Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Examples of using the "without loss of generality" tactics. *) | |
(* ========================================================================= *) | |
needs "Multivariate/wlog.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Example 1. *) | |
(* ------------------------------------------------------------------------- *) | |
let lemma = prove | |
(`(?y. y pow 2 = a) <=> &0 <= a`, | |
MESON_TAC[SQRT_POW_2; REAL_LE_SQUARE; REAL_POW_2]);; | |
let TRUONG_1 = prove | |
(`!u1:real^3 u2 p a b. | |
~(u1 = u2) /\ | |
plane p /\ | |
{u1,u2} SUBSET p /\ | |
dist(u1,u2) <= a + b /\ | |
abs(a - b) < dist(u1,u2) /\ | |
&0 <= a /\ | |
&0 <= b | |
==> (?d1 d2. | |
{d1, d2} SUBSET p /\ | |
&1 / &2 % (d1 + d2) IN affine hull {u1, u2} /\ | |
dist(d1,u1) = a /\ | |
dist(d1,u2) = b /\ | |
dist(d2,u1) = a /\ | |
dist(d2,u2) = b)`, | |
(*** First, rotate the plane p to the special case z$3 = &0 ***) | |
GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN | |
(*** Now reshuffle the goal to have explicit restricted quantifiers ***) | |
ONCE_REWRITE_TAC[TAUT | |
`a /\ b /\ c /\ d ==> e <=> c /\ a /\ b /\ d ==> e`] THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
(*** Now replace quantifiers over real^3 with those over real^2 ***) | |
PAD2D3D_TAC THEN | |
(*** Tidy the goal a little ***) | |
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN | |
(*** Choose u1 as the origin ***) | |
GEOM_ORIGIN_TAC `u1:real^2` THEN | |
(*** Rotate the point u2 onto the x-axis ***) | |
GEOM_HORIZONTAL_LINE_TAC `u2:real^2` THEN | |
(*** Only now introduce coordinates ***) | |
X_GEN_TAC `u2:real^2` THEN DISCH_TAC THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`] THEN | |
REWRITE_TAC[dist; VECTOR_SUB_RZERO; VECTOR_SUB_LZERO; NORM_NEG] THEN | |
SIMP_TAC[GSYM real_gt; NORM_GT_SQUARE; NORM_EQ_SQUARE; NORM_LE_SQUARE] THEN | |
REWRITE_TAC[real_gt; REAL_ARITH `~(abs x < &0)`] THEN | |
ASM_SIMP_TAC[DOT_2; REAL_MUL_RZERO; REAL_ADD_RID; CART_EQ; DIMINDEX_2; | |
FORALL_2; AFFINE_HULL_2; CART_EQ; VECTOR_MUL_COMPONENT; | |
VECTOR_SUB_COMPONENT; VEC_COMPONENT; ARITH; IN_ELIM_THM; | |
VECTOR_ADD_COMPONENT; REAL_SUB_RZERO; REAL_ADD_LID; | |
REAL_POW2_ABS] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (ASSUME_TAC o GSYM) STRIP_ASSUME_TAC) THEN | |
REWRITE_TAC[EXISTS_VECTOR_2] THEN | |
MATCH_MP_TAC(MESON[] | |
`(?x y:real. P x y x (--y)) ==> (?x y x' y'. P x y x' y')`) THEN | |
SIMP_TAC[AFFINE_HULL_2; IN_ELIM_THM; CART_EQ; DIMINDEX_2; FORALL_2; VECTOR_2; | |
VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT; ARITH] THEN | |
ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID; REAL_ADD_RINV] THEN | |
ASM_SIMP_TAC[REAL_FIELD | |
`~(a = &0) | |
==> (u + v = &1 /\ b = v * a <=> u = &1 - b / a /\ v = b / a)`] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM; EXISTS_REFL] THEN | |
ABBREV_TAC `u = (u2:real^2)$1` THEN | |
REWRITE_TAC[REAL_ARITH `x + --y * --y:real = x + y * y`] THEN | |
REWRITE_TAC[TAUT `a /\ b /\ a /\ b <=> a /\ b`] THEN | |
(*** Now finally dive in and solve the algebraic problem ***) | |
ASM_SIMP_TAC[REAL_FIELD | |
`~(u = &0) | |
==> (x * x + y * y = a pow 2 /\ (x - u) * (x - u) + y * y = b pow 2 <=> | |
x = (u pow 2 + a pow 2 - b pow 2) / (&2 * u) /\ | |
y pow 2 = b pow 2 - (x - u) pow 2)`] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM2; lemma] THEN | |
ASM_SIMP_TAC[REAL_SUB_LE; REAL_FIELD | |
`(u pow 2 + a - b) / (&2 * u) - u = (a - b - u pow 2) / (&2 * u)`] THEN | |
REWRITE_TAC[GSYM REAL_LE_SQUARE_ABS] THEN | |
ASM_SIMP_TAC[REAL_ABS_DIV; REAL_LE_LDIV_EQ; | |
REAL_ARITH `~(u = &0) ==> &0 < abs(&2 * u)`] THEN | |
REWRITE_TAC[GSYM REAL_ABS_MUL; REAL_LE_SQUARE_ABS] THEN | |
(*** Can just use SOS: this proof was found by SOS_RULE ***) | |
MAP_EVERY UNDISCH_TAC | |
[`u * u <= (a + b) pow 2`; `(a - b) pow 2 < u * u`] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP REAL_LT_IMP_LE) THEN | |
ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN | |
REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_MUL) THEN | |
REAL_ARITH_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of "opposite" for example 2, and its invariance theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let opposite = new_definition | |
`opposite a b p <=> | |
(&1 / &2 % (a + b)) IN p /\ | |
(!x y:real^N. {x,y} SUBSET p ==> (x - y) dot (a - b) = &0)`;; | |
let OPPOSITE_TRANSLATION_EQ = prove | |
(`!c a b p. opposite (c + a) (c + b) (IMAGE (\x. c + x) p) <=> | |
opposite a b p`, | |
REWRITE_TAC[opposite] THEN GEOM_TRANSLATE_TAC[]);; | |
add_translation_invariants [OPPOSITE_TRANSLATION_EQ];; | |
let OPPOSITE_LINEAR_IMAGE_EQ = prove | |
(`!f a b p. linear f /\ (!x. norm(f x) = norm x) | |
==> (opposite (f a) (f b) (IMAGE f p) <=> opposite a b p)`, | |
SIMP_TAC[opposite; INSERT_SUBSET; EMPTY_SUBSET; GSYM orthogonal] THEN | |
REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; RIGHT_FORALL_IMP_THM] THEN | |
SIMP_TAC[GSYM LINEAR_ADD; GSYM LINEAR_SUB; ORTHOGONAL_LINEAR_IMAGE_EQ] THEN | |
SIMP_TAC[GSYM LINEAR_CMUL; IN_IMAGE] THEN | |
MESON_TAC[PRESERVES_NORM_INJECTIVE]);; | |
add_linear_invariants [OPPOSITE_LINEAR_IMAGE_EQ];; | |
(* ------------------------------------------------------------------------- *) | |
(* Example 2. *) | |
(* ------------------------------------------------------------------------- *) | |
let AFFINE_PLANE = prove | |
(`!p. plane p ==> affine p`, | |
SIMP_TAC[plane; LEFT_IMP_EXISTS_THM; AFFINE_AFFINE_HULL]);; | |
let lemma = prove | |
(`!a b:real^2. | |
a$2 <= &0 /\ &0 <= b$2 ==> ?x. x IN convex hull {a,b} /\ x$2 = &0`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH | |
`a <= &0 /\ &0 <= b ==> a = &0 /\ b = &0 \/ &0 < b - a`)) | |
THENL | |
[EXISTS_TAC `a:real^2` THEN ASM_SIMP_TAC[HULL_INC; IN_INSERT]; | |
REWRITE_TAC[CONVEX_HULL_2_ALT; EXISTS_IN_GSPEC] THEN | |
SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT; | |
DIMINDEX_2; ARITH] THEN | |
EXISTS_TAC `--(a$2) / ((b:real^2)$2 - (a:real^2)$2)` THEN | |
ASM_SIMP_TAC[REAL_LT_IMP_NZ; REAL_DIV_RMUL; | |
REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ] THEN | |
ASM_REAL_ARITH_TAC]);; | |
let TRUONG_OPPOSITE_LEMMA = prove | |
(`!p a b bb m x y:real^3. | |
plane p /\ | |
{a, b, bb, m, x, y} SUBSET p /\ | |
~(x = y) /\ m IN affine hull {x,y} /\ midpoint(b,bb) = m | |
==> ~(convex hull {a, b} INTER affine hull {x, y} = {}) \/ | |
~(convex hull {a, bb} INTER affine hull {x, y} = {})`, | |
(*** Make the plane p the xy-plane ***) | |
GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN | |
(*** Rewrite with explicit restricted quantifiers ***) | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN DISCH_THEN(K ALL_TAC) THEN | |
(*** Now replace quantifiers over real^3 with those over real^2 ***) | |
PAD2D3D_TAC THEN | |
(*** Let x be the origin, and y on the x-axis ***) | |
GEOM_ORIGIN_TAC `x:real^2` THEN | |
GEOM_HORIZONTAL_LINE_TAC `y:real^2` THEN | |
(*** Make a few simplifications ***) | |
GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN | |
ASM_SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; VEC_COMPONENT] THEN | |
DISCH_THEN(ASSUME_TAC o GSYM) THEN | |
SIMP_TAC[midpoint; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; | |
DIMINDEX_2; ARITH] THEN | |
(*** Show aff{x,y} is now exactly the x-axis ***) | |
SUBGOAL_THEN `affine hull {vec 0,y} = {u:real^2 | u$2 = &0}` SUBST1_TAC THENL | |
[MATCH_MP_TAC HULL_UNIQUE THEN | |
REWRITE_TAC[affine; INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[VEC_COMPONENT; DIMINDEX_2; ARITH; VECTOR_ADD_COMPONENT; | |
VECTOR_MUL_COMPONENT; REAL_MUL_RZERO; REAL_ADD_RID] THEN | |
X_GEN_TAC `s:real^2->bool` THEN STRIP_TAC THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN X_GEN_TAC `u:real^2` THEN | |
DISCH_TAC THEN | |
SUBGOAL_THEN `u = (&1 - u$1 / (y:real^2)$1) % vec 0 + | |
(u$1 / (y:real^2)$1) % y` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
ASM_SIMP_TAC[CART_EQ; VECTOR_MUL_COMPONENT; DIMINDEX_2; ARITH; | |
FORALL_2; REAL_MUL_RZERO; REAL_DIV_RMUL]; | |
FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REAL_ARITH_TAC]; | |
ALL_TAC] THEN | |
(*** Simplify a bit more ***) | |
SIMP_TAC[IN_ELIM_THM; REAL_ARITH `inv(&2) * (x + y) = &0 <=> y = --x`] THEN | |
REPEAT STRIP_TAC THEN | |
(*** Finally, make a 4-way case split then apply the lemma to each ***) | |
REWRITE_TAC[SET_RULE `~(s INTER t = {}) <=> ?x. x IN s /\ x IN t`] THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN | |
FIRST_ASSUM(MP_TAC o SPEC `(a:real^2)$2` o MATCH_MP (REAL_ARITH | |
`b' = --b ==> !a. a <= &0 /\ &0 <= b \/ a <= &0 /\ &0 <= b' \/ | |
b <= &0 /\ &0 <= a \/ b' <= &0 /\ &0 <= a`)) THEN | |
MESON_TAC[lemma; SET_RULE `{a,b} = {b,a}`]);; | |
let TRUONG_OPPOSITE_THM = prove | |
(`!a b bb x y:real^3 p. | |
~(x = y) /\ | |
plane p /\ | |
{a, b, x, y} SUBSET p /\ | |
opposite b bb (affine hull {x, y}) | |
==> ~(convex hull {a, b} INTER affine hull {x, y} = {}) \/ | |
~(convex hull {a, bb} INTER affine hull {x, y} = {})`, | |
REWRITE_TAC[opposite; INSERT_SUBSET; EMPTY_SUBSET] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC TRUONG_OPPOSITE_LEMMA THEN | |
MAP_EVERY EXISTS_TAC [`p:real^3->bool`; `&1 / &2 % (b + bb):real^3`] THEN | |
ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; midpoint] THEN | |
CONJ_TAC THENL [ALL_TAC; VECTOR_ARITH_TAC] THEN | |
FIRST_ASSUM(ASSUME_TAC o MATCH_MP AFFINE_PLANE) THEN | |
MATCH_MP_TAC(TAUT `b /\ (b ==> a) ==> a /\ b`) THEN CONJ_TAC THENL | |
[MATCH_MP_TAC(SET_RULE `!t. x IN t /\ t SUBSET s ==> x IN s`) THEN | |
EXISTS_TAC `affine hull {x:real^3,y}` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC HULL_MINIMAL THEN ASM_SIMP_TAC[INSERT_SUBSET; EMPTY_SUBSET]; | |
DISCH_TAC THEN SUBST1_TAC(VECTOR_ARITH | |
`bb:real^3 = -- &1 % b + &2 % &1 / &2 % (b + bb)`) THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o REWRITE_RULE[affine]) THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Affsign variants for example 3, and invariance theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let lin_combo = new_definition | |
`lin_combo V f = vsum V (\v. f v % (v:real^N))`;; | |
let affsign = new_definition | |
`affsign sgn s t (v:real^A) <=> | |
(?f. (v = lin_combo (s UNION t) f) /\ | |
(!w. t w ==> sgn (f w)) /\ | |
(sum (s UNION t) f = &1))`;; | |
let sgn_gt = new_definition `sgn_gt = (\t. (&0 < t))`;; | |
let sgn_ge = new_definition `sgn_ge = (\t. (&0 <= t))`;; | |
let sgn_lt = new_definition `sgn_lt = (\t. (t < &0))`;; | |
let sgn_le = new_definition `sgn_le = (\t. (t <= &0))`;; | |
let aff_gt_def = new_definition `aff_gt = affsign sgn_gt`;; | |
let aff_ge_def = new_definition `aff_ge = affsign sgn_ge`;; | |
let aff_lt_def = new_definition `aff_lt = affsign sgn_lt`;; | |
let aff_le_def = new_definition `aff_le = affsign sgn_le`;; | |
let AFFSIGN = prove | |
(`affsign sgn s t = | |
{y | ?f. y = vsum (s UNION t) (\v. f v % v) /\ | |
(!w. w IN t ==> sgn(f w)) /\ | |
sum (s UNION t) f = &1}`, | |
REWRITE_TAC[FUN_EQ_THM; affsign; lin_combo; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN]);; | |
let AFFSIGN_ALT = prove | |
(`affsign sgn s t = | |
{y | ?f. (!w. w IN (s UNION t) ==> w IN t ==> sgn(f w)) /\ | |
sum (s UNION t) f = &1 /\ | |
vsum (s UNION t) (\v. f v % v) = y}`, | |
REWRITE_TAC[SET_RULE `(w IN (s UNION t) ==> w IN t ==> P w) <=> | |
(w IN t ==> P w)`] THEN | |
REWRITE_TAC[AFFSIGN; EXTENSION; IN_ELIM_THM] THEN MESON_TAC[]);; | |
let IN_AFFSIGN = prove | |
(`y IN affsign sgn s t <=> | |
?u. (!x. x IN t ==> sgn(u x)) /\ | |
sum (s UNION t) u = &1 /\ | |
vsum (s UNION t) (\x. u(x) % x) = y`, | |
REWRITE_TAC[AFFSIGN; IN_ELIM_THM] THEN SET_TAC[]);; | |
let AFFSIGN_INJECTIVE_LINEAR_IMAGE = prove | |
(`!f:real^M->real^N sgn s t v. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> (affsign sgn (IMAGE f s) (IMAGE f t) = | |
IMAGE f (affsign sgn s t))`, | |
let lemma0 = prove | |
(`vsum s (\x. u x % x) = vsum {x | x IN s /\ ~(u x = &0)} (\x. u x % x)`, | |
MATCH_MP_TAC VSUM_SUPERSET THEN SIMP_TAC[SUBSET; IN_ELIM_THM] THEN | |
REWRITE_TAC[TAUT `p /\ ~(p /\ ~q) <=> p /\ q`] THEN | |
SIMP_TAC[o_THM; VECTOR_MUL_LZERO]) in | |
let lemma1 = prove | |
(`!f:real^M->real^N s. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> (sum(IMAGE f s) u = &1 /\ vsum(IMAGE f s) (\x. u x % x) = y <=> | |
sum s (u o f) = &1 /\ f(vsum s (\x. (u o f) x % x)) = y)`, | |
REPEAT STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o funpow 3 lhand o snd) THEN | |
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN | |
MATCH_MP_TAC(MESON[] `(p ==> z = x) ==> (p /\ x = y <=> p /\ z = y)`) THEN | |
DISCH_TAC THEN ONCE_REWRITE_TAC[lemma0] THEN | |
SUBGOAL_THEN | |
`{y | y IN IMAGE (f:real^M->real^N) s /\ ~(u y = &0)} = | |
IMAGE f {x | x IN s /\ ~(u(f x) = &0)}` | |
SUBST1_TAC THENL [ASM SET_TAC[]; CONV_TAC SYM_CONV] THEN | |
SUBGOAL_THEN `FINITE {x | x IN s /\ ~(u((f:real^M->real^N) x) = &0)}` | |
ASSUME_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE | |
(LAND_CONV o RATOR_CONV o RATOR_CONV) [sum]) THEN | |
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN | |
REWRITE_TAC[GSYM sum; support; NEUTRAL_REAL_ADD; o_THM] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ; ARITH_EQ]; | |
W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o lhand o snd) THEN | |
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN | |
ASM_SIMP_TAC[LINEAR_VSUM; o_DEF; GSYM LINEAR_CMUL]]) in | |
REPEAT GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[EXTENSION; IN_AFFSIGN] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE] THEN REWRITE_TAC[IN_IMAGE; IN_AFFSIGN] THEN | |
REWRITE_TAC[GSYM IMAGE_UNION] THEN | |
FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP lemma1 th]) THEN | |
X_GEN_TAC `y:real^N` THEN EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `u:real^N->real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `vsum (s UNION t) (\x. (u o (f:real^M->real^N)) x % x)` THEN | |
ASM_REWRITE_TAC[] THEN | |
EXISTS_TAC `(u:real^N->real) o (f:real^M->real^N)` THEN | |
ASM_REWRITE_TAC[] THEN ASM_REWRITE_TAC[o_THM]; | |
MP_TAC(ISPEC `f:real^M->real^N` LINEAR_INJECTIVE_LEFT_INVERSE) THEN | |
ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `g:real^N->real^M` STRIP_ASSUME_TAC) THEN | |
DISCH_THEN(X_CHOOSE_THEN `x:real^M` | |
(CONJUNCTS_THEN2 SUBST1_TAC MP_TAC)) THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:real^M->real` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `(u:real^M->real) o (g:real^N->real^M)` THEN | |
ASM_REWRITE_TAC[o_DEF; ETA_AX]]);; | |
let AFF_GE_INJECTIVE_LINEAR_IMAGE = prove | |
(`!f:real^M->real^N s t. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> aff_ge (IMAGE f s) (IMAGE f t) = IMAGE f (aff_ge s t)`, | |
REWRITE_TAC[aff_ge_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);; | |
let AFF_GT_INJECTIVE_LINEAR_IMAGE = prove | |
(`!f:real^M->real^N s t. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> aff_gt (IMAGE f s) (IMAGE f t) = IMAGE f (aff_gt s t)`, | |
REWRITE_TAC[aff_gt_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);; | |
let AFF_LE_INJECTIVE_LINEAR_IMAGE = prove | |
(`!f:real^M->real^N s t. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> aff_le (IMAGE f s) (IMAGE f t) = IMAGE f (aff_le s t)`, | |
REWRITE_TAC[aff_le_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);; | |
let AFF_LT_INJECTIVE_LINEAR_IMAGE = prove | |
(`!f:real^M->real^N s t. | |
linear f /\ (!x y. f x = f y ==> x = y) | |
==> aff_lt (IMAGE f s) (IMAGE f t) = IMAGE f (aff_lt s t)`, | |
REWRITE_TAC[aff_lt_def; AFFSIGN_INJECTIVE_LINEAR_IMAGE]);; | |
add_linear_invariants | |
[AFFSIGN_INJECTIVE_LINEAR_IMAGE; | |
AFF_GE_INJECTIVE_LINEAR_IMAGE; | |
AFF_GT_INJECTIVE_LINEAR_IMAGE; | |
AFF_LE_INJECTIVE_LINEAR_IMAGE; | |
AFF_LT_INJECTIVE_LINEAR_IMAGE];; | |
let IN_AFFSIGN_TRANSLATION = prove | |
(`!sgn s t a v:real^N. | |
affsign sgn s t v | |
==> affsign sgn (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) (a + v)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[affsign; lin_combo] THEN | |
ONCE_REWRITE_TAC[SET_RULE `(!x. s x ==> p x) <=> (!x. x IN s ==> p x)`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:real^N->real` | |
(CONJUNCTS_THEN2 SUBST_ALL_TAC STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `\x. (f:real^N->real)(x - a)` THEN | |
ASM_REWRITE_TAC[GSYM IMAGE_UNION] THEN REPEAT CONJ_TAC THENL | |
[ALL_TAC; | |
ASM_REWRITE_TAC[FORALL_IN_IMAGE; ETA_AX; | |
VECTOR_ARITH `(a + x) - a:real^N = x`]; | |
W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o lhs o snd) THEN | |
SIMP_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN | |
ASM_REWRITE_TAC[o_DEF; VECTOR_ADD_SUB; ETA_AX]] THEN | |
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC | |
`a + vsum {x | x IN s UNION t /\ ~(f x = &0)} (\v:real^N. f v % v)` THEN | |
CONJ_TAC THENL | |
[AP_TERM_TAC THEN MATCH_MP_TAC VSUM_SUPERSET THEN | |
REWRITE_TAC[VECTOR_MUL_EQ_0; SUBSET; IN_ELIM_THM] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `vsum (IMAGE (\x:real^N. a + x) | |
{x | x IN s UNION t /\ ~(f x = &0)}) | |
(\v. f(v - a) % v)` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN | |
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN | |
ASM_REWRITE_TAC[IMP_CONJ; FORALL_IN_IMAGE; VECTOR_MUL_EQ_0] THEN | |
REWRITE_TAC[VECTOR_ADD_SUB] THEN SET_TAC[]] THEN | |
SUBGOAL_THEN `FINITE {x:real^N | x IN s UNION t /\ ~(f x = &0)}` | |
ASSUME_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE | |
(LAND_CONV o RATOR_CONV o RATOR_CONV) [sum]) THEN | |
ONCE_REWRITE_TAC[ITERATE_EXPAND_CASES] THEN | |
REWRITE_TAC[GSYM sum; support; NEUTRAL_REAL_ADD] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ; ARITH_EQ]; | |
ALL_TAC] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) VSUM_IMAGE o rhs o snd) THEN | |
ASM_SIMP_TAC[VECTOR_ARITH `a + x:real^N = a + y <=> x = y`] THEN | |
DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[o_DEF; VECTOR_ADD_SUB] THEN | |
ASM_SIMP_TAC[VECTOR_ADD_LDISTRIB; VSUM_ADD] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[VSUM_RMUL] THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM VECTOR_MUL_LID] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN | |
MATCH_MP_TAC SUM_SUPERSET THEN SET_TAC[]);; | |
let AFFSIGN_TRANSLATION = prove | |
(`!a:real^N sgn s t. | |
affsign sgn (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) = | |
IMAGE (\x. a + x) (affsign sgn s t)`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC SUBSET_ANTISYM THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN] THEN GEN_TAC THEN | |
DISCH_THEN(MP_TAC o SPEC `--a:real^N` o | |
MATCH_MP IN_AFFSIGN_TRANSLATION) THEN | |
REWRITE_TAC[GSYM IMAGE_o; o_DEF; VECTOR_ARITH `--a + a + x:real^N = x`; | |
IMAGE_ID] THEN | |
DISCH_TAC THEN REWRITE_TAC[IMAGE; IN_ELIM_THM] THEN | |
EXISTS_TAC `--a + x:real^N` THEN ASM_REWRITE_TAC[IN] THEN VECTOR_ARITH_TAC; | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN GEN_TAC THEN REWRITE_TAC[IN] THEN | |
DISCH_THEN(MP_TAC o SPEC `a:real^N` o MATCH_MP IN_AFFSIGN_TRANSLATION) THEN | |
REWRITE_TAC[]]);; | |
let AFF_GE_TRANSLATION = prove | |
(`!a:real^N s t. | |
aff_ge (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) = | |
IMAGE (\x. a + x) (aff_ge s t)`, | |
REWRITE_TAC[aff_ge_def; AFFSIGN_TRANSLATION]);; | |
let AFF_GT_TRANSLATION = prove | |
(`!a:real^N s t. | |
aff_gt (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) = | |
IMAGE (\x. a + x) (aff_gt s t)`, | |
REWRITE_TAC[aff_gt_def; AFFSIGN_TRANSLATION]);; | |
let AFF_LE_TRANSLATION = prove | |
(`!a:real^N s t. | |
aff_le (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) = | |
IMAGE (\x. a + x) (aff_le s t)`, | |
REWRITE_TAC[aff_le_def; AFFSIGN_TRANSLATION]);; | |
let AFF_LT_TRANSLATION = prove | |
(`!a:real^N s t. | |
aff_lt (IMAGE (\x. a + x) s) (IMAGE (\x. a + x) t) = | |
IMAGE (\x. a + x) (aff_lt s t)`, | |
REWRITE_TAC[aff_lt_def; AFFSIGN_TRANSLATION]);; | |
add_translation_invariants | |
[AFFSIGN_TRANSLATION; | |
AFF_GE_TRANSLATION; | |
AFF_GT_TRANSLATION; | |
AFF_LE_TRANSLATION; | |
AFF_LT_TRANSLATION];; | |
(* ------------------------------------------------------------------------- *) | |
(* Example 3. *) | |
(* ------------------------------------------------------------------------- *) | |
let NOT_COPLANAR_NOT_COLLINEAR = prove | |
(`!v1 v2 v3 w:real^N. ~coplanar {v1, v2, v3, w} ==> ~collinear {v1, v2, v3}`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[COLLINEAR_AFFINE_HULL; coplanar; CONTRAPOS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `y:real^N` THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN STRIP_TAC THEN | |
EXISTS_TAC `w:real^N` THEN ASM_SIMP_TAC[HULL_INC; IN_INSERT] THEN | |
REPEAT CONJ_TAC THEN | |
MATCH_MP_TAC(SET_RULE `!t. t SUBSET s /\ x IN t ==> x IN s`) THEN | |
EXISTS_TAC `affine hull {x:real^N,y}` THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC HULL_MONO THEN SET_TAC[]);; | |
let AFFSIGN = prove | |
(`affsign sgn s t = | |
{y | ?f. y = vsum (s UNION t) (\v. f v % v) /\ | |
(!w. w IN t ==> sgn(f w)) /\ | |
sum (s UNION t) f = &1}`, | |
REWRITE_TAC[FUN_EQ_THM; affsign; lin_combo; IN_ELIM_THM] THEN | |
REWRITE_TAC[IN]);; | |
let IN_AFFSIGN = prove | |
(`y IN affsign sgn s t <=> | |
?u. (!x. x IN (s UNION t) ==> x IN t ==> sgn(u x)) /\ | |
sum (s UNION t) u = &1 /\ | |
vsum (s UNION t) (\x. u(x) % x) = y`, | |
REWRITE_TAC[AFFSIGN; IN_ELIM_THM] THEN SET_TAC[]);; | |
let LEMMA = prove | |
(`!v1 v2 v3 w:real^3 p. | |
plane p /\ {v1, v2, v3} SUBSET p /\ | |
~coplanar {v1, v2, v3, w} | |
==> (?n n'. norm(n - n') = &1 /\ | |
(!x. x IN aff_ge {v1, v2, v3} {w} <=> | |
(?xx h. | |
xx IN affine hull {v1, v2, v3} /\ | |
&0 <= h /\ | |
x - xx = h % (n - n'))) /\ | |
(!x y. | |
{x, y} SUBSET affine hull {v1, v2, v3} | |
==> (n - n') dot (x - y) = &0))`, | |
GEOM_HORIZONTAL_PLANE_TAC `p:real^3->bool` THEN | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM] THEN | |
MAP_EVERY (fun t -> | |
ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[INSERT_AC; COPLANAR_3]; ALL_TAC]) | |
[`v1:real^3 = v2`; `v1:real^3 = v3`; `v2:real^3 = v3`; | |
`v1:real^3 = w`; `v2:real^3 = w`; `v3:real^3 = w`] THEN | |
STRIP_TAC THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
EXISTS_TAC `vec 0:real^3` THEN REWRITE_TAC[VECTOR_SUB_RZERO] THEN | |
SUBGOAL_THEN `~((w:real^3)$3 = &0)` ASSUME_TAC THENL | |
[DISCH_TAC THEN UNDISCH_TAC `~coplanar{v1:real^3,v2,v3,w}` THEN | |
REWRITE_TAC[coplanar] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [plane]) THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN | |
DISCH_THEN(SUBST1_TAC o SYM o CONJUNCT2) THEN | |
ASM_REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET; IN_ELIM_THM]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(vec 0:real^3) IN affine hull {v1,v2,v3}` ASSUME_TAC THENL | |
[MP_TAC(ISPEC `{v1:real^3,v2,v3}` DEPENDENT_BIGGERSET_GENERAL) THEN | |
ANTS_TAC THENL | |
[DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[GT] THEN | |
MATCH_MP_TAC LET_TRANS THEN EXISTS_TAC `dim {z:real^3 | z$3 = &0}` THEN | |
CONJ_TAC THENL [MATCH_MP_TAC DIM_SUBSET THEN ASM SET_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[DIM_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN | |
REWRITE_TAC[GSYM NOT_LE] THEN DISCH_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP NOT_COPLANAR_NOT_COLLINEAR) THEN | |
REWRITE_TAC[] THEN MATCH_MP_TAC COLLINEAR_SMALL THEN | |
ASM_REWRITE_TAC[FINITE_INSERT; FINITE_RULES]; | |
ALL_TAC] THEN | |
REWRITE_TAC[DEPENDENT_AFFINE_DEPENDENT_CASES] THEN | |
ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3; | |
NOT_COPLANAR_NOT_COLLINEAR]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `affine hull {v1,v2,v3} = {z:real^3 | z$3 = &0}` | |
ASSUME_TAC THENL | |
[ASM_SIMP_TAC[AFFINE_HULL_EQ_SPAN] THEN | |
MATCH_MP_TAC(SET_RULE | |
`!s. t SUBSET u /\ s SUBSET t /\ u SUBSET s ==> t = u`) THEN | |
EXISTS_TAC `span {x - v1:real^3 | x IN {v2,v3}}` THEN CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET] THEN MATCH_MP_TAC SPAN_INDUCT THEN | |
REWRITE_TAC[SET_RULE `(\x. x IN s) = s`] THEN | |
SIMP_TAC[SUBSPACE_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN | |
ASM_SIMP_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM]; | |
ALL_TAC] THEN | |
CONJ_TAC THENL | |
[GEN_REWRITE_TAC RAND_CONV [GSYM SPAN_SPAN] THEN | |
MATCH_MP_TAC SPAN_MONO THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[SPAN_SUB; SPAN_INC; IN_INSERT; SUBSET]; | |
ALL_TAC] THEN | |
MATCH_MP_TAC CARD_GE_DIM_INDEPENDENT THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_ELIM_THM; | |
FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; DIMINDEX_3; ARITH; REAL_SUB_REFL]; | |
REWRITE_TAC[independent] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] | |
DEPENDENT_IMP_AFFINE_DEPENDENT)) THEN | |
ASM_REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[AFFINE_DEPENDENT_IMP_COLLINEAR_3; | |
NOT_COPLANAR_NOT_COLLINEAR]; | |
SIMP_TAC[DIM_SPECIAL_HYPERPLANE; DIMINDEX_3; ARITH] THEN | |
ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN | |
SIMP_TAC[CARD_IMAGE_INJ; FINITE_INSERT; FINITE_RULES; | |
VECTOR_ARITH `x - a:real^N = y - a <=> x = y`] THEN | |
ASM_SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_RULES; | |
IN_INSERT; NOT_IN_EMPTY; ARITH]]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (REAL_ARITH | |
`~(x = &0) ==> &0 < x \/ &0 < --x`)) | |
THENL | |
[EXISTS_TAC `basis 3:real^3`; EXISTS_TAC `--(basis 3):real^3`] THEN | |
ASM_SIMP_TAC[NORM_BASIS; DIMINDEX_3; ARITH; IN_ELIM_THM; DOT_BASIS; | |
NORM_NEG; DOT_LNEG; DIMINDEX_3; ARITH; VECTOR_SUB_COMPONENT; | |
REAL_SUB_REFL; REAL_NEG_0] THEN | |
X_GEN_TAC `x:real^3` THEN | |
REWRITE_TAC[aff_ge_def; IN_AFFSIGN; sgn_ge] THEN | |
REWRITE_TAC[SET_RULE `{a,b,c} UNION {d} = {a,b,c,d}`] THEN | |
REWRITE_TAC[SET_RULE `x IN {a} <=> a = x`] THEN | |
SIMP_TAC[AFFINE_HULL_FINITE_STEP_GEN; REAL_LE_ADD; FINITE_INSERT; | |
CONJUNCT1 FINITE_RULES; REAL_ARITH `&0 <= x / &2 <=> &0 <= x`; | |
RIGHT_EXISTS_AND_THM] THEN | |
ASM_REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID] THEN | |
REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN | |
EQ_TAC THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THENL | |
[MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`; `h:real`] THEN | |
STRIP_TAC THEN | |
EXISTS_TAC `a % v1 + b % v2 + c % v3 + | |
h % ((w:real^3)$1 % basis 1 + w$2 % basis 2):real^3` THEN | |
EXISTS_TAC `h * (w:real^3)$3` THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE] THEN | |
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT; | |
DIMINDEX_3; ARITH; REAL_MUL_RZERO; REAL_ADD_RID] THEN | |
REWRITE_TAC[GSYM VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_LDISTRIB; | |
GSYM VECTOR_ADD_ASSOC] THEN | |
REPLICATE_TAC 4 AP_TERM_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN | |
REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID]; | |
MAP_EVERY X_GEN_TAC [`y:real^3`; `h:real`] THEN STRIP_TAC THEN | |
UNDISCH_TAC `(vec 0:real^3) IN affine hull {v1,v2,v3}` THEN | |
SUBGOAL_THEN `(y - h / (w:real^3)$3 % (w$1 % basis 1 + w$2 % basis 2)) | |
IN affine hull {v1:real^3,v2,v3}` MP_TAC THENL | |
[ASM_SIMP_TAC[IN_ELIM_THM; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; | |
VECTOR_SUB_COMPONENT; BASIS_COMPONENT; ARITH; DIMINDEX_3] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; CONJUNCT1 FINITE_RULES; | |
AFFINE_HULL_FINITE_STEP; IN_ELIM_THM] THEN | |
REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THEN | |
MAP_EVERY X_GEN_TAC [`a':real`; `b':real`; `c':real`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SYM)) THEN | |
MAP_EVERY EXISTS_TAC | |
[`a + (&1 - (a + b + c + h / (w:real^3)$3)) * a'`; | |
`b + (&1 - (a + b + c + h / (w:real^3)$3)) * b'`; | |
`c + (&1 - (a + b + c + h / (w:real^3)$3)) * c'`; `h / (w:real^3)$3`] THEN | |
ASM_REWRITE_TAC[REAL_ARITH | |
`(a + x * a') + (b + x * b') + (c + x * c') + h:real = | |
(a + b + c + h) + x * (a' + b' + c')`] THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_LT_IMP_LE] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(a + x * a') % v1 + (b + x * b') % v2 + (c + x * c') % v3 + h:real^N = | |
(a % v1 + b % v2 + c % v3) + x % (a' % v1 + b' % v2 + c' % v3) + h`] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
REWRITE_TAC[VECTOR_ARITH `(x + a) + y:real^3 = a + z <=> x + y = z`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM BASIS_EXPANSION] THEN | |
REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID] THEN | |
REWRITE_TAC[VECTOR_ADD_LDISTRIB; GSYM VECTOR_ADD_ASSOC] THEN | |
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_RMUL; REAL_LT_IMP_NZ]; | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`; `h:real`] THEN | |
STRIP_TAC THEN | |
EXISTS_TAC `a % v1 + b % v2 + c % v3 + | |
h % ((w:real^3)$1 % basis 1 + w$2 % basis 2):real^3` THEN | |
EXISTS_TAC `h * --((w:real^3)$3)` THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_IMP_LE] THEN | |
REWRITE_TAC[VECTOR_ARITH `(x * --y) % --z:real^N = (x * y) % z`] THEN | |
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; BASIS_COMPONENT; | |
DIMINDEX_3; ARITH; REAL_MUL_RZERO; REAL_ADD_RID] THEN | |
REWRITE_TAC[GSYM VECTOR_MUL_ASSOC; GSYM VECTOR_ADD_LDISTRIB; | |
GSYM VECTOR_ADD_ASSOC] THEN | |
REPLICATE_TAC 4 AP_TERM_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [GSYM BASIS_EXPANSION] THEN | |
REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID]; | |
MAP_EVERY X_GEN_TAC [`y:real^3`; `h:real`] THEN STRIP_TAC THEN | |
UNDISCH_TAC `(vec 0:real^3) IN affine hull {v1,v2,v3}` THEN | |
SUBGOAL_THEN `(y - h / --((w:real^3)$3) % (w$1 % basis 1 + w$2 % basis 2)) | |
IN affine hull {v1:real^3,v2,v3}` MP_TAC THENL | |
[ASM_SIMP_TAC[IN_ELIM_THM; VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; | |
VECTOR_SUB_COMPONENT; BASIS_COMPONENT; ARITH; DIMINDEX_3] THEN | |
REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
SIMP_TAC[AFFINE_HULL_FINITE; FINITE_INSERT; CONJUNCT1 FINITE_RULES; | |
AFFINE_HULL_FINITE_STEP; IN_ELIM_THM] THEN | |
REWRITE_TAC[REAL_ARITH `x - y:real = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ARITH `x - y:real^3 = z <=> x = y + z`] THEN | |
REWRITE_TAC[VECTOR_ADD_RID; REAL_ADD_RID; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[REAL_ARITH `&1 = x + y <=> x + y = &1`] THEN | |
MAP_EVERY X_GEN_TAC [`a:real`; `b:real`; `c:real`] THEN STRIP_TAC THEN | |
MAP_EVERY X_GEN_TAC [`a':real`; `b':real`; `c':real`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (ASSUME_TAC o SYM)) THEN | |
MAP_EVERY EXISTS_TAC | |
[`a + (&1 - (a + b + c + h / --((w:real^3)$3))) * a'`; | |
`b + (&1 - (a + b + c + h / --((w:real^3)$3))) * b'`; | |
`c + (&1 - (a + b + c + h / --((w:real^3)$3))) * c'`; | |
`h / --((w:real^3)$3)`] THEN | |
ASM_REWRITE_TAC[REAL_ARITH | |
`(a + x * a') + (b + x * b') + (c + x * c') + h:real = | |
(a + b + c + h) + x * (a' + b' + c')`] THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_LT_IMP_LE] THEN | |
CONJ_TAC THENL [REAL_ARITH_TAC; ALL_TAC] THEN | |
REWRITE_TAC[VECTOR_ARITH | |
`(a + x * a') % v1 + (b + x * b') % v2 + (c + x * c') % v3 + h:real^N = | |
(a % v1 + b % v2 + c % v3) + x % (a' % v1 + b' % v2 + c' % v3) + h`] THEN | |
ASM_REWRITE_TAC[VECTOR_MUL_RZERO; VECTOR_ADD_LID] THEN | |
REWRITE_TAC[VECTOR_ARITH `(x + a) + y:real^3 = a + z <=> x + y = z`] THEN | |
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM BASIS_EXPANSION] THEN | |
REWRITE_TAC[DIMINDEX_3] THEN CONV_TAC(ONCE_DEPTH_CONV NUMSEG_CONV) THEN | |
SIMP_TAC[VSUM_CLAUSES; FINITE_INSERT; CONJUNCT1 FINITE_RULES] THEN | |
REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY; ARITH_EQ; VECTOR_ADD_RID] THEN | |
REWRITE_TAC[VECTOR_ADD_LDISTRIB; GSYM VECTOR_ADD_ASSOC] THEN | |
REWRITE_TAC[real_div; REAL_INV_NEG; REAL_MUL_RNEG] THEN | |
REWRITE_TAC[VECTOR_MUL_RNEG; VECTOR_MUL_LNEG; GSYM real_div] THEN | |
ASM_SIMP_TAC[VECTOR_MUL_ASSOC; REAL_DIV_RMUL; REAL_LT_IMP_NZ]]);; | |
let THEOREM = prove | |
(`!v1 v2 v3 w:real^3. | |
~coplanar {v1, v2, v3, w} | |
==> (?nor. norm nor = &1 /\ | |
(!x. x IN aff_ge {v1, v2, v3} {w} <=> | |
(?xx h. | |
xx IN affine hull {v1, v2, v3} /\ | |
&0 <= h /\ | |
x = xx + h % nor)) /\ | |
(!x y. | |
{x, y} SUBSET affine hull {v1, v2, v3} | |
==> nor dot (x - y) = &0))`, | |
REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC[VECTOR_ARITH `x:real^3 = y + h % z <=> x - y = h % z`] THEN | |
MATCH_MP_TAC(MESON[] `(?a b. P(a - b)) ==> ?a:real^3. P a`) THEN | |
MATCH_MP_TAC LEMMA THEN ASM_REWRITE_TAC[] THEN | |
EXISTS_TAC `affine hull {v1:real^3,v2,v3}` THEN | |
REWRITE_TAC[HULL_SUBSET; plane] THEN | |
ASM_MESON_TAC[NOT_COPLANAR_NOT_COLLINEAR]);; | |