG_LT;
num_INFINITE]) THEN
REWRITE_TAC[EXTENSION; from; IN_DIFF; IN_UNIV; IN_ELIM_THM] THEN ARITH_TAC);;
let FINITE_INTER_NUMSEG = prove
(`!s m n. FINITE(s INTER (m..n))`,
MESON_TAC[FINITE_SUBSET; FINITE_NUMSEG; INTER_SUBSET]);;
let FROM_NONEMPTY = prove
(`!n. ~(from n = {})`,
GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_FROM; NOT_IN_EMPTY] THEN
MESON_TAC[LE_REFL]);;
(* ------------------------------------------------------------------------- *)
(* Make a Horner-style evaluation of sum(m..n) (\k. a(k) * x pow k). *)
(* ------------------------------------------------------------------------- *)
let HORNER_SUM_CONV =
let horner_0,horner_s = (CONJ_PAIR o prove)
(`(sum(0..0) (\i. c(i) * x pow i) = c 0) /\
(sum(0..SUC n) (\i. c(i) * x pow i) =
c(0) + x * sum(0..n) (\i. c(i+1) * x pow i))`,
REWRITE_TAC[CONJUNCT1 SUM_CLAUSES_NUMSEG] THEN
REWRITE_TAC[GSYM SUM_LMUL] THEN
ONCE_REWRITE_TAC[REAL_ARITH `x * c * y:real = c * x * y`] THEN
REWRITE_TAC[GSYM(CONJUNCT2 real_pow); ADD1] THEN
REWRITE_TAC[GSYM(SPEC `1` SUM_OFFSET)] THEN
SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; real_pow; REAL_MUL_RID]) in
let conv_0 = GEN_REWRITE_CONV I [horner_0] THENC NUM_REDUCE_CONV
and conv_s = LAND_CONV(RAND_CONV(num_CONV)) THENC
GEN_REWRITE_CONV I [horner_s] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [LEFT_ADD_DISTRIB] THENC
GEN_REWRITE_CONV TOP_DEPTH_CONV [GSYM ADD_ASSOC] THENC
NUM_REDUCE_CONV in
let rec conv tm =
try (conv_0 THENC REAL_RAT_REDUCE_CONV) tm with Failure _ ->
(conv_s THENC RAND_CONV(RAND_CONV conv) THENC REAL_RAT_REDUCE_CONV) tm in
conv;;
(* ------------------------------------------------------------------------- *)
(* Some general lemmas about subsequences. *)
(* ------------------------------------------------------------------------- *)
let SUBSEQUENCE_STEPWISE = prove
(`!r:num->num. (!m n. m < n ==> r m < r n) <=> (!n. r n < r(SUC n))`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[ARITH_RULE `n < SUC n`] THEN
DISCH_TAC THEN MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN
ASM_REWRITE_TAC[] THEN ARITH_TAC);;
let SUBSEQUENCE_IMP_INJECTIVE = prove
(`!r:num->num. (!m n. m < n ==> r m < r n) ==> (!m n. r m = r n <=> m = n)`,
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC WLOG_LT THEN
ASM_MESON_TAC[LT_REFL]);;
let MONOTONE_BIGGER = prove
(`!r. (!m n. m < n ==> r(m) < r(n)) ==> !n:num. n <= r(n)`,
GEN_TAC THEN DISCH_TAC THEN INDUCT_TAC THEN
ASM_MESON_TAC[LE_0; ARITH_RULE `n <= m /\ m < p ==> SUC n <= p`; LT]);;
let INFINITE_ENUMERATE_WEAK = prove
(`!s:num->bool.
INFINITE s
==> ?r:num->num. (!m n. m < n ==> r(m) < r(n)) /\ (!n. r n IN s)`,
GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP INFINITE_ENUMERATE) THEN
MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);;
let INFINITE_ENUMERATE_EQ_ALT = prove
(`!s:num->bool.
INFINITE s <=> ?r. (!m n:num. m < n ==> r m < r n) /\ (!n. r n IN s)`,
GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[INFINITE_ENUMERATE_WEAK] THEN
STRIP_TAC THEN MATCH_MP_TAC INFINITE_SUPERSET THEN
EXISTS_TAC `IMAGE (r:num->num) (:num)` THEN
ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
MATCH_MP_TAC INFINITE_IMAGE THEN
REWRITE_TAC[num_INFINITE; IN_UNIV] THEN
ASM_MESON_TAC[SUBSEQUENCE_IMP_INJECTIVE]);;
let MONOTONE_SUBSEQUENCE = prove
(`!s:num->real. ?r:num->num.
(!m n. m < n ==> r(m) < r(n)) /\
((!m n. m <= n ==> s(r(m)) <= s(r(n))) \/
(!m n. m <= n ==> s(r(n)) <= s(r(m))))`,
GEN_TAC THEN
ASM_CASES_TAC `!n:num. ?p. n < p /\ !m. p <= m ==> s(m) <= s(p)` THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC[NOT_FORALL_THM; NOT_EXISTS_THM; NOT_IMP; DE_MORGAN_THM] THEN
REWRITE_TAC[RIGHT_OR_EXISTS_THM; SKOLEM_THM; REAL_NOT_LE; REAL_NOT_LT] THENL
[ABBREV_TAC `N = 0`; DISCH_THEN(X_CHOOSE_THEN `N:num` MP_TAC)] THEN
DISCH_THEN(X_CHOOSE_THEN `next:num->num` STRIP_ASSUME_TAC) THEN
(MP_TAC o prove_recursive_functions_exist num_RECURSION)
`(r 0 = next(SUC N)) /\ (!n. r(SUC n) = next(r n))` THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THENL
[SUBGOAL_THEN `!m:num n:num. r n <= m ==> s(m) <= s(r n):real`
ASSUME_TAC THEN TRY CONJ_TAC THEN TRY DISJ2_TAC THEN
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; LE] THEN
ASM_MESON_TAC[REAL_LE_TRANS; REAL_LE_REFL; LT_IMP_LE; LT_TRANS];
SUBGOAL_THEN `!n. N < (r:num->num) n` ASSUME_TAC THEN
TRY(CONJ_TAC THENL [GEN_TAC; DISJ1_TAC THEN GEN_TAC]) THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[LT; LE] THEN
TRY STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[REAL_LT_REFL; LT_LE; LTE_TRANS; REAL_LE_REFL;
REAL_LT_LE; REAL_LE_TRANS; LT]]);;
let CONVERGENT_BOUNDED_INCREASING = prove
(`!s:num->real b. (!m n. m <= n ==> s m <= s n) /\ (!n. abs(s n) <= b)
==> ?l. !e. &0 < e ==> ?N. !n. N <= n ==> abs(s n - l) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `\x. ?n. (s:num->real) n = x` REAL_COMPLETE) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_MESON_TAC[REAL_ARITH `abs(x) <= b ==> x <= b`]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real` THEN STRIP_TAC THEN
X_GEN_TAC `e:real` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `l - e`) THEN
ASM_MESON_TAC[REAL_ARITH `&0 < e ==> ~(l <= l - e)`;
REAL_ARITH `x <= y /\ y <= l /\ ~(x <= l - e) ==> abs(y - l) < e`]);;
let CONVERGENT_BOUNDED_MONOTONE = prove
(`!s:num->real b. (!n. abs(s n) <= b) /\
((!m n. m <= n ==> s m <= s n) \/
(!m n. m <= n ==> s n <= s m))
==> ?l. !e. &0 < e ==> ?N. !n. N <= n ==> abs(s n - l) < e`,
REPEAT STRIP_TAC THENL
[ASM_MESON_TAC[CONVERGENT_BOUNDED_INCREASING]; ALL_TAC] THEN
MP_TAC(SPEC `\n. --((s:num->real) n)` CONVERGENT_BOUNDED_INCREASING) THEN
ASM_REWRITE_TAC[REAL_LE_NEG2; REAL_ABS_NEG] THEN
ASM_MESON_TAC[REAL_ARITH `abs(x - --l) = abs(--x - l)`]);;
(* ------------------------------------------------------------------------- *)
(* Monotonic functions R->R. *)
(* ------------------------------------------------------------------------- *)
let STRICTLY_INCREASING_ALT = prove
(`!P f:real->real.
(!x y. P x /\ P y /\ x < y ==> f x < f y) <=>
(!x y. P x /\ P y /\ x <= y ==> f x <= f y) /\
(!x y. P x /\ P y /\ f x = f y ==> x = y)`,
METIS_TAC[REAL_LT_TOTAL; REAL_LE_LT; REAL_LT_ANTISYM]);;
let STRICTLY_DECREASING_ALT = prove
(`!P f:real->real.
(!x y. P x /\ P y /\ x < y ==> f y < f x) <=>
(!x y. P x /\ P y /\ x <= y ==> f y <= f x) /\
(!x y. P x /\ P y /\ f x = f y ==> x = y)`,
METIS_TAC[REAL_LT_TOTAL; REAL_LE_LT; REAL_LT_ANTISYM]);;
let REAL_NON_MONOTONE = prove
(`!P f:real->real.
(!x y. P x /\ P y /\ x <= y ==> f x <= f y) \/
(!x y. P x /\ P y /\ x <= y ==> f y <= f x) <=>
~(?x y z. P x /\ P y /\ P z /\ x < y /\ y < z /\
(f x < f y /\ f z < f y \/ f y < f x /\ f y < f z))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL
[MESON_TAC[REAL_LT_IMP_LE; REAL_LET_ANTISYM]; ALL_TAC] THEN
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP; DE_MORGAN_THM] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; REAL_NOT_LE; MESON[REAL_LT_LE]
`(x <= y /\ (f:real->real) y < f x <=> x < y /\ f y < f x) /\
(x <= y /\ f x < f y <=> x < y /\ f x < f y)`] THEN
MAP_EVERY X_GEN_TAC [`u:real`; `v:real`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`w:real`; `z:real`] THEN STRIP_TAC THEN
REPEAT_TCL DISJ_CASES_THEN ASSUME_TAC (REAL_ARITH
`u:real = w \/ u < w \/ w < u`)
THENL
[FIRST_X_ASSUM SUBST_ALL_TAC THEN
MATCH_MP_TAC(MESON[] `P w v z \/ P w z v ==> ?x y z. P x y z`);
MATCH_MP_TAC(MESON[] `P u v \/ P u w \/ P u z ==> ?x y. P x y`) THEN
ASM_REWRITE_TAC[OR_EXISTS_THM; REAL_LT_REFL] THEN
MATCH_MP_TAC(MESON[] `P(v:real) \/ P z ==> ?x. P x`);
MATCH_MP_TAC(MESON[] `P w u \/ P w v \/ P w z ==> ?x y. P x y`) THEN
ASM_REWRITE_TAC[OR_EXISTS_THM; REAL_LT_REFL] THEN
MATCH_MP_TAC(MESON[] `P(v:real) \/ P z ==> ?x. P x`)] THEN
ASM_SIMP_TAC[REAL_LT_REFL; REAL_ARITH `a < b ==> ~(b < a)`] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ o rev) THEN
CONV_TAC NNFC_CONV THEN CONV_TAC CNF_CONV THEN
REPEAT CONJ_TAC THEN TRY REAL_ARITH_TAC THEN
ASM_CASES_TAC `u:real = w` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
ASM_CASES_TAC `u:real = z` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
ASM_CASES_TAC `v:real = w` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
ASM_CASES_TAC `v:real = z` THEN ASM_REWRITE_TAC[REAL_LT_REFL] THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* A generic form of the argument "pick a subsequence satisfying P_0, *)
(* then a subsequence of that satisfying P_1, then a subsequece of that..." *)
(* ------------------------------------------------------------------------- *)
let SUBSEQUENCE_DIAGONALIZATION_LEMMA = prove
(`!P:num->(num->A)->bool.
(!i r:num->A. ?k. (!m n. m < n ==> k m < k n) /\ P i (r o k)) /\
(!i r:num->A k1 k2 N.
P i (r o k1) /\ (!j. N <= j ==> ?j'. j <= j' /\ k2 j = k1 j')
==> P i (r o k2))
==> !r:num->A. ?k. (!m n. m < n ==> k m < k n) /\ (!i. P i (r o k))`,
REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) [SKOLEM_THM] THEN
REWRITE_TAC[FORALL_AND_THM; TAUT
`(p ==> q /\ r) <=> (p ==> q) /\ (p ==> r)`] THEN
DISCH_THEN(X_CHOOSE_THEN
`kk:num->(num->A)->num->num` STRIP_ASSUME_TAC) THEN
X_GEN_TAC `r:num->A` THEN
(STRIP_ASSUME_TAC o prove_recursive_functions_exist num_RECURSION)
`(rr 0 = (kk:num->(num->A)->num->num) 0 r) /\
(!n. rr(SUC n) = rr n o kk (SUC n) (r o rr n))` THEN
EXISTS_TAC `\n. (rr:num->num->num) n n` THEN REWRITE_TAC[ETA_AX] THEN
SUBGOAL_THEN
`(!i. (!m n. m < n ==> (rr:num->num->num) i m < rr i n)) /\
(!i. (P:num->(num->A)->bool) i (r o rr i))`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[AND_FORALL_THM] THEN
INDUCT_TAC THEN ASM_REWRITE_TAC[o_ASSOC] THEN
REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!i j n. i <= j ==> (rr:num->num->num) i n <= rr j n`
ASSUME_TAC THENL
[REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [LE_EXISTS] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`j:num`,`j:num`) THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN SIMP_TAC[FORALL_UNWIND_THM2] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; LE_REFL] THEN
ASM_REWRITE_TAC[] THEN FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
(REWRITE_RULE[IMP_CONJ] LE_TRANS)) THEN REWRITE_TAC[o_THM] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP
(MESON[LE_LT]
`!f:num->num.
(!m n. m < n ==> f m < f n) ==> (!m n. m <= n ==> f m <= f n)`) o
SPEC `i + d:num`) THEN
SPEC_TAC(`n:num`,`n:num`) THEN MATCH_MP_TAC MONOTONE_BIGGER THEN
ASM_SIMP_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN DISCH_TAC THEN
MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `(rr:num->num->num) n m` THEN
ASM_MESON_TAC[LT_IMP_LE];
ALL_TAC] THEN
SUBGOAL_THEN
`!m n i. n <= m ==> ?j. i <= j /\ (rr:num->num->num) m i = rr n j`
ASSUME_TAC THENL
[ALL_TAC;
X_GEN_TAC `i:num` THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(rr:num->num->num) i` THEN ASM_REWRITE_TAC[] THEN
EXISTS_TAC `i:num` THEN ASM_MESON_TAC[]] THEN
SUBGOAL_THEN
`!p d i. ?j. i <= j /\ (rr:num->num->num) (p + d) i = rr p j`
(fun th -> MESON_TAC[LE_EXISTS; th]) THEN
X_GEN_TAC `p:num` THEN MATCH_MP_TAC num_INDUCTION THEN
ASM_REWRITE_TAC[ADD_CLAUSES] THEN CONJ_TAC THENL
[MESON_TAC[LE_REFL]; ALL_TAC] THEN
X_GEN_TAC `d:num` THEN DISCH_THEN(LABEL_TAC "+") THEN
X_GEN_TAC `i:num` THEN ASM_REWRITE_TAC[o_THM] THEN
REMOVE_THEN "+" (MP_TAC o SPEC
`(kk:num->(num->A)->num->num) (SUC(p + d))
((r:num->A) o (rr:num->num->num) (p + d)) i`) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `j:num` THEN
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LE_TRANS) THEN
SPEC_TAC(`i:num`,`i:num`) THEN MATCH_MP_TAC MONOTONE_BIGGER THEN
ASM_REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Countability of some relevant sets. *)
(* ------------------------------------------------------------------------- *)
let COUNTABLE_INTEGER = prove
(`COUNTABLE integer`,
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC
`IMAGE (\n. (&n:real)) (:num) UNION IMAGE (\n. --(&n)) (:num)` THEN
SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_UNION; NUM_COUNTABLE] THEN
REWRITE_TAC[SUBSET; IN_UNION; IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[IN; INTEGER_CASES]);;
let CARD_EQ_INTEGER = prove
(`integer =_c (:num)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM; GSYM COUNTABLE_ALT; COUNTABLE_INTEGER] THEN
REWRITE_TAC[le_c] THEN EXISTS_TAC `real_of_num` THEN
REWRITE_TAC[IN_UNIV; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[IN; INTEGER_CLOSED]);;
let COUNTABLE_RATIONAL = prove
(`COUNTABLE rational`,
MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC `IMAGE (\(x,y). x / y) (integer CROSS integer)` THEN
SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_CROSS; COUNTABLE_INTEGER] THEN
REWRITE_TAC[SUBSET; IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS] THEN
REWRITE_TAC[rational; IN] THEN MESON_TAC[]);;
let CARD_EQ_RATIONAL = prove
(`rational =_c (:num)`,
REWRITE_TAC[GSYM CARD_LE_ANTISYM; GSYM COUNTABLE_ALT; COUNTABLE_RATIONAL] THEN
REWRITE_TAC[le_c] THEN EXISTS_TAC `real_of_num` THEN
REWRITE_TAC[IN_UNIV; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[IN; RATIONAL_CLOSED]);;
let COUNTABLE_INTEGER_COORDINATES = prove
(`COUNTABLE { x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i) }`,
MATCH_MP_TAC COUNTABLE_CART THEN
REWRITE_TAC[SET_RULE `{x | P x} = P`; COUNTABLE_INTEGER]);;
let COUNTABLE_RATIONAL_COORDINATES = prove
(`COUNTABLE { x:real^N | !i. 1 <= i /\ i <= dimindex(:N) ==> rational(x$i) }`,
MATCH_MP_TAC COUNTABLE_CART THEN
REWRITE_TAC[SET_RULE `{x | P x} = P`; COUNTABLE_RATIONAL]);;
(* ------------------------------------------------------------------------- *)
(* Natural "irrational" variants of rational approximations. *)
(* ------------------------------------------------------------------------- *)
let IRRATIONAL_APPROXIMATION = prove
(`!x e. &0 < e ==> ?y. ~(rational y) /\ abs(y - x) < e`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `?z. ~rational z` STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC(SET_RULE `~(s = (:real)) ==> ?z. ~s z`) THEN
MESON_TAC[COUNTABLE_RATIONAL; UNCOUNTABLE_REAL];
MP_TAC(ISPECL [`z + x:real`; `e:real`] RATIONAL_APPROXIMATION) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `q:real` THEN STRIP_TAC THEN EXISTS_TAC `q - z:real` THEN
ASM_REWRITE_TAC[REAL_ARITH `q - z - x:real = q - (z + x)`] THEN
DISCH_TAC THEN UNDISCH_TAC `~rational z` THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[RATIONAL_CLOSED; REAL_ARITH `z:real = q - (q - z)`]]);;
let IRRATIONAL_BETWEEN = prove
(`!a b. a < b ==> ?q. ~rational q /\ a < q /\ q < b`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`(a + b) / &2`; `(b - a) / &4`] IRRATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]] THEN
ASM_REAL_ARITH_TAC);;
let IRRATIONAL_BETWEEN_EQ = prove
(`!a b. (?q. ~rational q /\ a < q /\ q < b) <=> a < b`,
MESON_TAC[IRRATIONAL_BETWEEN; REAL_LT_TRANS]);;
let IRRATIONAL_APPROXIMATION_STRADDLE = prove
(`!x e. &0 < e
==> ?a b. ~rational a /\ ~rational b /\
a < x /\ x < b /\ abs(b - a) < e`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`x - e / &4`; `e / &4`] IRRATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL
[ASM_REAL_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
MP_TAC(ISPECL [`x + e / &4`; `e / &4`] IRRATIONAL_APPROXIMATION) THEN
ANTS_TAC THENL
[ASM_REAL_ARITH_TAC;
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let IRRATIONAL_APPROXIMATION_ABOVE = prove
(`!x e. &0 < e ==> ?q. ~rational q /\ x < q /\ q < x + e`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real`; `e:real`] IRRATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let IRRATIONAL_APPROXIMATION_BELOW = prove
(`!x e. &0 < e ==> ?q. ~rational q /\ x - e < q /\ q < x`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real`; `e:real`] IRRATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
GEN_TAC THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);;
let INFINITE_IRRATIONAL_IN_RANGE = prove
(`!a b. a < b ==> INFINITE {q | ~rational q /\ a < q /\ q < b}`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?q. (!n. ~rational(q n) /\ a < q n /\ q n < b) /\ (!n. q(SUC n) < q n)`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC DEPENDENT_CHOICE THEN
REWRITE_TAC[GSYM CONJ_ASSOC; GSYM REAL_LT_MIN] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC IRRATIONAL_BETWEEN THEN
ASM_REWRITE_TAC[REAL_LT_MIN];
MATCH_MP_TAC INFINITE_SUPERSET THEN
EXISTS_TAC `IMAGE (q:num->real) (:num)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[num_INFINITE; IN_UNIV] THEN
SUBGOAL_THEN `!m n. m < n ==> (q:num->real) n < q m`
(fun th -> MESON_TAC[LT_CASES; th; REAL_LT_REFL]) THEN
MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN
ASM_MESON_TAC[REAL_LT_TRANS]]);;
(* ------------------------------------------------------------------------- *)
(* Countability of extrema for arbitrary function R->R. *)
(* ------------------------------------------------------------------------- *)
let COUNTABLE_LOCAL_MAXIMA = prove
(`!f:real->real.
COUNTABLE {f x |x| ?d. &0 < d /\ !x'. abs(x' - x) < d ==> f(x') <= f(x)}`,
GEN_TAC THEN
MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC
`IMAGE (\(a,b). sup {f x | a <= x /\ x <= b})
((rational CROSS rational) INTER
{(a,b) | ?x. a < x /\ x < b /\
!x'. a <= x' /\ x' <= b ==> f x' <= f x})` THEN
SIMP_TAC[COUNTABLE_INTER; COUNTABLE_CROSS; COUNTABLE_RATIONAL;
COUNTABLE_IMAGE; SUBSET; FORALL_IN_GSPEC] THEN
X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
REWRITE_TAC[IN_IMAGE; IN_INTER; EXISTS_PAIR_THM] THEN
MP_TAC(ISPECL [`x:real`; `d:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[IN_CROSS; IN_ELIM_PAIR_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[IN] THEN CONJ_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC REAL_SUP_UNIQUE THEN
REWRITE_TAC[FORALL_IN_GSPEC; EXISTS_IN_GSPEC];
ALL_TAC] THEN
REPEAT STRIP_TAC THEN TRY(EXISTS_TAC `x:real`) THEN
REPEAT STRIP_TAC THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN
ASM_REAL_ARITH_TAC);;
let COUNTABLE_LOCAL_MINIMA = prove
(`!f:real->real.
COUNTABLE {f x |x| ?d. &0 < d /\ !x'. abs(x' - x) < d ==> f(x) <= f(x')}`,
GEN_TAC THEN MP_TAC(SPEC `(--) o (f:real->real)` COUNTABLE_LOCAL_MAXIMA) THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[ETA_AX; IMAGE_o] THEN
REWRITE_TAC[o_THM; REAL_LE_NEG2] THEN MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC COUNTABLE_IMAGE_INJ_EQ THEN SIMP_TAC[REAL_EQ_NEG2]);;
let COUNTABLE_STRICT_LOCAL_MAXIMA = prove
(`!f:real->real.
COUNTABLE {x | ?d. &0 < d /\
!x'. abs(x' - x) < d /\ ~(x' = x) ==> f(x') < f(x)}`,
GEN_TAC THEN
MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC
`IMAGE (\(a,b). @x. a < x /\ x < b /\
!x'. a <= x' /\ x' <= b /\ ~(x' = x)
==> f x' < f x)
((rational CROSS rational) INTER
{(a,b) | ?x. a < x /\ x < b /\
!x'. a <= x' /\ x' <= b /\ ~(x' = x)
==> f x' < f x})` THEN
SIMP_TAC[COUNTABLE_INTER; COUNTABLE_CROSS; COUNTABLE_RATIONAL;
COUNTABLE_IMAGE; SUBSET; FORALL_IN_GSPEC] THEN
X_GEN_TAC `x:real` THEN REWRITE_TAC[IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
REWRITE_TAC[IN_IMAGE; IN_INTER; EXISTS_PAIR_THM] THEN
MP_TAC(ISPECL [`x:real`; `d:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN
ASM_REWRITE_TAC[IN_CROSS; IN_ELIM_PAIR_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:real` THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[IN] THEN
MATCH_MP_TAC(MESON[]
`P x /\ (!x y. P x /\ P y ==> x = y) ==> x = (@y. P y) /\ (?y. P y)`) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REAL_ARITH_TAC;
ASM_MESON_TAC[REAL_LT_ANTISYM; REAL_LT_IMP_LE]]);;
let COUNTABLE_STRICT_LOCAL_MINIMA = prove
(`!f:real->real.
COUNTABLE {x | ?d. &0 < d /\
!x'. abs(x' - x) < d /\ ~(x' = x) ==> f(x) < f(x')}`,
GEN_TAC THEN
MP_TAC(SPEC `(--) o (f:real->real)` COUNTABLE_STRICT_LOCAL_MAXIMA) THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN REWRITE_TAC[ETA_AX; IMAGE_o] THEN
REWRITE_TAC[o_THM; REAL_LT_NEG2] THEN MATCH_MP_TAC EQ_IMP THEN
MATCH_MP_TAC COUNTABLE_IMAGE_INJ_EQ THEN SIMP_TAC[REAL_EQ_NEG2]);;
(* ------------------------------------------------------------------------- *)
(* A somewhat cheap but handy way of getting localized forms of various *)
(* topological concepts (open, closed, borel, fsigma, gdelta etc.) *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("relative_to",(14,"left"));;
let relative_to = define
`(P relative_to s) t <=> ?u. P u /\ s INTER u = t`;;
let RELATIVE_TO_UNIV = prove
(`!P s. (P relative_to (:A)) s <=> P s`,
REWRITE_TAC[relative_to; INTER_UNIV] THEN MESON_TAC[]);;
let RELATIVE_TO_IMP_SUBSET = prove
(`!P s t. (P relative_to s) t ==> t SUBSET s`,
REWRITE_TAC[relative_to] THEN SET_TAC[]);;
let FORALL_RELATIVE_TO = prove
(`(!s. (P relative_to u) s ==> Q s) <=>
(!s. P s ==> Q(u INTER s))`,
REWRITE_TAC[relative_to] THEN MESON_TAC[]);;
let RELATIVE_TO_INC = prove
(`!P u s. P s ==> (P relative_to u) (u INTER s)`,
REWRITE_TAC[relative_to] THEN MESON_TAC[]);;
let RELATIVE_TO = prove
(`(P relative_to u) = {u INTER s | P s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INTER] THEN
REWRITE_TAC[relative_to; IN] THEN SET_TAC[]);;
let RELATIVE_TO_RELATIVE_TO = prove
(`!P:(A->bool)->bool s t.
P relative_to s relative_to t = P relative_to (s INTER t)`,
REWRITE_TAC[RELATIVE_TO] THEN
REWRITE_TAC[SET_RULE `{f x | {g y | P y} x} = {f(g y) | P y}`] THEN
REWRITE_TAC[SET_RULE `(s INTER t) INTER s' = t INTER s INTER s'`]);;
let RELATIVE_TO_COMPL = prove
(`!P u s:A->bool.
s SUBSET u
==> ((P relative_to u) (u DIFF s) <=>
((\c. P(UNIV DIFF c)) relative_to u) s)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[relative_to] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM EXISTS_DIFF] THEN
REWRITE_TAC[COMPL_COMPL] THEN
AP_TERM_TAC THEN ABS_TAC THEN ASM SET_TAC[]);;
let RELATIVE_TO_SUBSET = prove
(`!P s t:A->bool. s SUBSET t /\ P s ==> (P relative_to t) s`,
REPEAT STRIP_TAC THEN REWRITE_TAC[relative_to] THEN
EXISTS_TAC `s:A->bool` THEN ASM SET_TAC[]);;
let RELATIVE_TO_SUBSET_TRANS = prove
(`!P u s t:A->bool.
(P relative_to u) s /\ s SUBSET t /\ t SUBSET u ==> (P relative_to t) s`,
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC STRIP_ASSUME_TAC) THEN
REWRITE_TAC[relative_to] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]);;
let RELATIVE_TO_MONO = prove
(`!P Q.
(!s. P s ==> Q s) ==> !u. (P relative_to u) s ==> (Q relative_to u) s`,
REWRITE_TAC[relative_to] THEN MESON_TAC[]);;
let RELATIVE_TO_SUBSET_INC = prove
(`!P u s:A->bool.
s SUBSET u /\ P s ==> (P relative_to u) s`,
REWRITE_TAC[relative_to] THEN
MESON_TAC[SET_RULE `s SUBSET u ==> u INTER s = s`]);;
let RELATIVE_TO_INTER = prove
(`!P s. (!c d:A->bool. P c /\ P d ==> P(c INTER d))
==> !c d. (P relative_to s) c /\ (P relative_to s) d
==> (P relative_to s) (c INTER d)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
REWRITE_TAC[relative_to] THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `c':A->bool` (STRIP_ASSUME_TAC o GSYM))
(X_CHOOSE_THEN `d':A->bool` (STRIP_ASSUME_TAC o GSYM))) THEN
EXISTS_TAC `c' INTER d':A->bool` THEN
ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;
let RELATIVE_TO_UNION = prove
(`!P s. (!c d:A->bool. P c /\ P d ==> P(c UNION d))
==> !c d. (P relative_to s) c /\ (P relative_to s) d
==> (P relative_to s) (c UNION d)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
REWRITE_TAC[relative_to] THEN DISCH_THEN(CONJUNCTS_THEN2
(X_CHOOSE_THEN `c':A->bool` (STRIP_ASSUME_TAC o GSYM))
(X_CHOOSE_THEN `d':A->bool` (STRIP_ASSUME_TAC o GSYM))) THEN
EXISTS_TAC `c' UNION d':A->bool` THEN
ASM_SIMP_TAC[] THEN ASM SET_TAC[]);;
let ARBITRARY_UNION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((ARBITRARY UNION_OF P) relative_to u) =
(ARBITRARY UNION_OF (P relative_to u))`,
REWRITE_TAC[FUN_EQ_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_OF; relative_to] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_REWRITE_TAC[INTER_UNIONS] THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; ARBITRARY; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `UNIONS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[ARBITRARY; FORALL_IN_IMAGE]]);;
let FINITE_UNION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((FINITE UNION_OF P) relative_to u) =
(FINITE UNION_OF (P relative_to u))`,
REWRITE_TAC[FUN_EQ_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_OF; relative_to] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_REWRITE_TAC[INTER_UNIONS] THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `UNIONS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE]]);;
let COUNTABLE_UNION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((COUNTABLE UNION_OF P) relative_to u) =
(COUNTABLE UNION_OF (P relative_to u))`,
REWRITE_TAC[FUN_EQ_THM] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[UNION_OF; relative_to] THEN EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_REWRITE_TAC[INTER_UNIONS] THEN
ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `UNIONS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE]]);;
let ARBITRARY_INTERSECTION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((ARBITRARY INTERSECTION_OF P) relative_to u) =
((ARBITRARY INTERSECTION_OF (P relative_to u)) relative_to u)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[INTERSECTION_OF; relative_to] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `INTERS {u INTER c | (c:A->bool) IN f}` THEN CONJ_TAC THENL
[EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_SIMP_TAC[ARBITRARY; SIMPLE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[INTER_INTERS] THEN
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; INTERS_IMAGE; FORALL_IN_IMAGE;
SET_RULE `u INTER u INTER s = u INTER s`]];
DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `INTERS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[ARBITRARY; FORALL_IN_IMAGE]]);;
let FINITE_INTERSECTION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((FINITE INTERSECTION_OF P) relative_to u) =
((FINITE INTERSECTION_OF (P relative_to u)) relative_to u)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[INTERSECTION_OF; relative_to] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `INTERS {u INTER c | (c:A->bool) IN f}` THEN CONJ_TAC THENL
[EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_SIMP_TAC[FINITE_IMAGE; SIMPLE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[INTER_INTERS] THEN
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; INTERS_IMAGE; FORALL_IN_IMAGE;
SET_RULE `u INTER u INTER s = u INTER s`]];
DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `INTERS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[FINITE_IMAGE; FORALL_IN_IMAGE]]);;
let COUNTABLE_INTERSECTION_OF_RELATIVE_TO = prove
(`!P u:A->bool.
((COUNTABLE INTERSECTION_OF P) relative_to u) =
((COUNTABLE INTERSECTION_OF (P relative_to u)) relative_to u)`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `s:A->bool` THEN REWRITE_TAC[INTERSECTION_OF; relative_to] THEN
EQ_TAC THENL
[DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool`
(STRIP_ASSUME_TAC o GSYM)) THEN
EXISTS_TAC `INTERS {u INTER c | (c:A->bool) IN f}` THEN CONJ_TAC THENL
[EXISTS_TAC `{u INTER c | (c:A->bool) IN f}` THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; SIMPLE_IMAGE; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[INTER_INTERS] THEN
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_EQ_EMPTY; INTERS_IMAGE; FORALL_IN_IMAGE;
SET_RULE `u INTER u INTER s = u INTER s`]];
DISCH_THEN(X_CHOOSE_THEN `t:A->bool`
(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM))) THEN
DISCH_THEN(X_CHOOSE_THEN `f:(A->bool)->bool` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE BINDER_CONV [RIGHT_IMP_EXISTS_THM]) THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(A->bool)->(A->bool)` THEN STRIP_TAC THEN
EXISTS_TAC `INTERS (IMAGE (g:(A->bool)->(A->bool)) f)` THEN
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
EXISTS_TAC `IMAGE (g:(A->bool)->(A->bool)) f` THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE]]);;
let FINITE_INTERSECTION_OF_RELATIVE_TO_ALT = prove
(`!P u s:A->bool.
P u ==> ((FINITE INTERSECTION_OF P relative_to u) s <=>
(FINITE INTERSECTION_OF P) s /\ s SUBSET u)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[RELATIVE_TO_SUBSET_INC] THEN
SPEC_TAC(`s:A->bool`,`s:A->bool`) THEN
REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN
REWRITE_TAC[INTER_SUBSET; GSYM INTERS_INSERT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_INTERSECTION_OF_INTERS THEN
ASM_REWRITE_TAC[FINITE_INSERT; FORALL_IN_INSERT] THEN
ASM_SIMP_TAC[FINITE_INTERSECTION_OF_INC]);;
let COUNTABLE_INTERSECTION_OF_RELATIVE_TO_ALT = prove
(`!P u s:A->bool.
P u ==> ((COUNTABLE INTERSECTION_OF P relative_to u) s <=>
(COUNTABLE INTERSECTION_OF P) s /\ s SUBSET u)`,
REPEAT STRIP_TAC THEN EQ_TAC THEN SIMP_TAC[RELATIVE_TO_SUBSET_INC] THEN
SPEC_TAC(`s:A->bool`,`s:A->bool`) THEN
REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN
REWRITE_TAC[INTER_SUBSET; GSYM INTERS_INSERT] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_INTERS THEN
ASM_REWRITE_TAC[COUNTABLE_INSERT; FORALL_IN_INSERT] THEN
ASM_SIMP_TAC[COUNTABLE_INTERSECTION_OF_INC]);;
let ARBITRARY_UNION_OF_NONEMPTY_FINITE_INTERSECTION = prove
(`!u:(A->bool)->bool.
ARBITRARY UNION_OF ((\s. FINITE s /\ ~(s = {})) INTERSECTION_OF u) =
ARBITRARY UNION_OF (FINITE INTERSECTION_OF u relative_to UNIONS u)`,
GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN
REWRITE_TAC[REWRITE_RULE[IN] SUBSET] THEN
CONJ_TAC THEN X_GEN_TAC `s:A->bool` THENL
[MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] UNION_OF_MONO) THEN
REWRITE_TAC[FORALL_INTERSECTION_OF] THEN X_GEN_TAC `t:(A->bool)->bool` THEN
STRIP_TAC THEN REWRITE_TAC[INTERSECTION_OF; relative_to] THEN
EXISTS_TAC `INTERS t:A->bool` THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ASM SET_TAC[]];
GEN_REWRITE_TAC (RAND_CONV o RATOR_CONV)
[GSYM ARBITRARY_UNION_OF_IDEMPOT] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] UNION_OF_MONO) THEN
REWRITE_TAC[FORALL_RELATIVE_TO; FORALL_INTERSECTION_OF] THEN
X_GEN_TAC `t:(A->bool)->bool` THEN STRIP_TAC THEN
ASM_CASES_TAC `t:(A->bool)->bool = {}` THENL
[ASM_REWRITE_TAC[INTERS_0; INTER_UNIV] THEN
MATCH_MP_TAC ARBITRARY_UNION_OF_UNIONS THEN
X_GEN_TAC `r:A->bool` THEN DISCH_TAC THEN
MATCH_MP_TAC UNION_OF_INC THEN
REWRITE_TAC[ARBITRARY] THEN MATCH_MP_TAC INTERSECTION_OF_INC THEN
REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING] THEN ASM_MESON_TAC[IN];
MATCH_MP_TAC UNION_OF_INC THEN
REWRITE_TAC[ARBITRARY; INTERSECTION_OF] THEN
EXISTS_TAC `t:(A->bool)->bool` THEN ASM SET_TAC[]]]);;
(* ------------------------------------------------------------------------- *)
(* Reduction theorem used for sigma-sets doesn't really depend on much. *)
(* Besides, our formulation of "Delta" via "baire" doesn't work for *)
(* n = 0 so we want to avoid a separate proof for clopen sets. *)
(* ------------------------------------------------------------------------- *)
let GENERAL_REDUCTION_THEOREM = prove
(`!P. P {} /\
(!s t. P s /\ P t ==> P(s UNION t)) /\
(!s t. P s /\ P t ==> P(s DIFF t))
==> !s:num->A->bool.
(!n. (COUNTABLE UNION_OF P) (s n))
==> ?t. (!n. (COUNTABLE UNION_OF P) (t n)) /\
(!n. t n SUBSET s n) /\
pairwise (\m n. DISJOINT (t m) (t n)) (:num) /\
UNIONS {t n | n IN (:num)} = UNIONS {s n | n IN (:num)}`,
REWRITE_TAC[UNION_OF; o_THM] THEN REPEAT STRIP_TAC THEN
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`!k:(A->bool)->bool. FINITE k /\ (!i. i IN k ==> P i) ==> P(UNIONS k)`
ASSUME_TAC THENL
[REWRITE_TAC[IMP_CONJ] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[UNIONS_0; UNIONS_INSERT; FORALL_IN_INSERT];
ALL_TAC] THEN
SUBGOAL_THEN
`?c:num->num->A->bool.
(!n m. P (c n m)) /\
(!n. UNIONS {c n m | m IN (:num)} = s n)`
MP_TAC THENL
[REWRITE_TAC[AND_FORALL_THM; GSYM SKOLEM_THM] THEN
X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN
DISCH_THEN(X_CHOOSE_THEN `u:(A->bool)->bool` MP_TAC) THEN
ASM_CASES_TAC `u:(A->bool)->bool = {}` THENL
[ASM_REWRITE_TAC[UNIONS_0] THEN
DISCH_THEN(SUBST1_TAC o SYM o last o CONJUNCTS) THEN
EXISTS_TAC `(\n. {}):num->A->bool` THEN
ASM_REWRITE_TAC[UNIONS_GSPEC] THEN SET_TAC[];
STRIP_TAC] THEN
MP_TAC(ISPEC `u:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[];
FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [SKOLEM_THM])] THEN
DISCH_THEN(X_CHOOSE_THEN `c:num->num->A->bool` STRIP_ASSUME_TAC) THEN
MP_TAC CARD_SQUARE_NUM THEN
REWRITE_TAC[EQ_C_BIJECTIONS; LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[mul_c; IN_ELIM_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`p:num#num->num`; `q:num->num#num`] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [IN_UNIV] THEN
REWRITE_TAC[FORALL_AND_THM] THEN STRIP_TAC THEN
ABBREV_TAC `d:num->num->A->bool =
\m n. c m n DIFF UNIONS {c i j | (p:num#num->num)(i,j) < p(m,n)}` THEN
EXISTS_TAC `\n. UNIONS { d i j | i,j |
(d:num->num->A->bool) i j SUBSET s n /\
!m:num. m < n ==> ~(d i j SUBSET s m)}` THEN
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
[X_GEN_TAC `n:num` THEN
EXISTS_TAC `{ d i j | i,j |
(d:num->num->A->bool) i j SUBSET s n /\
!m:num. m < n ==> ~(d i j SUBSET s m)}` THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC
`{(d:num->num->A->bool) i j | i IN (:num) /\ j IN (:num)}` THEN
SIMP_TAC[COUNTABLE_PRODUCT_DEPENDENT; COUNTABLE_SUBSET_NUM] THEN
SET_TAC[];
REWRITE_TAC[FORALL_IN_GSPEC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN STRIP_TAC THEN
EXPAND_TAC "d" THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN
SUBGOAL_THEN
`{(c:num->num->A->bool) k l | (p(k,l):num) < p(i,j)} =
IMAGE (\r. c (FST(q r)) (SND(q r))) {r | r < p(i,j)}`
(fun th -> SIMP_TAC[th; FINITE_IMAGE; FINITE_NUMSEG_LT]) THEN
GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `v:A->bool` THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN EQ_TAC THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM] THENL
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN STRIP_TAC THEN
EXISTS_TAC `(p:num#num->num)(a,b)` THEN ASM_REWRITE_TAC[];
X_GEN_TAC `c:num` THEN STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`FST((q:num->num#num) c)`; `SND((q:num->num#num) c)`] THEN
ASM_REWRITE_TAC[]]];
ASM SET_TAC[];
REWRITE_TAC[pairwise] THEN MATCH_MP_TAC WLOG_LT THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN REWRITE_TAC[IN_UNIV] THEN
BINOP_TAC THENL [MESON_TAC[]; MATCH_ACCEPT_TAC DISJOINT_SYM];
REWRITE_TAC[IN_UNIV; DISJOINT; INTER_UNIONS]] THEN
REWRITE_TAC[EMPTY_UNIONS; FORALL_IN_GSPEC] THEN
MAP_EVERY X_GEN_TAC [`i:num`; `j:num`] THEN REPEAT DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN STRIP_TAC THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
EXPAND_TAC "d" THEN REWRITE_TAC[] THEN
SUBGOAL_THEN `(p:num#num->num)(a,b) < p(m,n) \/ p(m,n) < p(a,b)`
MP_TAC THENL
[REWRITE_TAC[ARITH_RULE `m < n \/ n < m <=> ~(m:num = n)`] THEN
DISCH_THEN(MP_TAC o AP_TERM `q:num->num#num`) THEN
ASM_REWRITE_TAC[PAIR_EQ] THEN ASM SET_TAC[];
REWRITE_TAC[EXTENSION; IN_DIFF; IN_INTER; UNIONS_GSPEC] THEN
SET_TAC[]];
GEN_REWRITE_TAC I [EXTENSION] THEN X_GEN_TAC `x:A` THEN
REWRITE_TAC[UNIONS_GSPEC; IN_UNIV; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[MESON[] `(?n i j. P n i j) <=> (?i j n. P n i j)`] THEN
REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM num_WOP] THEN
TRANS_TAC EQ_TRANS `?i j. x IN (d:num->num->A->bool) i j` THEN
CONJ_TAC THENL
[REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
MATCH_MP_TAC(TAUT `p ==> (p /\ q <=> q)`) THEN
EXPAND_TAC "d" THEN REWRITE_TAC[] THEN ASM SET_TAC[];
ALL_TAC] THEN
FIRST_ASSUM(fun t -> GEN_REWRITE_TAC (RAND_CONV o BINDER_CONV o RAND_CONV)
[GSYM t]) THEN
REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN MATCH_MP_TAC(MESON[]
`!p:num#num->num.
(P <=> ?n i j. p(i,j) = n /\ Q i j) ==> (P <=> ?i j. Q i j)`) THEN
EXISTS_TAC `p:num#num->num` THEN
GEN_REWRITE_TAC RAND_CONV [num_WOP] THEN
EXPAND_TAC "d" THEN REWRITE_TAC[IN_DIFF; UNIONS_GSPEC; IN_ELIM_THM] THEN
MESON_TAC[]]);;
let GENERAL_REDUCTION_THEOREM_2 = prove
(`!P. P {} /\
(!s t:A->bool. P s /\ P t ==> P(s UNION t)) /\
(!s t. P s /\ P t ==> P(s DIFF t))
==> !s t. (COUNTABLE UNION_OF P) s /\ (COUNTABLE UNION_OF P) t
==> ?s' t'. (COUNTABLE UNION_OF P) s' /\
(COUNTABLE UNION_OF P) t' /\
s' SUBSET s /\ t' SUBSET t /\ DISJOINT s' t' /\
s' UNION t' = s UNION t`,
GEN_TAC THEN DISCH_TAC THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o
ISPEC `\n. if n = 0 then s:A->bool else if n = 1 then t else {}` o
MATCH_MP GENERAL_REDUCTION_THEOREM) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[GEN_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
ASM_SIMP_TAC[COUNTABLE_UNION_OF_INC];
ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `v:num->A->bool` MP_TAC) THEN
REWRITE_TAC[IMP_CONJ] THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP
(MESON[] `(!n. P n) ==> P 0 /\ P 1`)) THEN
ONCE_REWRITE_TAC[MESON[]
`(!n. P n) <=> P 0 /\ P 1 /\ (!n. ~(n = 0) /\ ~(n = 1) ==> P n)`] THEN
CONV_TAC NUM_REDUCE_CONV THEN SIMP_TAC[SUBSET_EMPTY] THEN
STRIP_TAC THEN
ONCE_REWRITE_TAC[SET_RULE
`(:num) = 0 INSERT 1 INSERT ((:num) DIFF {0,1})`] THEN
SIMP_TAC[SIMPLE_IMAGE; IMAGE_CLAUSES; UNIONS_INSERT; PAIRWISE_INSERT] THEN
DISCH_THEN(MP_TAC o SPEC `1` o CONJUNCT1) THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[IN_INSERT] THEN STRIP_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
`s UNION t UNION u = s' UNION t' UNION u'
==> u = {} /\ u' = {} ==> s UNION t = s' UNION t'`)) THEN
REWRITE_TAC[EMPTY_UNIONS; FORALL_IN_IMAGE; IN_UNIV; IN_DIFF] THEN
ASM_SIMP_TAC[IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* A somewhat general formulation of "back and forth" arguments. *)
(* ------------------------------------------------------------------------- *)
let BACK_AND_FORTH_ALT = prove
(`!P s:A->bool t:B->bool.
COUNTABLE s /\ COUNTABLE t /\
(!R. FINITE R /\ R SUBSET s CROSS t /\ pairwise P R
==> (!x. x IN s ==> ?y. y IN t /\ pairwise P ((x,y) INSERT R)) /\
(!y. y IN t ==> ?x. x IN s /\ pairwise P ((x,y) INSERT R)))
==> ?R. R SUBSET s CROSS t /\ pairwise P R /\
(!x. x IN s ==> ?y. y IN t /\ (x,y) IN R) /\
(!y. y IN t ==> ?x. x IN s /\ (x,y) IN R)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?x:num->A. ?y:num->B. s SUBSET IMAGE x (:num) /\ t SUBSET IMAGE y (:num)`
STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[COUNTABLE_AS_IMAGE_SUBSET]; ALL_TAC] THEN
SUBGOAL_THEN
`?R:num->A#B->bool.
(!n. FINITE(R n) /\ (R n) SUBSET s CROSS t /\ pairwise P (R n) /\
(x n IN s ==> x n IN IMAGE FST(R n)) /\
(y n IN t ==> y n IN IMAGE SND(R n))) /\
(!n. R n SUBSET R(SUC n))`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC DEPENDENT_CHOICE THEN MATCH_MP_TAC(MESON[]
`((!n x. P x /\ Q x /\ R x ==> ?y. B n x y) ==> X) /\
(!n x. P x /\ Q x /\ R x ==> ?y. B n x y)
==> X /\
(!n x. P x /\ Q x /\ R x /\ S n x ==> ?y. B (SUC n) x y)`) THEN
CONJ_TAC THENL
[DISCH_THEN(MP_TAC o SPECL [`0`; `{}:A#B->bool`]) THEN
REWRITE_TAC[EMPTY_SUBSET; PAIRWISE_EMPTY; FINITE_RULES];
MAP_EVERY X_GEN_TAC [`n:num`; `R:A#B->bool`] THEN STRIP_TAC] THEN
ASM_CASES_TAC `(x:num->A) n IN s` THEN ASM_REWRITE_TAC[] THENL
[FIRST_ASSUM(MP_TAC o SPEC `R:A#B->bool`) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `(x:num->A) n` o CONJUNCT1) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `z:B` THEN STRIP_TAC THEN
ASM_CASES_TAC `(y:num->B) n IN t` THEN ASM_REWRITE_TAC[] THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `((x:num->A) n,z:B) INSERT R`) THEN
ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET] THEN
ASM_REWRITE_TAC[IN_CROSS] THEN
DISCH_THEN(MP_TAC o SPEC `(y:num->B) n` o CONJUNCT2) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `w:A` THEN STRIP_TAC THEN
EXISTS_TAC `(w,y(n:num)) INSERT (x n,z) INSERT (R:A#B->bool)` THEN
ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET; IN_CROSS] THEN
REWRITE_TAC[IMAGE_CLAUSES; IN_INSERT] THEN SET_TAC[];
EXISTS_TAC `(x(n:num),z) INSERT (R:A#B->bool)` THEN
ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET; IN_CROSS] THEN
REWRITE_TAC[IMAGE_CLAUSES; IN_INSERT] THEN SET_TAC[]];
ASM_CASES_TAC `(y:num->B) n IN t` THEN ASM_REWRITE_TAC[] THENL
[ALL_TAC; ASM_MESON_TAC[SUBSET_REFL]] THEN
FIRST_ASSUM(MP_TAC o SPEC `R:A#B->bool`) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `(y:num->B) n` o CONJUNCT2) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `w:A` THEN STRIP_TAC THEN
EXISTS_TAC `(w,y(n:num)) INSERT (R:A#B->bool)` THEN
ASM_REWRITE_TAC[FINITE_INSERT; INSERT_SUBSET; IN_CROSS] THEN
REWRITE_TAC[IMAGE_CLAUSES; IN_INSERT] THEN SET_TAC[]];
EXISTS_TAC `UNIONS {R n | n IN (:num)} :A#B->bool` THEN
ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_GSPEC] THEN CONJ_TAC THENL
[MATCH_MP_TAC PAIRWISE_CHAIN_UNIONS THEN
ASM_REWRITE_TAC[FORALL_IN_GSPEC; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REWRITE_TAC[IN_UNIV] THEN MATCH_MP_TAC WLOG_LE THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(MESON[]
`(!x y. P x y ==> Q x y) ==> (!x y. P x y ==> Q x y \/ R x y)`) THEN
MATCH_MP_TAC TRANSITIVE_STEPWISE_LE THEN ASM_REWRITE_TAC[] THEN
SET_TAC[];
REWRITE_TAC[UNIONS_GSPEC; IN_UNIV; IN_ELIM_THM] THEN
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; UNWIND_THM1; RIGHT_EXISTS_AND_THM;
SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN
SET_TAC[]]]);;
let BACK_AND_FORTH = prove
(`!R s:A->bool t:B->bool.
(!x y. x IN s /\ y IN t ==> R x x y y) /\
(!x y x' y'. x IN s /\ x' IN s /\ y IN t /\ y' IN t /\
~(x = x') /\ ~(y = y') /\ R x x' y y'
==> R x' x y' y) /\
COUNTABLE s /\ COUNTABLE t /\
(!f s' t'. FINITE s' /\ s' SUBSET s /\ FINITE t' /\ t' SUBSET t /\
IMAGE f s' = t' /\
(!x y. x IN s' /\ y IN s' ==> (f x = f y <=> x = y)) /\
(!x y. x IN s' /\ y IN s' ==> R x y (f x) (f y))
==> (!x. x IN s DIFF s'
==> ?y. y IN t DIFF t' /\
!z. z IN s' ==> R x z y (f z)) /\
(!y. y IN t DIFF t'
==> ?x. x IN s DIFF s' /\
!z. z IN s' ==> R x z y (f z)))
==> ?f. IMAGE f s = t /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
(!x y. x IN s /\ y IN s ==> R x y (f x) (f y))`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`\(x:A,y:B) (x',y').
(x = x' <=> y = y') /\ R x x' y y'`;
`s:A->bool`; `t:B->bool`] BACK_AND_FORTH_ALT) THEN
ASM_SIMP_TAC[PAIRWISE_INSERT; FORALL_PAIR_THM; PAIR_EQ] THEN ANTS_TAC THENL
[ALL_TAC;
REWRITE_TAC[pairwise; FORALL_PAIR_THM; PAIR_EQ; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `r:A#B->bool` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [SUBSET]) THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS] THEN STRIP_TAC THEN
ABBREV_TAC `f:A->B = \x. @y. (x,y) IN r` THEN EXISTS_TAC `f:A->B` THEN
SUBGOAL_THEN `!x:A y:B. x IN s ==> (f x = y <=> (x,y) IN r)`
ASSUME_TAC THENL
[EXPAND_TAC "f" THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o
SPECL [`x:A`; `(f:A->B) x`; `y:A`; `(f:A->B) y`]) THEN
ASM_CASES_TAC `x:A = y` THEN ASM_MESON_TAC[]] THEN
X_GEN_TAC `r:A#B->bool` THEN REWRITE_TAC[SUBSET; pairwise] THEN
REWRITE_TAC[FORALL_PAIR_THM; PAIR_EQ; LEFT_IMP_EXISTS_THM; IN_CROSS] THEN
STRIP_TAC THEN
MAP_EVERY ABBREV_TAC
[`s' = IMAGE FST (r:A#B->bool)`;
`t' = IMAGE SND (r:A#B->bool)`;
`f:A->B = \x. @y. (x,y) IN r`] THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`f:A->B`; `s':A->bool`; `t':B->bool`]) THEN
SUBGOAL_THEN
`!x:A y:B. (x,y) IN r <=> x IN s' /\ y IN t' /\ f x = y`
ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["f"; "s'"; "t'"] THEN
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM] THEN ASM_MESON_TAC[];
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN
`(s':A->bool) SUBSET s /\ (t':B->bool) SUBSET t`
STRIP_ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; FORALL_IN_IMAGE] THEN
ASM_MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `IMAGE (f:A->B) s' = t'` ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["s'"; "t'"] THEN REWRITE_TAC[GSYM IMAGE_o] THEN
MATCH_MP_TAC(SET_RULE
`(!x. x IN s ==> f x = g x) ==> IMAGE f s = IMAGE g s`) THEN
REWRITE_TAC[FORALL_PAIR_THM; o_THM] THEN ASM_MESON_TAC[];
ASM_REWRITE_TAC[]] THEN
ANTS_TAC THENL
[REPLICATE_TAC 2
(CONJ_TAC THENL [ASM_MESON_TAC[FINITE_IMAGE]; ALL_TAC]) THEN
CONJ_TAC THEN MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN
ASM_CASES_TAC `x:A = y` THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN MATCH_MP_TAC MONO_FORALL THENL
[X_GEN_TAC `x:A` THEN
ASM_CASES_TAC `(x:A) IN s` THEN ASM_REWRITE_TAC[IN_DIFF] THEN
ASM_CASES_TAC `(x:A) IN s'` THEN ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `(f:A->B) x` THEN ASM SET_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[];
X_GEN_TAC `y:B` THEN
ASM_CASES_TAC `(y:B) IN t` THEN ASM_REWRITE_TAC[IN_DIFF] THEN
ASM_CASES_TAC `(y:B) IN t'` THEN ASM_REWRITE_TAC[] THENL
[SUBGOAL_THEN `?x:A. x IN s' /\ (f:A->B) x = y` STRIP_ASSUME_TAC THENL
[ASM SET_TAC[]; EXISTS_TAC `x:A` THEN ASM SET_TAC[]];
MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]]);;
let BACK_AND_FORTH_2 = prove
(`!R s:A->bool t:B->bool.
(!x y. x IN s /\ y IN t ==> R x x y y) /\
(!x y x' y'. x IN s /\ x' IN s /\ y IN t /\ y' IN t /\
~(x = x') /\ ~(y = y') /\ R x x' y y'
==> R x' x y' y) /\
COUNTABLE s /\ COUNTABLE t /\
(!f s' t' x. FINITE s' /\ s' SUBSET s /\ FINITE t' /\ t' SUBSET t /\
IMAGE f s' = t' /\
(!x y. x IN s' /\ y IN s' ==> (f x = f y <=> x = y)) /\
(!x y. x IN s' /\ y IN s' ==> R x y (f x) (f y)) /\
x IN s DIFF s'
==> ?y. y IN t DIFF t' /\
!z. z IN s' ==> R x z y (f z)) /\
(!f t' s' x. FINITE t' /\ t' SUBSET t /\ FINITE s' /\ s' SUBSET s /\
IMAGE f t' = s' /\
(!x y. x IN t' /\ y IN t' ==> (f x = f y <=> x = y)) /\
(!x y. x IN t' /\ y IN t' ==> R (f x) (f y) x y) /\
x IN t DIFF t'
==> ?y. y IN s DIFF s' /\
!z. z IN t' ==> R y (f z) x z)
==> ?f. IMAGE f s = t /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
(!x y. x IN s /\ y IN s ==> R x y (f x) (f y))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC BACK_AND_FORTH THEN
ASM_REWRITE_TAC[] THEN
MAP_EVERY X_GEN_TAC [`f:A->B`; `s':A->bool`; `t':B->bool`] THEN
STRIP_TAC THEN CONJ_TAC THENL
[X_GEN_TAC `x:A` THEN STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_REWRITE_TAC[];
FIRST_X_ASSUM(K ALL_TAC o SPEC `f:A->B`)] THEN
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM INJECTIVE_ON_ALT]) THEN
GEN_REWRITE_TAC LAND_CONV [INJECTIVE_ON_LEFT_INVERSE] THEN
DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
X_GEN_TAC `y:B` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`g:B->A`; `t':B->bool`; `s':A->bool`; `y:B`]) THEN
ASM_REWRITE_TAC[] THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]; ALL_TAC] THEN
EXPAND_TAC "t'" THEN REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_IMAGE_2] THEN
ASM_SIMP_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Definition by recursion on dyadic rationals in [0,1]. *)
(* ------------------------------------------------------------------------- *)
let RECURSION_ON_DYADIC_FRACTIONS = prove
(`!R a b:A.
(!x y z. R x y /\ R y z ==> R x z) /\
R a b /\ (!x y. R x y ==> ?z. R x z /\ R z y)
==> ?f. f(&0) = a /\ f(&1) = b /\
!x y. x IN {&k / &2 pow n | k <= 2 EXP n} /\
y IN {&k / &2 pow n | k <= 2 EXP n} /\
x < y
==> R (f x) (f y)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`?f. (f 0 = \k. if k = 0 then a else b) /\
(!n. f(SUC n) = \k.
if EVEN k then f n (k DIV 2)
else @z:A. R (f n ((k - 1) DIV 2)) z /\
R z (f n ((k + 1) DIV 2)))`
MP_TAC THENL [REWRITE_TAC[num_RECURSION]; ALL_TAC] THEN
REWRITE_TAC[FUN_EQ_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:num->num->A` THEN STRIP_TAC THEN
SUBGOAL_THEN `?f. !k n. f(&k / &2 pow n):A = g n k` MP_TAC THENL
[ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN MP_TAC(ISPECL
[`\(k,n). (g:num->num->A) n k`; `\(k,n). &k / &2 pow n`]
FUNCTION_FACTORS_LEFT) THEN
REWRITE_TAC[FORALL_PAIR_THM; FUN_EQ_THM; o_THM] THEN
DISCH_THEN (SUBST1_TAC o SYM) THEN ONCE_REWRITE_TAC[MESON[]
`(!a b c d. P a b c d) <=> (!b d a c. P a b c d)`] THEN
MATCH_MP_TAC WLOG_LE THEN REPEAT CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
SIMP_TAC[REAL_FIELD `~(y = &0) /\ ~(y' = &0)
==> (x / y = x' / y' <=> y' / y * x = x')`;
REAL_POW_EQ_0; REAL_OF_NUM_EQ; REAL_DIV_POW2; ARITH_EQ] THEN
SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
SIMP_TAC[ADD_SUB2; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; REAL_OF_NUM_POW] THEN
REWRITE_TAC[MESON[]
`(!n n' d. n' = f d n ==> !m m'. g d m = m' ==> P m m' n d) <=>
(!d m n. P m (g d m) n d)`] THEN
ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
INDUCT_TAC THEN SIMP_TAC[EXP; MULT_CLAUSES; ADD_CLAUSES] THEN
ASM_REWRITE_TAC[EVEN_MULT; ARITH_EVEN; GSYM MULT_ASSOC] THEN
ASM_REWRITE_TAC[ARITH_RULE `(2 * n) DIV 2 = n`];
MATCH_MP_TAC MONO_EXISTS] THEN
X_GEN_TAC `f:real->A` THEN STRIP_TAC THEN REPEAT CONJ_TAC THENL
[SUBST1_TAC(REAL_ARITH `&0 = &0 / &2 pow 0`) THEN
ASM_REWRITE_TAC[];
SUBST1_TAC(REAL_ARITH `&1 = &1 / &2 pow 0`) THEN
ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN
MAP_EVERY X_GEN_TAC [`k1:num`; `n1:num`] THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`k2:num`; `n2:num`] THEN DISCH_TAC THEN
CONJUNCTS_THEN SUBST1_TAC (REAL_FIELD
`&k1 / &2 pow n1 = (&2 pow n2 * &k1) / &2 pow (n1 + n2) /\
&k2 / &2 pow n2 = (&2 pow n1 * &k2) / &2 pow (n1 + n2)`) THEN
SIMP_TAC[REAL_LT_DIV2_EQ; REAL_LT_POW2;
MESON[REAL_OF_NUM_MUL; REAL_OF_NUM_POW]
`&2 pow n * &k = &(2 EXP n * k)`] THEN
SUBGOAL_THEN `&(2 EXP n1 * k2) <= &2 pow (n1 + n2)` MP_TAC THENL
[REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_LE; EXP_ADD] THEN
ASM_REWRITE_TAC[LE_MULT_LCANCEL];
SPEC_TAC(`2 EXP n1 * k2`,`j2:num`) THEN
SPEC_TAC(`2 EXP n2 * k1`,`j1:num`) THEN
SPEC_TAC(`n1 + n2:num`,`n:num`)] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_OF_NUM_POW; GSYM IMP_CONJ_ALT] THEN
REWRITE_TAC[REAL_OF_NUM_LT; REAL_OF_NUM_LE] THEN
REPEAT(FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [GSYM NOT_LT]))] THEN
MATCH_MP_TAC num_INDUCTION THEN CONJ_TAC THENL
[ASM_SIMP_TAC[ARITH_RULE `j1 < j2 /\ j2 <= 2 EXP 0 <=> j1 = 0 /\ j2 = 1`;
ARITH_EQ];
X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `j:num`] THEN
X_GEN_TAC `k:num` THEN REWRITE_TAC[EXP] THEN STRIP_TAC THEN
DISJ_CASES_THEN MP_TAC (SPEC `j:num` EVEN_OR_ODD) THEN
DISJ_CASES_THEN MP_TAC (SPEC `k:num` EVEN_OR_ODD) THEN
REWRITE_TAC[EVEN_EXISTS; ODD_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `b:num` THEN DISCH_THEN SUBST_ALL_TAC THEN
X_GEN_TAC `a:num` THEN DISCH_THEN SUBST_ALL_TAC THEN
ASM_REWRITE_TAC[ADD1; ADD_SUB; EVEN_ADD; EVEN_MULT; ARITH_EVEN;
ARITH_RULE `(2 * a) DIV 2 = a`;
ARITH_RULE `((2 * a + 1) + 1) DIV 2 = a + 1`]
THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
ALL_TAC; ALL_TAC; ALL_TAC] THEN
(ABBREV_TAC `w = @z. R ((g:num->num->A) n a) z /\ R z (g n (a + 1))` THEN
SUBGOAL_THEN `R ((g:num->num->A) n a) w /\ R w (g n (a + 1))`
STRIP_ASSUME_TAC THENL
[EXPAND_TAC "w" THEN CONV_TAC SELECT_CONV THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_ARITH_TAC;
ALL_TAC])
THENL
[ALL_TAC;
ASM_CASES_TAC `b:num = a + 1` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
EXISTS_TAC `(g:num->num->A) n (a + 1)` THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC;
ALL_TAC] THEN
(ABBREV_TAC `z = @z. R ((g:num->num->A) n b) z /\ R z (g n (b + 1))` THEN
SUBGOAL_THEN `R ((g:num->num->A) n b) z /\ R z (g n (b + 1))`
STRIP_ASSUME_TAC THENL
[EXPAND_TAC "z" THEN CONV_TAC SELECT_CONV THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_ARITH_TAC;
ALL_TAC])
THENL
[ASM_CASES_TAC `a:num = b` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(g:num->num->A) n b` THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_ARITH_TAC;
ASM_CASES_TAC `a + 1 = b` THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(g:num->num->A) n (a + 1)` THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM MATCH_MP_TAC THEN EXISTS_TAC `(g:num->num->A) n b`] THEN
ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The Suslin operation. The proof of the only non-trivial result, *)
(* idempotence, is taken from Fremlin's "Measure Theory" volume 4. *)
(* ------------------------------------------------------------------------- *)
let suslin_operation = new_definition
`suslin_operation (f:num list->A->bool) =
UNIONS { INTERS {f (list_of_seq s n) | 1 <= n} | s IN (:num->num)}`;;
let suslin = new_definition
`suslin u = {suslin_operation f | !l. ~(l = []) ==> f l IN u}`;;
let SUSLIN_INC = prove
(`!C s:A->bool. C s ==> suslin C s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[suslin; IN_ELIM_THM] THEN
EXISTS_TAC `(\i. s):num list->A->bool` THEN
ASM_REWRITE_TAC[suslin_operation] THEN
REWRITE_TAC[SIMPLE_IMAGE] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
REWRITE_TAC[IMAGE_CONST; UNIV_NOT_EMPTY] THEN
COND_CASES_TAC THEN REWRITE_TAC[INTERS_1; UNIONS_1] THEN
MP_TAC LE_REFL THEN ASM SET_TAC[]);;
let SUSLIN_SUPERSET = prove
(`!u:(A->bool)->bool. u SUBSET suslin u`,
REWRITE_TAC[SUBSET; IN; SUSLIN_INC]);;
let SUSLIN_SUBSET = prove
(`!C D:(A->bool)->bool. C SUBSET D ==> suslin C SUBSET suslin D`,
REWRITE_TAC[suslin] THEN SET_TAC[]);;
let SUSLIN_MONO = prove
(`!C D s:A->bool.
(!t. C t ==> D t) /\ suslin C s ==> suslin D s`,
REWRITE_TAC[suslin] THEN SET_TAC[]);;
let SUSLIN_REGULAR = prove
(`!u:(A->bool)->bool.
(!c. FINITE c /\ ~(c = {}) /\ c SUBSET u ==> INTERS c IN u)
==> (suslin u =
{suslin_operation f | (!l. ~(l = []) ==> f l IN u) /\
!s m n. 1 <= m /\ m <= n
==> f(list_of_seq s n) SUBSET
f(list_of_seq s m)})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[suslin; GSYM SUBSET_ANTISYM_EQ] THEN
CONJ_TAC THENL [ALL_TAC; SET_TAC[]] THEN
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN
X_GEN_TAC `f:num list->A->bool` THEN DISCH_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN
EXISTS_TAC `\l. INTERS {(f:num list->A->bool)(list_of_seq (\i. EL i l) n) |n|
1 <= n /\ n <= LENGTH l}` THEN
REWRITE_TAC[IN_ELIM_THM] THEN REPEAT CONJ_TAC THENL
[REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
SIMP_TAC[GSYM numseg; FINITE_NUMSEG; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN
ASM_SIMP_TAC[NUMSEG_EMPTY; NOT_LT; LENGTH_EQ_NIL; LE_1] THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_NUMSEG] THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[GSYM LENGTH_EQ_NIL; LENGTH_LIST_OF_SEQ; LE_1];
REWRITE_TAC[IN_INTERS; FORALL_IN_GSPEC; LENGTH_LIST_OF_SEQ] THEN
MAP_EVERY X_GEN_TAC [`s:num->num`; `m:num`; `n:num`] THEN
DISCH_TAC THEN X_GEN_TAC `x:A` THEN DISCH_TAC THEN
X_GEN_TAC `p:num` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
AP_TERM_TAC THEN REWRITE_TAC[LIST_EQ] THEN
SIMP_TAC[LENGTH_LIST_OF_SEQ; EL_LIST_OF_SEQ] THEN
X_GEN_TAC `q:num` THEN DISCH_TAC THEN
ASM_MESON_TAC[EL_LIST_OF_SEQ; LT_TRANS; LTE_TRANS];
REWRITE_TAC[suslin_operation] THEN AP_TERM_TAC THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN MATCH_MP_TAC(SET_RULE
`(!x. f x = g x) ==> IMAGE f UNIV = IMAGE g UNIV`) THEN
X_GEN_TAC `s:num->num` THEN
REWRITE_TAC[EXTENSION] THEN
X_GEN_TAC `a:A` THEN REWRITE_TAC[INTERS_GSPEC; IN_ELIM_THM] THEN
REWRITE_TAC[IN_UNIV; LENGTH_LIST_OF_SEQ] THEN
SUBGOAL_THEN
`!m n. 1 <= m /\ m <= n
==> list_of_seq (\i. EL i (list_of_seq s n)) m :num list =
list_of_seq s m`
(fun th -> SIMP_TAC[th])
THENL
[SIMP_TAC[LIST_EQ; LENGTH_LIST_OF_SEQ; EL_LIST_OF_SEQ] THEN
MESON_TAC[EL_LIST_OF_SEQ; LTE_TRANS];
ASM_MESON_TAC[LE_TRANS; LE_REFL]]]);;
let SUSLIN_SUSLIN = prove
(`!u:(A->bool)->bool. suslin (suslin u) = suslin u`,
GEN_TAC THEN REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUSLIN_SUPERSET] THEN
REWRITE_TAC[suslin; SUBSET; FORALL_IN_GSPEC] THEN
X_GEN_TAC `f:num list->A->bool` THEN
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV)
[IN_ELIM_THM; RIGHT_IMP_EXISTS_THM] THEN
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `g:(num)list->(num)list->A->bool` THEN
REWRITE_TAC[TAUT `p ==> q /\ r <=> (p ==> q) /\ (p ==> r)`] THEN
REWRITE_TAC[FORALL_AND_THM; RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*")) THEN
SUBGOAL_THEN
`suslin_operation(f:num list->A->bool) =
suslin_operation(\l. suslin_operation (g l))`
SUBST1_TAC THENL
[GEN_REWRITE_TAC BINOP_CONV [suslin_operation] THEN
REWRITE_TAC[SIMPLE_IMAGE] THEN
AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `s:num->num` THEN
REWRITE_TAC[] THEN AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE
`(!x. P x ==> f x = g x) ==> {f x | P x} = {g x | P x}`) THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_SIMP_TAC[GSYM LENGTH_EQ_NIL; LENGTH_LIST_OF_SEQ; LE_1];
REMOVE_THEN "*" (K ALL_TAC)] THEN
REWRITE_TAC[IN_ELIM_THM; suslin_operation] THEN
ONCE_REWRITE_TAC[EXTENSION] THEN
REWRITE_TAC[IN_ELIM_THM; INTERS_GSPEC; UNIONS_GSPEC; IN_UNIV] THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
SUBGOAL_THEN
`?h:num->A->bool.
{g l m | ~(l:num list = []) /\ ~(m:num list = [])} = IMAGE h (:num)`
STRIP_ASSUME_TAC THENL
[MATCH_MP_TAC COUNTABLE_AS_IMAGE THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[SET_RULE `~(x = []) <=> x IN {l | ~(l = [])}`] THEN
MATCH_MP_TAC COUNTABLE_PRODUCT_DEPENDENT THEN
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN SIMP_TAC[] THEN
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `(:num list)` THEN
REWRITE_TAC[SUBSET_UNIV] THEN MATCH_MP_TAC COUNTABLE_LIST THEN
REWRITE_TAC[NUM_COUNTABLE];
MATCH_MP_TAC(SET_RULE `(?x. P x) ==> ~({f x y | P x /\ P y} = {})`) THEN
MESON_TAC[NOT_CONS_NIL]];
ALL_TAC] THEN
SUBGOAL_THEN
`?q:num#num->num.
(!a b. 1 <= q(a,b)) /\
q(0,0) = 1 /\ q(0,1) = 2 /\
(!a b a' b'. q(a,b) = q(a',b') <=> a = a' /\ b = b')`
STRIP_ASSUME_TAC THENL
[SUBGOAL_THEN
`(:num#num) DIFF {(0,0), (0,1)} =_c (:num) DIFF {0,1,2}`
MP_TAC THENL
[TRANS_TAC CARD_EQ_TRANS `(:num#num)` THEN CONJ_TAC THENL
[MATCH_MP_TAC CARD_DIFF_ABSORB THEN
REWRITE_TAC[INFINITE_UNIV_PAIR; num_INFINITE] THEN
TRANS_TAC CARD_LTE_TRANS `(:num)` THEN
REWRITE_TAC[GSYM FINITE_CARD_LT; FINITE_INSERT; FINITE_EMPTY] THEN
MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
REWRITE_TAC[CARD_SQUARE_NUM; GSYM MUL_C_UNIV];
REWRITE_TAC[GSYM MUL_C_UNIV] THEN TRANS_TAC CARD_EQ_TRANS `(:num)` THEN
REWRITE_TAC[CARD_SQUARE_NUM] THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
MATCH_MP_TAC CARD_DIFF_ABSORB THEN REWRITE_TAC[num_INFINITE] THEN
REWRITE_TAC[GSYM FINITE_CARD_LT; FINITE_INSERT; FINITE_EMPTY]];
REWRITE_TAC[EQ_C_BIJECTIONS; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q:num#num->num`; `q':num->num#num`] THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_DIFF; IN_UNIV; IN_INSERT] THEN
REWRITE_TAC[PAIR_EQ; NOT_IN_EMPTY; DE_MORGAN_THM] THEN STRIP_TAC THEN
SUBGOAL_THEN
`!a b a' b'. q(a,b):num = q(a',b')
==> a = 0 /\ (b = 0 \/ b = 1) \/
a' = 0 /\ (b' = 0 \/ b' = 1) \/
a = a' /\ b = b'`
ASSUME_TAC THENL
[MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `c:num`; `d:num`] THEN
REWRITE_TAC[TAUT `p ==> q \/ r <=> p ==> ~q ==> r`] THEN
REPEAT DISCH_TAC THEN FIRST_X_ASSUM(fun th ->
MP_TAC(SPECL [`a:num`; `b:num`] th) THEN
MP_TAC(SPECL [`c:num`; `d:num`] th)) THEN
ASM_REWRITE_TAC[GSYM PAIR_EQ] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
EXISTS_TAC `\(a,b). if (a,b) = (0,0) then 1
else if (a,b) = (0,1) then 2 else q(a,b)` THEN
ASM_REWRITE_TAC[PAIR_EQ; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
CONV_TAC NUM_REDUCE_CONV THEN
CONJ_TAC THEN REPEAT GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
CONV_TAC NUM_REDUCE_CONV THEN ASM_MESON_TAC[]];
ALL_TAC] THEN
ABBREV_TAC `J = \(k,m). {(i,0) | i < k} UNION {(i,k) | i < m}` THEN
SUBGOAL_THEN
`?k:num->num m:num->num.
IMAGE (\n. k n,m n) {n | 3 <= n} =
((:num) DELETE 0) CROSS ((:num) DELETE 0) /\
!n. 3 <= n ==> IMAGE (q:num#num->num) (J(k n,m n)) SUBSET {a | a < n}`
STRIP_ASSUME_TAC THENL
[SUBGOAL_THEN
`?r:num#num->num.
(!a. a IN ((:num) DELETE 0) CROSS ((:num) DELETE 0)
==> r a IN {n | 3 <= n}) /\
(!a. a IN ((:num) DELETE 0) CROSS ((:num) DELETE 0)
==> IMAGE (q:num#num->num) (J a) SUBSET {m | m < r a}) /\
(!a b. a IN ((:num) DELETE 0) CROSS ((:num) DELETE 0) /\
b IN ((:num) DELETE 0) CROSS ((:num) DELETE 0) /\
r a = r b
==> a = b)`
STRIP_ASSUME_TAC THENL
[SUBGOAL_THEN `((:num) DELETE 0) CROSS ((:num) DELETE 0) =_c (:num)`
MP_TAC THENL
[TRANS_TAC CARD_EQ_TRANS `(:num) *_c (:num)` THEN
REWRITE_TAC[CARD_SQUARE_NUM; CROSS; GSYM mul_c] THEN
MATCH_MP_TAC CARD_MUL_CONG THEN REWRITE_TAC[] THEN
REWRITE_TAC[SET_RULE `s DELETE a = s DIFF {a}`] THEN
MATCH_MP_TAC CARD_DIFF_ABSORB THEN
REWRITE_TAC[num_INFINITE; GSYM FINITE_CARD_LT; FINITE_SING];
REWRITE_TAC[EQ_C_BIJECTIONS; LEFT_IMP_EXISTS_THM; IN_UNIV]] THEN
MAP_EVERY X_GEN_TAC [`p':num#num->num`; `p:num->num#num`] THEN
STRIP_TAC THEN
SUBGOAL_THEN
`?t:num->num. (!n. IMAGE q ((J:num#num->num#num->bool)(p n)) SUBSET
{a | a < t n} /\ 2 < t n) /\
(!n. t n < t (SUC n))`
MP_TAC THENL
[MATCH_MP_TAC DEPENDENT_CHOICE THEN
REWRITE_TAC[SET_RULE `s SUBSET {a | a < y} /\ x < y <=>
(x INSERT s) SUBSET {a:num | a < y}`] THEN
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(MESON[] `(?a. P(SUC a)) ==> (?a. P a)`) THEN
REWRITE_TAC[LT_SUC_LE; SUBSET; IN_ELIM_THM] THEN
MATCH_MP_TAC UPPER_BOUND_FINITE_SET THEN
REWRITE_TAC[FINITE_INSERT] THEN MATCH_MP_TAC FINITE_IMAGE THEN
EXPAND_TAC "J" THEN
MATCH_MP_TAC(MESON[] `(!x. FINITE(f x)) ==> FINITE(f a)`) THEN
REWRITE_TAC[FORALL_PAIR_THM; FINITE_UNION] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
SIMP_TAC[FINITE_NUMSEG_LT; FINITE_IMAGE];
REWRITE_TAC[ARITH_RULE `2 < n <=> 3 <= n`] THEN STRIP_TAC] THEN
EXISTS_TAC `(t:num->num) o (p':num#num->num)` THEN
ASM_REWRITE_TAC[o_THM; IN_ELIM_THM] THEN
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`((:num) DELETE 0) CROSS ((:num) DELETE 0) =
IMAGE p (:num)`
SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_REWRITE_TAC[IN_UNIV] THEN
MATCH_MP_TAC WLOG_LT THEN REWRITE_TAC[] THEN
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `!m n. m < n ==> (t:num->num) m < t n` MP_TAC THENL
[ALL_TAC; MESON_TAC[LT_REFL]] THEN
MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN
ASM_REWRITE_TAC[LT_TRANS];
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I
[INJECTIVE_ON_LEFT_INVERSE]) THEN
DISCH_THEN(X_CHOOSE_TAC `l:num->num#num`) THEN
EXISTS_TAC
`\n. if n IN IMAGE r (((:num) DELETE 0) CROSS ((:num) DELETE 0))
then FST((l:num->num#num) n) else 1` THEN
EXISTS_TAC
`\n. if n IN IMAGE r (((:num) DELETE 0) CROSS ((:num) DELETE 0))
then SND((l:num->num#num) n) else 1` THEN
REWRITE_TAC[MESON[]
`(if p then x else 1),(if p then y else 1) =
(if p then x,y else 1,1)`] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM SUBSET_ANTISYM_EQ] THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[IN_CROSS; IN_UNIV; IN_DELETE] THEN
CONV_TAC NUM_REDUCE_CONV THEN ASM SET_TAC[];
ASM SET_TAC[];
REPEAT STRIP_TAC THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN
GEN_TAC THEN COND_CASES_TAC THEN
REWRITE_TAC[IN_CROSS; IN_UNIV; IN_DELETE] THENL
[ASM SET_TAC[]; ALL_TAC] THEN
EXPAND_TAC "J" THEN REWRITE_TAC[IN_UNION] THEN
REWRITE_TAC[ARITH_RULE `i < 1 <=> i = 0`] THEN
REWRITE_TAC[SET_RULE `{f x | x = a} = {f a}`] THEN
REWRITE_TAC[IN_SING] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN ASM_ARITH_TAC]];
ALL_TAC] THEN
ABBREV_TAC
`f = \l. if LENGTH l <= 2 then h(EL 0 l)
else (g:(num)list->(num)list->A->bool)
(list_of_seq (\i. EL (q(i,0)) l) (k(LENGTH l)))
(list_of_seq (\i. EL (q(i,k(LENGTH l))) l) (m(LENGTH l)))` THEN
EXISTS_TAC `f:num list->A->bool` THEN EXPAND_TAC "f" THEN
REWRITE_TAC[] THEN CONJ_TAC THENL
[X_GEN_TAC `l:num list` THEN DISCH_TAC THEN COND_CASES_TAC THENL
[ASM SET_TAC[]; FIRST_X_ASSUM MATCH_MP_TAC] THEN
REWRITE_TAC[GSYM LENGTH_EQ_NIL; LENGTH_LIST_OF_SEQ] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`IMAGE f s = t ==> !x. x IN s ==> f x IN t`)) THEN
DISCH_THEN(MP_TAC o SPEC `LENGTH(l:num list)`) THEN
REWRITE_TAC[IN_ELIM_THM; IN_CROSS; IN_UNIV; IN_DELETE] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_ARITH_TAC;
ALL_TAC] THEN
X_GEN_TAC `x:A` THEN EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL
[MAP_EVERY X_GEN_TAC [`s:num->num`; `s':num->num->num`] THEN STRIP_TAC THEN
SUBGOAL_THEN
`?t. h(t 0) = (g:(num)list->(num)list->A->bool)
(list_of_seq s 1) (list_of_seq (s' 1) 1) /\
(!i. t(q(i,0)) = s i) /\
(!i j. 1 <= j ==> t(q(i,j)) = s' j i)`
STRIP_ASSUME_TAC THENL
[SUBGOAL_THEN
`?t:num->num.
(\(i,j). if j = 0 then s i else s' j i) = t o (q:num#num->num)`
MP_TAC THENL
[REWRITE_TAC[GSYM FUNCTION_FACTORS_LEFT] THEN
ASM_REWRITE_TAC[FORALL_PAIR_THM] THEN SIMP_TAC[];
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]] THEN
DISCH_THEN(X_CHOOSE_TAC `t:num->num` o GSYM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`t = IMAGE f UNIV ==> !y. y IN t ==> ?x. f x = y`)) THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
DISCH_THEN(MP_TAC o SPECL
[`list_of_seq s 1:num list`; `list_of_seq (s' 1) 1:num list`]) THEN
REWRITE_TAC[LIST_OF_SEQ_EQ_NIL] THEN CONV_TAC NUM_REDUCE_CONV THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` (SUBST1_TAC o SYM)) THEN
EXISTS_TAC `\n. if n = 0 then p:num else t n` THEN
ASM_SIMP_TAC[LE_1];
EXISTS_TAC `t:num->num`] THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[LENGTH_LIST_OF_SEQ] THEN
SIMP_TAC[LE_1; EL_LIST_OF_SEQ] THEN DISCH_TAC THEN COND_CASES_TAC THENL
[ASM_REWRITE_TAC[] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
CONV_TAC NUM_REDUCE_CONV;
RULE_ASSUM_TAC(REWRITE_RULE[ARITH_RULE `~(n <= 2) <=> 3 <= n`])] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`IMAGE f s = t ==> !x. x IN s ==> f x IN t`)) THEN
DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; IN_CROSS; IN_DELETE; IN_UNIV] THEN
REWRITE_TAC[ARITH_RULE `~(n = 0) <=> 1 <= n`] THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN
FIRST_X_ASSUM(MP_TAC o C MATCH_MP th)) THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN BINOP_TAC THEN
SIMP_TAC[LIST_EQ; LENGTH_LIST_OF_SEQ; EL_LIST_OF_SEQ] THEN
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand) EL_LIST_OF_SEQ o rand o snd) THEN
ASM_SIMP_TAC[LE_1] THEN DISCH_THEN(MATCH_MP_TAC o GSYM);
X_GEN_TAC `t:num->num` THEN DISCH_THEN(LABEL_TAC "*") THEN
EXISTS_TAC `\i:num. (t:num->num)(q(i,0))` THEN
EXISTS_TAC `\j:num i:num. (t:num->num)(q(i,j))` THEN
MAP_EVERY X_GEN_TAC [`kk:num`; `mm:num`] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN
DISCH_THEN(MP_TAC o SPEC `(kk:num),(mm:num)`) THEN
ASM_SIMP_TAC[IN_CROSS; IN_DELETE; IN_UNIV; LE_1; PAIR_EQ; IN_ELIM_THM] THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(CONJUNCTS_THEN (SUBST_ALL_TAC o SYM)) THEN
REMOVE_THEN "*" (MP_TAC o SPEC `n:num`) THEN
ASM_SIMP_TAC[LENGTH_LIST_OF_SEQ; ARITH_RULE
`3 <= n ==> 1 <= n /\ ~(n <= 2)`] THEN
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN BINOP_TAC THEN
SIMP_TAC[LIST_EQ; LENGTH_LIST_OF_SEQ; EL_LIST_OF_SEQ] THEN
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
MATCH_MP_TAC EL_LIST_OF_SEQ] THEN
RULE_ASSUM_TAC(REWRITE_RULE
[SUBSET; IN_ELIM_THM; FORALL_IN_IMAGE; RIGHT_IMP_FORALL_THM; IMP_IMP]) THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
EXPAND_TAC "J" THEN REWRITE_TAC[IN_UNION; IN_ELIM_PAIR_THM] THEN
ASM SET_TAC[]);;
let SUSLIN_INTERS = prove
(`!C f:(A->bool)->bool.
COUNTABLE f /\ ~(f = {}) /\
(!s. s IN f ==> suslin C s)
==> suslin C (INTERS f)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MP_TAC(ISPEC `f:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `f:num->A->bool` THEN DISCH_THEN SUBST1_TAC THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM SUSLIN_SUSLIN] THEN
ONCE_REWRITE_TAC[suslin] THEN
REWRITE_TAC[IN_ELIM_THM; suslin_operation] THEN
EXISTS_TAC `(f:num->A->bool) o (\n. n - 1) o (LENGTH:num list->num)` THEN
ASM_REWRITE_TAC[o_THM; LENGTH_LIST_OF_SEQ] THEN
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_CONST; UNIV_NOT_EMPTY; UNIONS_1] THEN
CONJ_TAC THENL [ASM SET_TAC[]; AP_TERM_TAC] THEN
MP_TAC(ARITH_RULE `!n. 1 <= SUC n /\ SUC n - 1 = n`) THEN
SET_TAC[]);;
let SUSLIN_INTER = prove
(`!C s t:A->bool. suslin C s /\ suslin C t ==> suslin C (s INTER t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN
MATCH_MP_TAC SUSLIN_INTERS THEN
REWRITE_TAC[COUNTABLE_INSERT; COUNTABLE_EMPTY; NOT_INSERT_EMPTY] THEN
ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let SUSLIN_UNIONS = prove
(`!C f:(A->bool)->bool.
COUNTABLE f /\ ~(f = {}) /\
(!s. s IN f ==> suslin C s)
==> suslin C (UNIONS f)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MP_TAC(ISPEC `f:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `f:num->A->bool` THEN DISCH_THEN SUBST1_TAC THEN
POP_ASSUM_LIST(K ALL_TAC) THEN REWRITE_TAC[FORALL_IN_IMAGE; IN_UNIV] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[GSYM SUSLIN_SUSLIN] THEN
ONCE_REWRITE_TAC[suslin] THEN
REWRITE_TAC[IN_ELIM_THM; suslin_operation] THEN
EXISTS_TAC `(f:num->A->bool) o (EL 0:num list->num)` THEN
ASM_REWRITE_TAC[o_THM] THEN CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!f:num->A->bool s.
{f (EL 0 (list_of_seq s n)) | 1 <= n} = {f(s 0)}`
(fun th -> REWRITE_TAC[th])
THENL
[REPEAT GEN_TAC THEN
MATCH_MP_TAC(SET_RULE
`(?x. P x) /\ (!x. P x ==> f x = a) ==> {f x | P x} = {a}`) THEN
SIMP_TAC[EL_LIST_OF_SEQ; LE_1] THEN MESON_TAC[LE_REFL];
REWRITE_TAC[INTERS_1] THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_GSPEC] THEN
SIMP_TAC[FUN_IN_IMAGE; IN_UNIV; FORALL_IN_IMAGE] THEN
X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN
EXISTS_TAC `(\i. n):num->num` THEN REWRITE_TAC[]]);;
let SUSLIN_UNION = prove
(`!C s t:A->bool. suslin C s /\ suslin C t ==> suslin C (s UNION t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM UNIONS_2] THEN
MATCH_MP_TAC SUSLIN_UNIONS THEN
REWRITE_TAC[COUNTABLE_INSERT; COUNTABLE_EMPTY; NOT_INSERT_EMPTY] THEN
ASM_REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let CARD_SUSLIN_LE = prove
(`!C:(A->bool)->bool. C <=_c (:real) ==> suslin C <=_c (:real)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[suslin] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
TRANS_TAC CARD_LE_TRANS
`IMAGE suslin_operation ((C:(A->bool)->bool) ^_c (:num list))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[exp_c; IN_UNIV] THEN
MATCH_MP_TAC(SET_RULE
`(!x. x IN s ==> ?y. y IN t /\ f x = f y)
==> IMAGE f s SUBSET IMAGE f t`) THEN
X_GEN_TAC `f:num list->A->bool` THEN REWRITE_TAC[IN_ELIM_THM] THEN
STRIP_TAC THEN
EXISTS_TAC `\l. if l = [] then f[0] else f l:A->bool` THEN
REWRITE_TAC[suslin_operation] THEN
CONJ_TAC THENL [ASM_MESON_TAC[NOT_CONS_NIL]; ALL_TAC] THEN
REPEAT(AP_TERM_TAC THEN
MATCH_MP_TAC(SET_RULE
`(!x. P x ==> f x = g x) ==> {f x | P x} = {g x | P x}`) THEN
REPEAT STRIP_TAC) THEN
ASM_SIMP_TAC[LIST_OF_SEQ_EQ_NIL; LE_1];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH lhand CARD_LE_IMAGE o lhand o snd) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN
TRANS_TAC CARD_LE_TRANS `(:real) ^_c (:num list)` THEN
ASM_SIMP_TAC[CARD_LE_EXP_LEFT] THEN
TRANS_TAC CARD_LE_TRANS `(:num->bool) ^_c (:num)` THEN CONJ_TAC THENL
[MATCH_MP_TAC CARD_EQ_IMP_LE THEN MATCH_MP_TAC CARD_EXP_CONG THEN
SIMP_TAC[CARD_EQ_REAL; CARD_EQ_LIST; num_INFINITE];
ALL_TAC] THEN
REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN
W(MP_TAC o PART_MATCH rand CARD_EXP_MUL o lhand o snd) THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE) THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN
MATCH_MP_TAC CARD_EQ_IMP_LE THEN
TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_REAL] THEN
REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN
MATCH_MP_TAC CARD_EXP_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_SQUARE_NUM]);;
let CARD_SUSLIN_EQ = prove
(`!C:(A->bool)->bool. C =_c (:real) ==> suslin C =_c (:real)`,
GEN_TAC THEN SIMP_TAC[GSYM CARD_LE_ANTISYM] THEN
MATCH_MP_TAC MONO_AND THEN REWRITE_TAC[CARD_SUSLIN_LE] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN
MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[SUSLIN_SUPERSET]);;