Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Some special/counterintuive/weird topological spaces for counterexamples. *) | |
(* ========================================================================= *) | |
needs "Multivariate/metric.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* The indiscrete (trivial) topology. *) | |
(* ------------------------------------------------------------------------- *) | |
let indiscrete_topology = new_definition | |
`indiscrete_topology (u:A->bool) = topology {{},u}`;; | |
let OPEN_IN_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
open_in (indiscrete_topology u) s <=> s = {} \/ s = u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[indiscrete_topology] THEN | |
W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) | |
(CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[istopology; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; FORALL_SUBSET_INSERT; | |
UNIONS_INSERT; SUBSET_EMPTY; FORALL_UNWIND_THM2; UNIONS_0; | |
UNION_EMPTY; INTER_EMPTY; INTER_IDEMPOT] THEN | |
REWRITE_TAC[IN_INSERT]; | |
DISCH_THEN SUBST1_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM IN] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]]);; | |
let TOPSPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. topspace(indiscrete_topology u) = u`, | |
REWRITE_TAC[topspace; OPEN_IN_INDISCRETE_TOPOLOGY] THEN SET_TAC[]);; | |
let CLOSED_IN_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
closed_in (indiscrete_topology u) s <=> s = {} \/ s = u`, | |
REWRITE_TAC[closed_in; OPEN_IN_INDISCRETE_TOPOLOGY; | |
TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
SET_TAC[]);; | |
let SUBTOPOLOGY_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
subtopology (indiscrete_topology u) s = | |
indiscrete_topology (u INTER s)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[TOPOLOGY_EQ] THEN | |
GEN_TAC THEN REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT] THEN | |
REWRITE_TAC[OPEN_IN_INDISCRETE_TOPOLOGY] THEN | |
ONCE_REWRITE_TAC[SET_RULE `x = a \/ x = b <=> x IN {a,b}`] THEN | |
REWRITE_TAC[SIMPLE_IMAGE; IMAGE_CLAUSES; INTER_EMPTY] THEN | |
REWRITE_TAC[INTER_COMM]);; | |
let COMPACT_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. compact_space (indiscrete_topology u)`, | |
GEN_TAC THEN REWRITE_TAC[COMPACT_SPACE; OPEN_IN_INDISCRETE_TOPOLOGY] THEN | |
X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN | |
EXISTS_TAC `U:(A->bool)->bool` THEN ASM_REWRITE_TAC[SUBSET_REFL] THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{{},(u:A->bool)}` THEN | |
REWRITE_TAC[FINITE_INSERT; FINITE_EMPTY] THEN | |
GEN_REWRITE_TAC I [SUBSET] THEN ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY]);; | |
let COMPACT_IN_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
compact_in (indiscrete_topology u) s <=> s SUBSET u`, | |
REWRITE_TAC[COMPACT_IN_SUBSPACE; TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[SUBTOPOLOGY_INDISCRETE_TOPOLOGY; | |
COMPACT_SPACE_INDISCRETE_TOPOLOGY]);; | |
let LOCALLY_COMPACT_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. locally_compact_space (indiscrete_topology u)`, | |
SIMP_TAC[COMPACT_IMP_LOCALLY_COMPACT_SPACE; | |
COMPACT_SPACE_INDISCRETE_TOPOLOGY]);; | |
let COMPLETELY_REGULAR_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. completely_regular_space(indiscrete_topology u)`, | |
REWRITE_TAC[completely_regular_space; CLOSED_IN_INDISCRETE_TOPOLOGY; | |
TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[SET_RULE | |
`(s = {} \/ s = u) /\ x IN u DIFF s <=> s = {} /\ x IN u`] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2] THEN | |
MAP_EVERY X_GEN_TAC [`u:A->bool`; `x:A`] THEN | |
DISCH_TAC THEN EXISTS_TAC `(\x. &0):A->real` THEN | |
REWRITE_TAC[CONTINUOUS_MAP_CONST; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY; | |
ENDS_IN_UNIT_REAL_INTERVAL]);; | |
let REGULAR_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. regular_space(indiscrete_topology u)`, | |
SIMP_TAC[COMPLETELY_REGULAR_IMP_REGULAR_SPACE; | |
COMPLETELY_REGULAR_SPACE_INDISCRETE_TOPOLOGY]);; | |
let T1_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. t1_space(indiscrete_topology u) <=> ?a. u SUBSET {a}`, | |
REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; TOPSPACE_INDISCRETE_TOPOLOGY; | |
CLOSED_IN_INDISCRETE_TOPOLOGY] THEN | |
SET_TAC[]);; | |
let T0_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. t0_space(indiscrete_topology u) <=> ?a. u SUBSET {a}`, | |
GEN_TAC THEN REWRITE_TAC[t0_space; OPEN_IN_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_INDISCRETE_TOPOLOGY; RIGHT_OR_DISTRIB] THEN | |
SIMP_TAC[EXISTS_OR_THM; UNWIND_THM2; NOT_IN_EMPTY] THEN SET_TAC[]);; | |
let HAUSDORFF_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. hausdorff_space(indiscrete_topology u) <=> ?a. u SUBSET {a}`, | |
MESON_TAC[REGULAR_T1_EQ_HAUSDORFF_SPACE; REGULAR_SPACE_INDISCRETE_TOPOLOGY; | |
T1_SPACE_INDISCRETE_TOPOLOGY]);; | |
let NORMAL_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. normal_space(indiscrete_topology u)`, | |
GEN_TAC THEN REWRITE_TAC[normal_space; CLOSED_IN_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[OPEN_IN_INDISCRETE_TOPOLOGY; RIGHT_OR_DISTRIB] THEN | |
REWRITE_TAC[EXISTS_OR_THM; GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN SET_TAC[]);; | |
let DERIVED_SET_OF_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
(indiscrete_topology u) derived_set_of s = | |
if ?a. u INTER s SUBSET {a} then if DISJOINT u s then {} else u DIFF s | |
else u`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[DERIVED_SET_OF_RESTRICT] THEN | |
ONCE_REWRITE_TAC[DISJOINT; SET_RULE `u DIFF s = u DIFF (u INTER s)`] THEN | |
MP_TAC(SET_RULE `(u INTER s:A->bool) SUBSET u`) THEN | |
REWRITE_TAC[TOPSPACE_SUBTOPOLOGY; TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
SPEC_TAC(`u INTER s:A->bool`,`t:A->bool`) THEN X_GEN_TAC `s:A->bool` THEN | |
STRIP_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN | |
ASM_REWRITE_TAC[DERIVED_SET_OF_EMPTY; INTER_EMPTY; EMPTY_SUBSET] THEN | |
REWRITE_TAC[derived_set_of; EXTENSION; IN_ELIM_THM; IN_INTER] THEN | |
REWRITE_TAC[OPEN_IN_INDISCRETE_TOPOLOGY; TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TAUT | |
`p /\ (q \/ r) ==> s <=> (q ==> p ==> s) /\ (r ==> p ==> s)`] THEN | |
SIMP_TAC[NOT_IN_EMPTY; FORALL_UNWIND_THM2] THEN | |
X_GEN_TAC `x:A` THEN COND_CASES_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
ASM_CASES_TAC `(x:A) IN u` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_DIFF] THEN | |
ASM SET_TAC[]);; | |
let DERIVED_SET_OF_TOPSPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. | |
(indiscrete_topology u) derived_set_of u = | |
if ?a. u SUBSET {a} then {} else u`, | |
GEN_TAC THEN REWRITE_TAC[DERIVED_SET_OF_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[GSYM DISJOINT_EMPTY_REFL; INTER_IDEMPOT] THEN | |
REWRITE_TAC[DIFF_EQ_EMPTY; COND_ID]);; | |
let PERFECT_SET_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
(indiscrete_topology u) derived_set_of s = s <=> | |
s = {} \/ s = u /\ ~(?a. u SUBSET {a})`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `s:A->bool = {}` THEN | |
ASM_REWRITE_TAC[DERIVED_SET_OF_EMPTY] THEN | |
REWRITE_TAC[DERIVED_SET_OF_INDISCRETE_TOPOLOGY] THEN | |
ASM_CASES_TAC `s:A->bool = u` THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
ASM_REWRITE_TAC[GSYM DISJOINT_EMPTY_REFL; INTER_IDEMPOT] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);; | |
let CONTINUOUS_MAP_INTO_INDISCRETE_TOPOLOGY = prove | |
(`!(f:A->B) top u. | |
continuous_map (top,indiscrete_topology u) f <=> | |
IMAGE f (topspace top) SUBSET u`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[continuous_map; OPEN_IN_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TAUT `p \/ q ==> r <=> (p ==> r) /\ (q ==> r)`] THEN | |
SIMP_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; OPEN_IN_EMPTY] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; FORALL_UNWIND_THM2] THEN | |
REWRITE_TAC[TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TAUT `(p /\ q <=> p) <=> p ==> q`] THEN | |
SIMP_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN | |
REWRITE_TAC[IN_GSPEC; OPEN_IN_TOPSPACE]);; | |
let CONTINUOUS_MAP_FROM_INDISCRETE_TOPOLOGY = prove | |
(`!top u (f:A->B). | |
t1_space top | |
==> (continuous_map(indiscrete_topology u,top) f <=> | |
u = {} \/ ?a. a IN topspace top /\ !x. x IN u ==> f x = a)`, | |
REWRITE_TAC[T1_SPACE_CLOSED_IN_SING] THEN REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `u:A->bool = {}` THEN | |
ASM_REWRITE_TAC[CONTINUOUS_MAP_CLOSED_IN; TOPSPACE_INDISCRETE_TOPOLOGY; | |
CLOSED_IN_INDISCRETE_TOPOLOGY; NOT_IN_EMPTY; EMPTY_GSPEC] THEN | |
EQ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
STRIP_TAC THEN MATCH_MP_TAC(SET_RULE | |
`~(u = {}) /\ | |
(!x. x IN u ==> f x IN v) /\ | |
(!x y. x IN u /\ y IN u ==> f x = f y) | |
==> ?a. a IN v /\ (!x. x IN u ==> f x = a)`) THEN | |
ASM_REWRITE_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(fun th -> | |
MP_TAC(SPEC `{(f:A->B) b}` th) THEN MP_TAC(SPEC `{(f:A->B) a}` th)) THEN | |
ASM_SIMP_TAC[] THEN ASM SET_TAC[]);; | |
let PATH_CONNECTED_SPACE_INDISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. path_connected_space(indiscrete_topology u)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[path_connected_space] THEN | |
REWRITE_TAC[path_in; CONTINUOUS_MAP_INTO_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_EUCLIDEANREAL_SUBTOPOLOGY] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
EXISTS_TAC `(\i. if i = &0 then x else y):real->A` THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM SET_TAC[]);; | |
let PATH_CONNECTED_IN_INDISCRETE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
path_connected_in (indiscrete_topology u) s <=> s SUBSET u`, | |
REWRITE_TAC[path_connected_in; PATH_CONNECTED_SPACE_INDISCRETE_TOPOLOGY; | |
SUBTOPOLOGY_INDISCRETE_TOPOLOGY; TOPSPACE_INDISCRETE_TOPOLOGY]);; | |
let NEIGHBOURHOOD_BASE_OF_INDISCRETE_TOPOLOGY = prove | |
(`!P u:A->bool. | |
neighbourhood_base_of P (indiscrete_topology u) <=> | |
u = {} \/ P u`, | |
REWRITE_TAC[NEIGHBOURHOOD_BASE_OF; OPEN_IN_INDISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[TAUT | |
`(p \/ q) /\ r ==> s <=> (p ==> r ==> s) /\ (q ==> r ==> s)`] THEN | |
SIMP_TAC[IN_ELIM_THM; RIGHT_FORALL_IMP_THM; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[FORALL_UNWIND_THM2; RIGHT_OR_DISTRIB] THEN | |
REWRITE_TAC[EXISTS_OR_THM; RIGHT_EXISTS_AND_THM; UNWIND_THM2] THEN | |
REWRITE_TAC[NOT_IN_EMPTY; SUBSET_ANTISYM_EQ] THEN | |
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> r /\ p /\ q`] THEN | |
SIMP_TAC[UNWIND_THM1] THEN SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finite-complement (cofinite) topology. *) | |
(* ------------------------------------------------------------------------- *) | |
let cofinite_topology = new_definition | |
`cofinite_topology (u:A->bool) = | |
topology ({} INSERT {s | s SUBSET u /\ FINITE(u DIFF s)})`;; | |
let OPEN_IN_COFINITE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
open_in (cofinite_topology u) s <=> | |
s = {} \/ s SUBSET u /\ FINITE(u DIFF s)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[cofinite_topology] THEN | |
W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) | |
(CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[istopology]; | |
DISCH_THEN SUBST1_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM IN] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_INSERT]] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_INSERT] THEN | |
REWRITE_TAC[IN_INSERT; INTER_EMPTY] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM] THEN | |
X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN | |
X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN DISJ2_TAC THEN | |
REWRITE_TAC[SET_RULE `u DIFF s INTER t = (u DIFF s) UNION (u DIFF t)`] THEN | |
ASM_SIMP_TAC[FINITE_UNION] THEN ASM SET_TAC[]; | |
X_GEN_TAC `k:(A->bool)->bool` THEN REWRITE_TAC[EMPTY_UNIONS] THEN | |
REWRITE_TAC[TAUT `p ==> q \/ r <=> p /\ ~q ==> r`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE | |
`k SUBSET a INSERT s /\ ~(!x. x IN k ==> x = a) | |
==> k DELETE a SUBSET s /\ ~(k DELETE a = {})`)) THEN | |
ONCE_REWRITE_TAC[GSYM UNIONS_DELETE_EMPTY] THEN | |
SPEC_TAC(`(k DELETE {}):(A->bool)->bool`,`v:(A->bool)->bool`) THEN | |
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SUBSET] THEN | |
SIMP_TAC[IN_ELIM_THM; UNIONS_SUBSET] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(X_CHOOSE_TAC `s:A->bool` o | |
REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `u DIFF s:A->bool` THEN | |
ASM_SIMP_TAC[] THEN ASM SET_TAC[]]);; | |
let TOPSPACE_COFINITE_TOPOLOGY = prove | |
(`!u:A->bool. topspace(cofinite_topology u) = u`, | |
GEN_TAC THEN REWRITE_TAC[topspace; OPEN_IN_COFINITE_TOPOLOGY] THEN | |
MATCH_MP_TAC(SET_RULE | |
`(!s. P s ==> s SUBSET u) /\ P u ==> UNIONS {s | P s} = u`) THEN | |
REWRITE_TAC[DIFF_EQ_EMPTY; FINITE_EMPTY] THEN SET_TAC[]);; | |
let CLOSED_IN_COFINITE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
closed_in (cofinite_topology u) s <=> | |
s = u \/ s SUBSET u /\ FINITE s`, | |
REWRITE_TAC[closed_in; OPEN_IN_COFINITE_TOPOLOGY; | |
TOPSPACE_COFINITE_TOPOLOGY] THEN | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `(s:A->bool) SUBSET u` THEN | |
ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`] THEN | |
ASM SET_TAC[]);; | |
let T1_SPACE_COFINITE_TOPOLOGY = prove | |
(`!u:A->bool. t1_space(cofinite_topology u)`, | |
REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; CLOSED_IN_COFINITE_TOPOLOGY] THEN | |
SIMP_TAC[FINITE_SING; SING_SUBSET; TOPSPACE_COFINITE_TOPOLOGY]);; | |
let T1_SPACE_COFINITE_TOPOLOGY_MINIMAL = prove | |
(`!top s:A->bool. | |
t1_space top /\ closed_in (cofinite_topology(topspace top)) s | |
==> closed_in top s`, | |
REWRITE_TAC[CLOSED_IN_COFINITE_TOPOLOGY] THEN | |
MESON_TAC[T1_SPACE_CLOSED_IN_FINITE; CLOSED_IN_TOPSPACE]);; | |
let COFINITE_EQ_DISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. FINITE u ==> cofinite_topology u = discrete_topology u`, | |
SIMP_TAC[TOPOLOGY_EQ; OPEN_IN_DISCRETE_TOPOLOGY; OPEN_IN_COFINITE_TOPOLOGY; | |
FINITE_DIFF] THEN | |
SET_TAC[]);; | |
let CONNECTED_IN_COFINITE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
INFINITE s /\ s SUBSET u ==> connected_in (cofinite_topology u) s`, | |
REWRITE_TAC[CONNECTED_IN_CLOSED_IN; CLOSED_IN_COFINITE_TOPOLOGY] THEN | |
SIMP_TAC[TOPSPACE_COFINITE_TOPOLOGY] THEN REPEAT STRIP_TAC THENL | |
[ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]; | |
ASM_MESON_TAC[INFINITE; FINITE_SUBSET; FINITE_UNION]]);; | |
let CONNECTED_SPACE_COFINITE_TOPOLOGY = prove | |
(`!u:A->bool. | |
connected_space(cofinite_topology u) <=> | |
(?a. u SUBSET {a}) \/ INFINITE u`, | |
GEN_TAC THEN ASM_CASES_TAC `FINITE(u:A->bool)` THEN | |
ASM_SIMP_TAC[INFINITE; COFINITE_EQ_DISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[CONNECTED_SPACE_DISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN | |
MATCH_MP_TAC CONNECTED_IN_COFINITE_TOPOLOGY THEN | |
ASM_REWRITE_TAC[INFINITE; TOPSPACE_COFINITE_TOPOLOGY; SUBSET_REFL]);; | |
let COMPACT_IN_COFINITE_TOPOLOGY = prove | |
(`!u s:A->bool. compact_in(cofinite_topology u) s <=> s SUBSET u`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[COMPACT_IN_FIP; CLOSED_IN_COFINITE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_COFINITE_TOPOLOGY] THEN | |
ASM_CASES_TAC `(s:A->bool) SUBSET u` THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `U:(A->bool)->bool` THEN STRIP_TAC THEN | |
ASM_CASES_TAC `FINITE(U:(A->bool)->bool)` THEN | |
ASM_SIMP_TAC[SUBSET_REFL] THEN | |
SUBGOAL_THEN `?k:A->bool. k IN U /\ k SUBSET u /\ FINITE k` | |
STRIP_ASSUME_TAC THENL | |
[SUBGOAL_THEN `~((U:(A->bool)->bool) SUBSET {u})` MP_TAC THENL | |
[ASM_MESON_TAC[FINITE_SUBSET; FINITE_SING]; | |
REWRITE_TAC[SUBSET; IN_SING] THEN ASM SET_TAC[]]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `?V. V SUBSET U /\ FINITE V /\ INTERS U :A->bool = INTERS V` | |
MP_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN | |
SUBGOAL_THEN `U = k INSERT (U DELETE (k:A->bool))` SUBST1_TAC THENL | |
[ASM SET_TAC[]; REWRITE_TAC[INTER_INTERS; INTERS_INSERT]] THEN | |
ASM_SIMP_TAC[SET_RULE `a IN s ==> (s DELETE a = {} <=> s = {a})`] THEN | |
COND_CASES_TAC THENL [ASM_MESON_TAC[FINITE_SING]; ALL_TAC] THEN | |
MATCH_MP_TAC(MESON[] `!k. (?s. P(k INSERT k INSERT s)) ==> (?s. P s)`) THEN | |
EXISTS_TAC `k:A->bool` THEN ONCE_REWRITE_TAC[INTERS_INSERT] THEN | |
REWRITE_TAC[INTER_INTERS; FINITE_INSERT; NOT_INSERT_EMPTY] THEN | |
SUBGOAL_THEN `FINITE {k INTER t:A->bool | t | t IN U DELETE k}` MP_TAC THENL | |
[MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{l:A->bool | l SUBSET k}` THEN | |
ASM_SIMP_TAC[FINITE_POWERSET] THEN | |
GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[IN_ELIM_THM; INTER_SUBSET]; | |
REWRITE_TAC[SIMPLE_IMAGE] THEN | |
GEN_REWRITE_TAC LAND_CONV [FINITE_IMAGE_EQ] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `V:(A->bool)->bool` THEN | |
ASM_CASES_TAC `V:(A->bool)->bool = {}` THEN | |
ASM_REWRITE_TAC[IMAGE_CLAUSES; IMAGE_EQ_EMPTY] THENL | |
[ASM_MESON_TAC[FINITE_EMPTY; FINITE_DELETE]; STRIP_TAC] THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ASM_REWRITE_TAC[]] THEN | |
REWRITE_TAC[INTER_IDEMPOT; INTER_INTERS; INTERS_INSERT] THEN | |
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; SET_RULE | |
`{g y | y IN IMAGE f s} = {g(f x) | x IN s}`] THEN | |
REWRITE_TAC[SIMPLE_IMAGE; SET_RULE `k INTER k INTER s = k INTER s`]]);; | |
let COMPACT_SPACE_COFINITE_TOPOLOGY = prove | |
(`!u:A->bool. compact_space(cofinite_topology u)`, | |
REWRITE_TAC[compact_space; COMPACT_IN_COFINITE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_COFINITE_TOPOLOGY; SUBSET_REFL]);; | |
let HAUSDORFF_SPACE_SUBTOPOLOGY_COFINITE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
hausdorff_space (subtopology (cofinite_topology u) s) <=> | |
FINITE(u INTER s)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN | |
REWRITE_TAC[TOPSPACE_COFINITE_TOPOLOGY] THEN | |
MP_TAC(SET_RULE `u INTER (s:A->bool) SUBSET u`) THEN | |
SPEC_TAC(`u INTER (s:A->bool)`,`s:A->bool`) THEN | |
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[ASM_CASES_TAC `?a:A. s SUBSET {a}` THENL | |
[ASM_MESON_TAC[FINITE_SUBSET; FINITE_SING]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE | |
`~(?a. s SUBSET {a}) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`] o | |
GEN_REWRITE_RULE I [hausdorff_space]) THEN | |
ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; TOPSPACE_COFINITE_TOPOLOGY] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN | |
REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[IN_INTER; OPEN_IN_COFINITE_TOPOLOGY] THEN | |
X_GEN_TAC `t:A->bool` THEN STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `t':A->bool` THEN STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `(u DIFF t) UNION (u DIFF t'):A->bool` THEN | |
ASM_REWRITE_TAC[FINITE_UNION] THEN ASM SET_TAC[]; | |
ASM_SIMP_TAC[hausdorff_space; TOPSPACE_SUBTOPOLOGY_SUBSET; | |
TOPSPACE_COFINITE_TOPOLOGY] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; OPEN_IN_SUBTOPOLOGY_ALT] THEN | |
REWRITE_TAC[EXISTS_IN_GSPEC; OPEN_IN_COFINITE_TOPOLOGY] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
EXISTS_TAC `(x:A) INSERT (u DIFF s)` THEN | |
EXISTS_TAC `(y:A) INSERT (u DIFF s)` THEN | |
REWRITE_TAC[NOT_INSERT_EMPTY] THEN | |
REPEAT CONJ_TAC THEN | |
TRY(MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool`) THEN | |
ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);; | |
let HAUSDORFF_SPACE_COFINITE_TOPOLOGY = prove | |
(`!u:A->bool. hausdorff_space(cofinite_topology u) <=> FINITE u`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_TOPSPACE] THEN | |
REWRITE_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY_COFINITE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_COFINITE_TOPOLOGY; INTER_IDEMPOT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Countable-complement (cocountable) topology. *) | |
(* ------------------------------------------------------------------------- *) | |
let cocountable_topology = new_definition | |
`cocountable_topology (u:A->bool) = | |
topology ({} INSERT {s | s SUBSET u /\ COUNTABLE(u DIFF s)})`;; | |
let OPEN_IN_COCOUNTABLE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
open_in (cocountable_topology u) s <=> | |
s = {} \/ s SUBSET u /\ COUNTABLE(u DIFF s)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[cocountable_topology] THEN | |
W(MP_TAC o fst o EQ_IMP_RULE o PART_MATCH (lhand o rand) | |
(CONJUNCT2 topology_tybij) o rator o lhand o snd) THEN | |
ANTS_TAC THENL | |
[REWRITE_TAC[istopology]; | |
DISCH_THEN SUBST1_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM IN] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_INSERT]] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ; FORALL_IN_INSERT] THEN | |
REWRITE_TAC[IN_INSERT; INTER_EMPTY] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_ELIM_THM] THEN | |
X_GEN_TAC `s:A->bool` THEN STRIP_TAC THEN | |
X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN DISJ2_TAC THEN | |
REWRITE_TAC[SET_RULE `u DIFF s INTER t = (u DIFF s) UNION (u DIFF t)`] THEN | |
ASM_SIMP_TAC[COUNTABLE_UNION] THEN ASM SET_TAC[]; | |
X_GEN_TAC `k:(A->bool)->bool` THEN REWRITE_TAC[EMPTY_UNIONS] THEN | |
REWRITE_TAC[TAUT `p ==> q \/ r <=> p /\ ~q ==> r`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE | |
`k SUBSET a INSERT s /\ ~(!x. x IN k ==> x = a) | |
==> k DELETE a SUBSET s /\ ~(k DELETE a = {})`)) THEN | |
ONCE_REWRITE_TAC[GSYM UNIONS_DELETE_EMPTY] THEN | |
SPEC_TAC(`(k DELETE {}):(A->bool)->bool`,`v:(A->bool)->bool`) THEN | |
GEN_TAC THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SUBSET] THEN | |
SIMP_TAC[IN_ELIM_THM; UNIONS_SUBSET] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(X_CHOOSE_TAC `s:A->bool` o | |
REWRITE_RULE[GSYM MEMBER_NOT_EMPTY]) THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `u DIFF s:A->bool` THEN | |
ASM_SIMP_TAC[] THEN ASM SET_TAC[]]);; | |
let TOPSPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. topspace(cocountable_topology u) = u`, | |
GEN_TAC THEN REWRITE_TAC[topspace; OPEN_IN_COCOUNTABLE_TOPOLOGY] THEN | |
MATCH_MP_TAC(SET_RULE | |
`(!s. P s ==> s SUBSET u) /\ P u ==> UNIONS {s | P s} = u`) THEN | |
REWRITE_TAC[DIFF_EQ_EMPTY; COUNTABLE_EMPTY] THEN SET_TAC[]);; | |
let CLOSED_IN_COCOUNTABLE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
closed_in (cocountable_topology u) s <=> | |
s = u \/ s SUBSET u /\ COUNTABLE s`, | |
REWRITE_TAC[closed_in; OPEN_IN_COCOUNTABLE_TOPOLOGY; | |
TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `(s:A->bool) SUBSET u` THEN | |
ASM_SIMP_TAC[SET_RULE `s SUBSET u ==> u DIFF (u DIFF s) = s`] THEN | |
ASM SET_TAC[]);; | |
let T1_SPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. t1_space(cocountable_topology u)`, | |
REWRITE_TAC[T1_SPACE_CLOSED_IN_SING; CLOSED_IN_COCOUNTABLE_TOPOLOGY] THEN | |
SIMP_TAC[COUNTABLE_SING; SING_SUBSET; TOPSPACE_COCOUNTABLE_TOPOLOGY]);; | |
let COCOUNTABLE_EQ_DISCRETE_TOPOLOGY = prove | |
(`!u:A->bool. COUNTABLE u ==> cocountable_topology u = discrete_topology u`, | |
SIMP_TAC[TOPOLOGY_EQ; OPEN_IN_DISCRETE_TOPOLOGY; OPEN_IN_COCOUNTABLE_TOPOLOGY; | |
COUNTABLE_DIFF] THEN | |
SET_TAC[]);; | |
let CONNECTED_IN_COCOUNTABLE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
~COUNTABLE s /\ s SUBSET u | |
==> connected_in (cocountable_topology u) s`, | |
REWRITE_TAC[CONNECTED_IN_CLOSED_IN; CLOSED_IN_COCOUNTABLE_TOPOLOGY] THEN | |
SIMP_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN REPEAT STRIP_TAC THENL | |
[ASM SET_TAC[]; ASM SET_TAC[]; ASM SET_TAC[]; | |
ASM_MESON_TAC[COUNTABLE_SUBSET; COUNTABLE_UNION]]);; | |
let CONNECTED_SPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. | |
connected_space(cocountable_topology u) <=> | |
(?a. u SUBSET {a}) \/ ~COUNTABLE u`, | |
GEN_TAC THEN ASM_CASES_TAC `COUNTABLE(u:A->bool)` THEN | |
ASM_SIMP_TAC[COCOUNTABLE_EQ_DISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[CONNECTED_SPACE_DISCRETE_TOPOLOGY] THEN | |
REWRITE_TAC[GSYM CONNECTED_IN_TOPSPACE] THEN | |
MATCH_MP_TAC CONNECTED_IN_COCOUNTABLE_TOPOLOGY THEN | |
ASM_REWRITE_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY; SUBSET_REFL]);; | |
let COMPACT_IN_COCOUNTABLE_TOPOLOGY = prove | |
(`!u s:A->bool. compact_in(cocountable_topology u) s <=> | |
s SUBSET u /\ FINITE s`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `(s:A->bool) SUBSET u` THENL | |
[EQ_TAC THEN | |
ASM_SIMP_TAC[FINITE_IMP_COMPACT_IN; TOPSPACE_COCOUNTABLE_TOPOLOGY]; | |
ASM_MESON_TAC[COMPACT_IN_SUBSET_TOPSPACE; | |
TOPSPACE_COCOUNTABLE_TOPOLOGY]] THEN | |
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[FINITE_CARD_LT; CARD_NOT_LT; CARD_LE_EQ_SUBSET] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:A->bool` STRIP_ASSUME_TAC) THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP CARD_FINITE_CONG) THEN | |
REWRITE_TAC[REWRITE_RULE[INFINITE] num_INFINITE] THEN | |
ASM_CASES_TAC `t:A->bool = {}` THEN ASM_REWRITE_TAC[FINITE_EMPTY] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC[COMPACT_IN_FIP; CLOSED_IN_COCOUNTABLE_TOPOLOGY] THEN | |
ASM_REWRITE_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN | |
DISCH_THEN(MP_TAC o SPEC `{t DIFF {x:A} | x | x IN t}`) THEN | |
REWRITE_TAC[NOT_IMP; FORALL_IN_GSPEC] THEN REPEAT CONJ_TAC THENL | |
[X_GEN_TAC `a:A` THEN DISCH_TAC THEN DISJ2_TAC THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `t:A->bool` THEN | |
REWRITE_TAC[SUBSET_DIFF; COUNTABLE; ge_c] THEN | |
ASM_MESON_TAC[CARD_EQ_SYM; CARD_EQ_IMP_LE]; | |
ALL_TAC; | |
REWRITE_TAC[INTERS_GSPEC] THEN ASM SET_TAC[]] THEN | |
REWRITE_TAC[FORALL_FINITE_SUBSET_IMAGE; SIMPLE_IMAGE] THEN | |
X_GEN_TAC `v:A->bool` THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (SET_RULE | |
`t SUBSET s ==> ~(t INTER u = {}) ==> ~(s INTER u = {})`)) THEN | |
REWRITE_TAC[SET_RULE | |
`IMAGE (\x. t DIFF {x}) v = {t DIFF u | u IN IMAGE (\x. {x}) v}`] THEN | |
REWRITE_TAC[GSYM DIFF_UNIONS] THEN | |
REWRITE_TAC[GSYM SIMPLE_IMAGE; UNIONS_SINGS] THEN | |
ASM_SIMP_TAC[SET_RULE `v SUBSET t ==> (t DIFF v = {} <=> t = v)`] THEN | |
ASM_MESON_TAC[]);; | |
let COMPACT_SPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. compact_space(cocountable_topology u) <=> FINITE u`, | |
REWRITE_TAC[compact_space; COMPACT_IN_COCOUNTABLE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY; SUBSET_REFL]);; | |
let HAUSDORFF_SPACE_SUBTOPOLOGY_COCOUNTABLE_TOPOLOGY = prove | |
(`!u s:A->bool. | |
hausdorff_space (subtopology (cocountable_topology u) s) <=> | |
COUNTABLE(u INTER s)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[SUBTOPOLOGY_RESTRICT] THEN | |
REWRITE_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN | |
MP_TAC(SET_RULE `u INTER (s:A->bool) SUBSET u`) THEN | |
SPEC_TAC(`u INTER (s:A->bool)`,`s:A->bool`) THEN | |
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[ASM_CASES_TAC `?a:A. s SUBSET {a}` THENL | |
[ASM_MESON_TAC[COUNTABLE_SUBSET; COUNTABLE_SING]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP (SET_RULE | |
`~(?a. s SUBSET {a}) ==> ?a b. a IN s /\ b IN s /\ ~(a = b)`)) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`a:A`; `b:A`] o | |
GEN_REWRITE_RULE I [hausdorff_space]) THEN | |
ASM_SIMP_TAC[TOPSPACE_SUBTOPOLOGY_SUBSET; | |
TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN | |
REWRITE_TAC[OPEN_IN_SUBTOPOLOGY_ALT; FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[IN_INTER; OPEN_IN_COCOUNTABLE_TOPOLOGY] THEN | |
X_GEN_TAC `t:A->bool` THEN STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
X_GEN_TAC `t':A->bool` THEN STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC `(u DIFF t) UNION (u DIFF t'):A->bool` THEN | |
ASM_REWRITE_TAC[COUNTABLE_UNION] THEN ASM SET_TAC[]; | |
ASM_SIMP_TAC[hausdorff_space; TOPSPACE_SUBTOPOLOGY_SUBSET; | |
TOPSPACE_COCOUNTABLE_TOPOLOGY] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; OPEN_IN_SUBTOPOLOGY_ALT] THEN | |
REWRITE_TAC[EXISTS_IN_GSPEC; OPEN_IN_COCOUNTABLE_TOPOLOGY] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
EXISTS_TAC `(x:A) INSERT (u DIFF s)` THEN | |
EXISTS_TAC `(y:A) INSERT (u DIFF s)` THEN | |
REWRITE_TAC[NOT_INSERT_EMPTY] THEN | |
REPEAT CONJ_TAC THEN | |
TRY(MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `s:A->bool`) THEN | |
ASM_REWRITE_TAC[] THEN ASM SET_TAC[]]);; | |
let HAUSDORFF_SPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. hausdorff_space(cocountable_topology u) <=> COUNTABLE u`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM SUBTOPOLOGY_TOPSPACE] THEN | |
REWRITE_TAC[HAUSDORFF_SPACE_SUBTOPOLOGY_COCOUNTABLE_TOPOLOGY] THEN | |
REWRITE_TAC[TOPSPACE_COCOUNTABLE_TOPOLOGY; INTER_IDEMPOT]);; | |
let KC_SPACE_COCOUNTABLE_TOPOLOGY = prove | |
(`!u:A->bool. kc_space(cocountable_topology u)`, | |
REWRITE_TAC[kc_space; CLOSED_IN_COCOUNTABLE_TOPOLOGY; | |
COMPACT_IN_COCOUNTABLE_TOPOLOGY] THEN | |
SIMP_TAC[FINITE_IMP_COUNTABLE]);; | |