Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
174 kB
(* ========================================================================= *)
(* HOL Light Hilbert geometry axiomatic proofs *)
(* *)
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* High school students can learn rigorous axiomatic geometry proofs, as in *)
(* http://www.math.northwestern.edu/~richter/hilbert.pdf, using Hilbert's *)
(* axioms, and code up readable formal proofs like these here. Thanks to the *)
(* Mizar folks for their influential language, Freek Wiedijk for his dialect *)
(* miz3 of HOL Light, John Harrison for explaining how to port Mizar code to *)
(* miz3 and writing the first 100+ lines of code here, the hol-info list for *)
(* explaining features of HOL, and Benjamin Kordesh for carefully reading *)
(* much of the paper and the code. Formal proofs are given for the first 7 *)
(* sections of the paper, the results cited there from Greenberg's book, and *)
(* most of Euclid's book I propositions up to Proposition I.29, following *)
(* Hartshorne, whose book seems the most exciting axiomatic geometry text. *)
(* A proof assistant is an invaluable tool to help read it, as Hartshorne's *)
(* proofs are often sketchy and even have gaps. *)
(* *)
(* M. Greenberg, Euclidean and non-Euclidean geometries, Freeman, 1974. *)
(* R. Hartshorne, Geometry, Euclid and Beyond, UTM series, Springer, 2000. *)
(* ========================================================================= *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
new_type("point", 0);;
NewConstant("Between", `:point->point->point->bool`);;
NewConstant("Line", `:(point->bool)->bool`);;
NewConstant("≡", `:(point->bool)->(point->bool)->bool`);;
ParseAsInfix("≅", (12, "right"));;
ParseAsInfix("same_side", (12, "right"));;
ParseAsInfix("≡", (12, "right"));;
ParseAsInfix("<__", (12, "right"));;
ParseAsInfix("<_ang", (12, "right"));;
ParseAsInfix("suppl", (12, "right"));;
ParseAsInfix("∉", (11, "right"));;
ParseAsInfix("∥", (12, "right"));;
let NOTIN = NewDefinition `;
∀a l. a ∉ l ⇔ ¬(a ∈ l)`;;
let INTER_TENSOR = theorem `;
∀s s' t t'. s ⊂ s' ∧ t ⊂ t' ⇒ s ∩ t ⊂ s' ∩ t'
by set`;;
let Interval_DEF = NewDefinition `;
A B. Open (A, B) = {X | Between A X B}`;;
let Collinear_DEF = NewDefinition `;
Collinear A B C
∃l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l`;;
let SameSide_DEF = NewDefinition `;
A,B same_side l ⇔
Line l ∧ ¬ ∃X. X ∈ l ∧ XOpen (A, B)`;;
let Ray_DEF = NewDefinition `;
A B. ray A B = {X | ¬(A = B) ∧ Collinear A B XAOpen (X, B)}`;;
let Ordered_DEF = NewDefinition `;
ordered A B C D
BOpen (A, C) ∧ BOpen (A, D) ∧ COpen (A, D) ∧ COpen (B, D)`;;
let InteriorAngle_DEF = NewDefinition `;
A O B. int_angle A O B =
{P | ¬Collinear A O B ∧ ∃a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧
P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b}`;;
let InteriorTriangle_DEF = NewDefinition `;
A B C. int_triangle A B C =
{P | P ∈ int_angle A B C
P ∈ int_angle B C A
P ∈ int_angle C A B}`;;
let Tetralateral_DEF = NewDefinition `;
Tetralateral A B C D
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧
¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B`;;
let Quadrilateral_DEF = NewDefinition `;
Quadrilateral A B C D
Tetralateral A B C D
Open (A, B) ∩ Open (C, D) = ∅ ∧
Open (B, C) ∩ Open (D, A) = ∅`;;
let ConvexQuad_DEF = NewDefinition `;
ConvexQuadrilateral A B C D
Quadrilateral A B C D
A ∈ int_angle B C DB ∈ int_angle C D AC ∈ int_angle D A BD ∈ int_angle A B C`;;
let Segment_DEF = NewDefinition `;
seg A B = {A, B} ∪ Open (A, B)`;;
let SEGMENT = NewDefinition `;
Segment s ⇔ ∃A B. s = seg A B ∧ ¬(A = B)`;;
let SegmentOrdering_DEF = NewDefinition `;
s <__ t ⇔
Segment s ∧
C D X. t = seg C DXOpen (C, D) ∧ s ≡ seg C X`;;
let Angle_DEF = NewDefinition `;
A O B = ray O A ∪ ray O B`;;
let ANGLE = NewDefinition `;
Angle α ⇔ ∃A O B. α = ∡ A O B ∧ ¬Collinear A O B`;;
let AngleOrdering_DEF = NewDefinition `;
α <_ang β ⇔
Angle α ∧
A O B G. ¬Collinear A O B ∧ β = ∡ A O B
G ∈ int_angle A O B ∧ α ≡ ∡ A O G`;;
let RAY = NewDefinition `;
Ray r ⇔ ∃O A. ¬(O = A) ∧ r = ray O A`;;
let TriangleCong_DEF = NewDefinition `;
A B C A' B' C'. (A, B, C) ≅ (A', B', C') ⇔
¬Collinear A B C ∧ ¬Collinear A' B' C'
seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C'
A B C ≡ ∡ A' B' C'
B C A ≡ ∡ B' C' A'
C A B ≡ ∡ C' A' B'`;;
let SupplementaryAngles_DEF = NewDefinition `;
∀α β. α suppl β ⇔
A O B A'. ¬Collinear A O BOOpen (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A'`;;
let RightAngle_DEF = NewDefinition `;
∀α. Right α ⇔ ∃β. α suppl β ∧ α ≡ β`;;
let PlaneComplement_DEF = NewDefinition `;
∀α. complement α = {P | P ∉ α}`;;
let CONVEX = NewDefinition `;
Convex α ⇔ ∀A B. A ∈ α ∧ B ∈ α ⇒ Open (A, B) ⊂ α`;;
let PARALLEL = NewDefinition `;
∀l k. l ∥ k ⇔
Line l ∧ Line k ∧ l ∩ k = ∅`;;
let Parallelogram_DEF = NewDefinition `;
A B C D. Parallelogram A B C D
Quadrilateral A B C D ∧ ∃a b c d.
Line a ∧ A ∈ a ∧ B ∈ a ∧
Line b ∧ B ∈ b ∧ C ∈ b ∧
Line c ∧ C ∈ c ∧ D ∈ d ∧
Line d ∧ D ∈ d ∧ A ∈ d ∧
a ∥ c ∧ b ∥ d`;;
let InteriorCircle_DEF = NewDefinition `;
O R. int_circle O R = {P | ¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)}
`;;
(* ------------------------------------------------------------------------- *)
(* Hilbert's geometry axioms, except the parallel axiom P, defined later. *)
(* ------------------------------------------------------------------------- *)
let I1 = NewAxiom
`;∀A B. ¬(A = B) ⇒ ∃! l. Line l ∧ A ∈ l ∧ B ∈ l`;;
let I2 = NewAxiom
`;∀l. Line l ⇒ ∃A B. A ∈ l ∧ B ∈ l ∧ ¬(A = B)`;;
let I3 = NewAxiom
`;∃A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧
¬Collinear A B C`;;
let B1 = NewAxiom
`;∀A B C. Between A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧
Between C B ACollinear A B C`;;
let B2 = NewAxiom
`;∀A B. ¬(A = B) ⇒ ∃C. Between A B C`;;
let B3 = NewAxiom
`;∀A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C
⇒ (Between A B CBetween B C ABetween C A B) ∧
¬(Between A B CBetween B C A) ∧
¬(Between A B CBetween C A B) ∧
¬(Between B C ABetween C A B)`;;
let B4 = NewAxiom
`;∀l A B C. Line l ∧ ¬Collinear A B C
A ∉ l ∧ B ∉ l ∧ C ∉ l ∧
(∃X. X ∈ l ∧ Between A X C) ⇒
(∃Y. Y ∈ l ∧ Between A Y B) ∨ (∃Y. Y ∈ l ∧ Between B Y C)`;;
let C1 = NewAxiom
`;∀s O Z. Segment s ∧ ¬(O = Z) ⇒
∃! P. P ∈ ray O Z ━ {O} ∧ seg O P ≡ s`;;
let C2Reflexive = NewAxiom
`;Segment s ⇒ s ≡ s`;;
let C2Symmetric = NewAxiom
`;Segment s ∧ Segment t ∧ s ≡ t ⇒ t ≡ s`;;
let C2Transitive = NewAxiom
`;Segment s ∧ Segment t ∧ Segment u ∧
s ≡ t ∧ t ≡ u ⇒ s ≡ u`;;
let C3 = NewAxiom
`;∀A B C A' B' C'. BOpen (A, C) ∧ B'Open (A', C') ∧
seg A B ≡ seg A' B' ∧ seg B C ≡ seg B' C'
seg A C ≡ seg A' C'`;;
let C4 = NewAxiom
`;∀α O A l Y. Angle α ∧ ¬(O = A) ∧ Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l
⇒ ∃! r. Ray r ∧ ∃B. ¬(O = B) ∧ r = ray O B
B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α`;;
let C5Reflexive = NewAxiom
`;Angle α ⇒ α ≡ α`;;
let C5Symmetric = NewAxiom
`;Angle α ∧ Angle β ∧ α ≡ β ⇒ β ≡ α`;;
let C5Transitive = NewAxiom
`;Angle α ∧ Angle β ∧ Angle γ ∧
α ≡ β ∧ β ≡ γ ⇒ α ≡ γ`;;
let C6 = NewAxiom
`;∀A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C'
seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ∧ ∡ A B C ≡ ∡ A' B' C'
⇒ ∡ B C A ≡ ∡ B' C' A'`;;
(* ----------------------------------------------------------------- *)
(* Theorems. *)
(* ----------------------------------------------------------------- *)
let IN_Interval = theorem `;
A B X. XOpen (A, B) ⇔ Between A X B
by rewrite Interval_DEF IN_ELIM_THM`;;
let IN_Ray = theorem `;
A B X. X ∈ ray A B ⇔ ¬(A = B) ∧ Collinear A B XAOpen (X, B)
by rewrite Ray_DEF IN_ELIM_THM`;;
let IN_InteriorAngle = theorem `;
A O B P. P ∈ int_angle A O B
¬Collinear A O B ∧ ∃a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧
P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b
by rewrite InteriorAngle_DEF IN_ELIM_THM`;;
let IN_InteriorTriangle = theorem `;
A B C P. P ∈ int_triangle A B C
P ∈ int_angle A B CP ∈ int_angle B C AP ∈ int_angle C A B
by rewrite InteriorTriangle_DEF IN_ELIM_THM`;;
let IN_PlaneComplement = theorem `;
∀α. ∀P. P ∈ complement α ⇔ P ∉ α
by rewrite PlaneComplement_DEF IN_ELIM_THM`;;
let IN_InteriorCircle = theorem `;
O R P. P ∈ int_circle O R
¬(O = R) ∧ (P = O ∨ seg O P <__ seg O R)
by rewrite InteriorCircle_DEF IN_ELIM_THM`;;
let B1' = theorem `;
A B C. BOpen (A, C) ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧
BOpen (C, A) ∧ Collinear A B C
by fol IN_Interval B1`;;
let B2' = theorem `;
A B. ¬(A = B) ⇒ ∃C. BOpen (A, C)
by fol IN_Interval B2`;;
let B3' = theorem `;
A B C. ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C
⇒ (BOpen (A, C) ∨ COpen (B, A) ∨ AOpen (C, B)) ∧
¬(BOpen (A, C) ∧ COpen (B, A)) ∧
¬(BOpen (A, C) ∧ AOpen (C, B)) ∧
¬(COpen (B, A) ∧ AOpen (C, B))
by fol IN_Interval B3`;;
let B4' = theorem `;
∀l A B C. Line l ∧ ¬Collinear A B C
A ∉ l ∧ B ∉ l ∧ C ∉ l ∧
(∃X. X ∈ l ∧ XOpen (A, C)) ⇒
(∃Y. Y ∈ l ∧ YOpen (A, B)) ∨ (∃Y. Y ∈ l ∧ YOpen (B, C))
by rewrite IN_Interval B4`;;
let B4'' = theorem `;
∀l A B C.
Line l ∧ ¬Collinear A B CA ∉ l ∧ B ∉ l ∧ C ∉ l ∧
A,B same_side l ∧ B,C same_side l ⇒ A,C same_side l
proof
rewrite SameSide_DEF;
fol B4';
qed;
`;;
let DisjointOneNotOther = theorem `;
∀l m. (∀x:A. x ∈ m ⇒ x ∉ l) ⇔ l ∩ m = ∅
by fol ∉ IN_INTER MEMBER_NOT_EMPTY`;;
let EquivIntersectionHelp = theorem `;
∀e x:A. ∀l m:A->bool.
(l ∩ m = {x} ∨ m ∩ l = {x}) ∧ e ∈ m ━ {x} ⇒ e ∉ l
by fol ∉ IN_INTER IN_SING IN_DIFF`;;
let CollinearSymmetry = theorem `;
A B C. Collinear A B C
Collinear A C BCollinear B A CCollinear B C A
Collinear C A BCollinear C B A
proof
intro_TAC ∀A B C, H1;
consider l such that
Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [l_line] by fol H1 Collinear_DEF;
fol - Collinear_DEF;
qed;
`;;
let ExistsNewPointOnLine = theorem `;
P. Line l ∧ P ∈ l ⇒ ∃Q. Q ∈ l ∧ ¬(P = Q)
proof
intro_TAC ∀P, H1;
consider A B such that
A ∈ l ∧ B ∈ l ∧ ¬(A = B) [l_line] by fol H1 I2;
fol - l_line;
qed;
`;;
let ExistsPointOffLine = theorem `;
∀l. Line l ⇒ ∃Q. Q ∉ l
proof
intro_TAC ∀l, H1;
consider A B C such that
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear A B C [Distinct] by fol I3;
assume (A ∈ l) ∧ (B ∈ l) ∧ (C ∈ l) [all_on] by fol ∉;
Collinear A B C [] by fol H1 - Collinear_DEF;
fol - Distinct;
qed;
`;;
let BetweenLinear = theorem `;
A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧
(BOpen (A, C) ∨ COpen (B, A) ∨ AOpen (C, B)) ⇒ B ∈ m
proof
intro_TAC ∀A B C m, H1m H1A H1C H2;
¬(A = C) ∧
(Collinear A B CCollinear B C ACollinear C A B) [X1] by fol H2 B1';
consider l such that
Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [X2] by fol - Collinear_DEF;
l = m [] by fol X1 - H2 H1m H1A H1C I1;
fol - X2;
qed;
`;;
let CollinearLinear = theorem `;
A B C m. Line m ∧ A ∈ m ∧ C ∈ m ∧
(Collinear A B CCollinear B C ACollinear C A B) ∧
¬(A = C) ⇒ B ∈ m
proof
intro_TAC ∀A B C m, H1m H1A H1C H2 H3;
consider l such that
Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l [X1] by fol H2 Collinear_DEF;
l = m [] by fol H3 - H1m H1A H1C I1;
fol - X1;
qed;
`;;
let NonCollinearImpliesDistinct = theorem `;
A B C. ¬Collinear A B C ⇒ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C)
proof
intro_TAC ∀A B C, H1;
assume A = BB = C [equal] by fol H1 I1 Collinear_DEF;
consider Q such that
¬(Q = A) [notQA] by fol I3;
fol - equal H1 I1 Collinear_DEF;
qed;
`;;
let NonCollinearRaa = theorem `;
A B C l. ¬(A = C) ⇒ Line l ∧ A ∈ l ∧ C ∈ l ⇒ B ∉ l
⇒ ¬Collinear A B C
proof
intro_TAC ∀A B C l, Distinct, l_line, notBl;
assume Collinear A B C [ANCcol] by fol;
consider m such that Line m ∧ A ∈ m ∧ B ∈ m ∧ C ∈ m [m_line] by fol - Collinear_DEF;
m = l [] by fol - l_line Distinct I1;
B ∈ l [] by fol m_line -;
fol - notBl ∉;
qed;
`;;
let TwoSidesTriangle1Intersection = theorem `;
A B C Y. ¬Collinear A B CCollinear B C YCollinear A C Y
Y = C
proof
intro_TAC ∀A B C Y, ABCcol BCYcol ACYcol;
assume ¬(C = Y) [notCY] by fol;
consider l such that
Line l ∧ C ∈ l ∧ Y ∈ l [l_line] by fol - I1;
B ∈ l ∧ A ∈ l [] by fol - BCYcol ACYcol Collinear_DEF notCY I1;
fol - l_line Collinear_DEF ABCcol;
qed;
`;;
let OriginInRay = theorem `;
O Q. ¬(Q = O) ⇒ O ∈ ray O Q
proof
intro_TAC ∀O Q, H1;
OOpen (O, Q) [OOQ] by fol B1' ∉;
Collinear O Q O [] by fol H1 I1 Collinear_DEF;
fol H1 - OOQ IN_Ray;
qed;
`;;
let EndpointInRay = theorem `;
O Q. ¬(Q = O) ⇒ Q ∈ ray O Q
proof
intro_TAC ∀O Q, H1;
OOpen (Q, Q) [notOQQ] by fol B1' ∉;
Collinear O Q Q [] by fol H1 I1 Collinear_DEF;
fol H1 - notOQQ IN_Ray;
qed;
`;;
let I1Uniqueness = theorem `;
X l m. Line l ∧ Line m ∧ ¬(l = m) ∧ X ∈ l ∧ X ∈ m
⇒ l ∩ m = {X}
proof
intro_TAC ∀X l m, H0l H0m H1 H2l H2m;
assume ¬(l ∩ m = {X}) [H3] by fol;
consider A such that
A ∈ l ∩ m ∧ ¬(A = X) [X1] by fol H2l H2m IN_INTER H3 EXTENSION IN_SING;
fol H0l H0m H2l H2m IN_INTER X1 I1 H1;
qed;
`;;
let DisjointLinesImplySameSide = theorem `;
∀l m A B. Line l ∧ Line m ∧ A ∈ m ∧ B ∈ m ∧ l ∩ m = ∅ ⇒ A,B same_side l
proof
intro_TAC ∀l m A B, l_line m_line Am Bm lm0;
l ∩ Open (A,B) = ∅ [] by fol Am Bm m_line BetweenLinear SUBSET lm0 SUBSET_REFL INTER_TENSOR SUBSET_EMPTY;
fol l_line - SameSide_DEF SUBSET IN_INTER MEMBER_NOT_EMPTY;
qed;
`;;
let EquivIntersection = theorem `;
A B X l m. Line l ∧ Line m ∧ l ∩ m = {X} ∧ A ∈ m ━ {X} ∧ B ∈ m ━ {X} ∧
XOpen (A, B) ⇒ A,B same_side l
proof
intro_TAC ∀A B X l m, l_line m_line H1 H2l H2m H3;
Open (A, B) ⊂ m [] by fol l_line m_line SUBSET_DIFF IN_DIFF IN_SING H2l H2m BetweenLinear SUBSET;
l ∩ Open (A, B) ⊂ {X} [] by fol - H1 SUBSET_REFL INTER_TENSOR;
l ∩ Open (A, B) ⊂ ∅ [] by fol - SUBSET IN_SING IN_INTER H3 ∉;
fol l_line - SameSide_DEF SUBSET IN_INTER NOT_IN_EMPTY;
qed;
`;;
let RayLine = theorem `;
O P l. Line l ∧ O ∈ l ∧ P ∈ l ⇒ ray O P ⊂ l
by fol IN_Ray CollinearLinear SUBSET`;;
let RaySameSide = theorem `;
∀l O A P. Line l ∧ O ∈ l ∧ A ∉ l ∧ P ∈ ray O A ━ {O}
P ∉ l ∧ P,A same_side l
proof
intro_TAC ∀l O A P, l_line Ol notAl PrOA;
¬(O = A) [notOA] by fol l_line Ol notAl ∉;
consider d such that
Line d ∧ O ∈ d ∧ A ∈ d [d_line] by fol notOA I1;
¬(l = d) [] by fol - notAl ∉;
l ∩ d = {O} [ldO] by fol l_line Ol d_line - I1Uniqueness;
A ∈ d ━ {O} [Ad_O] by fol d_line notOA IN_DIFF IN_SING;
ray O A ⊂ d [] by fol d_line RayLine;
P ∈ d ━ {O} [Pd_O] by fol PrOA - SUBSET IN_DIFF IN_SING;
P ∉ l [notPl] by fol ldO - EquivIntersectionHelp;
OOpen (P, A) [] by fol PrOA IN_DIFF IN_SING IN_Ray;
P,A same_side l [] by fol l_line Ol d_line ldO Ad_O Pd_O - EquivIntersection;
fol notPl -;
qed;
`;;
let IntervalRayEZ = theorem `;
A B C. BOpen (A, C) ⇒ B ∈ ray A C ━ {A} ∧ C ∈ ray A B ━ {A}
proof
intro_TAC ∀A B C, H1;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C [ABC] by fol H1 B1';
AOpen (B, C) ∧ AOpen (C, B) [] by fol - H1 B3' B1' ∉;
fol ABC - CollinearSymmetry IN_RayIN_DIFF IN_SING;
qed;
`;;
let NoncollinearityExtendsToLine = theorem `;
A O B X. ¬Collinear A O BCollinear O B X ∧ ¬(X = O)
⇒ ¬Collinear A O X
proof
intro_TAC ∀A O B X, H1, H2;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider b such that
Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1;
A ∉ b [notAb] by fol b_line H1 Collinear_DEF ∉;
X ∈ b [] by fol H2 b_line Distinct I1 Collinear_DEF;
fol b_line - H2 notAb I1 Collinear_DEF ∉;
qed;
`;;
let SameSideReflexive = theorem `;
∀l A. Line l ∧ A ∉ l ⇒ A,A same_side l
by fol B1' SameSide_DEF`;;
let SameSideSymmetric = theorem `;
∀l A B. Line l ∧ A ∉ l ∧ B ∉ l ⇒
A,B same_side l ⇒ B,A same_side l
by fol SameSide_DEF B1'`;;
let SameSideTransitive = theorem `;
∀l A B C. Line l ⇒ A ∉ l ∧ B ∉ l ∧ C ∉ l ⇒ A,B same_side l
B,C same_side l ⇒ A,C same_side l
proof
intro_TAC ∀l A B C, l_line, notABCl, Asim_lB, Bsim_lC;
assume Collinear A B C ∧ ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol l_line notABCl Asim_lB Bsim_lC B4'' SameSideReflexive;
consider m such that
Line m ∧ A ∈ m ∧ C ∈ m [m_line] by fol Distinct I1;
B ∈ m [Bm] by fol - Distinct CollinearLinear;
assume ¬(m ∩ l = ∅) [Intersect] by fol m_line l_line BetweenLinear SameSide_DEF IN_INTER NOT_IN_EMPTY;
consider X such that
X ∈ l ∧ X ∈ m [Xlm] by fol - MEMBER_NOT_EMPTY IN_INTER;
Collinear A X BCollinear B A CCollinear A B C [ABXcol] by fol m_line Bm - Collinear_DEF;
consider E such that
E ∈ l ∧ ¬(E = X) [El_X] by fol l_line Xlm ExistsNewPointOnLine;
¬Collinear E A X [EAXncol] by fol l_line El_X Xlm notABCl I1 Collinear_DEF ∉;
consider B' such that
¬(B = E) ∧ BOpen (E, B') [EBB'] by fol notABCl El_XB2';
¬(B' = E) ∧ ¬(B' = B) ∧ Collinear B E B' [EBB'col] by fol - B1' CollinearSymmetry;
¬Collinear A B B' ∧ ¬Collinear B' B A ∧ ¬Collinear B' A B [ABB'ncol] by fol EAXncol ABXcol Distinct - NoncollinearityExtendsToLine CollinearSymmetry;
¬Collinear B' B C ∧ ¬Collinear B' A C ∧ ¬Collinear A B' C [AB'Cncol] by fol ABB'ncol ABXcol Distinct NoncollinearityExtendsToLine CollinearSymmetry;
B' ∈ ray E B ━ {E} ∧ B ∈ ray E B' ━ {E} [] by fol EBB' IntervalRayEZ;
B' ∉ l ∧ B',B same_side l ∧ B,B' same_side l [notB'l] by fol l_line El_X notABCl - RaySameSide;
A,B' same_side l ∧ B',C same_side l [] by fol l_line ABB'ncol notABCl notB'l Asim_lB - AB'Cncol Bsim_lC B4'';
fol l_line AB'Cncol notABCl notB'l - B4'';
qed;
`;;
let ConverseCrossbar = theorem `;
O A B G. ¬Collinear A O BGOpen (A, B) ⇒ G ∈ int_angle A O B
proof
intro_TAC ∀O A B G, H1 H2;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider a such that
Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol - I1;
consider b such that
Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1;
consider l such that
Line l ∧ A ∈ l ∧ B ∈ l [l_line] by fol Distinct I1;
B ∉ a ∧ A ∉ b [] by fol H1 a_line b_line Collinear_DEF ∉;
¬(a = l) ∧ ¬(b = l) [] by fol - l_line ∉;
a ∩ l = {A} ∧ b ∩ l = {B} [alA] by fol - a_line l_line b_line I1Uniqueness;
¬(A = G) ∧ ¬(A = B) ∧ ¬(G = B) [AGB] by fol H2 B1';
AOpen (G, B) ∧ BOpen (G, A) [notGAB] by fol H2 B3' B1' ∉;
G ∈ l [Gl] by fol l_line H2 BetweenLinear;
G ∉ a ∧ G ∉ b [notGa] by fol alA Gl AGB IN_DIFF IN_SING EquivIntersectionHelp;
G ∈ l ━ {A} ∧ B ∈ l ━ {A} ∧ G ∈ l ━ {B} ∧ A ∈ l ━ {B} [] by fol Gl l_line AGB IN_DIFF IN_SING;
G,B same_side a ∧ G,A same_side b [] by fol a_line l_line alA - notGAB b_line EquivIntersection;
fol H1 a_line b_line notGa - IN_InteriorAngle;
qed;
`;;
let InteriorUse = theorem `;
A O B P a b.
Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ⇒
P ∈ int_angle A O B
P ∉ a ∧ P ∉ b ∧ P,B same_side a ∧ P,A same_side b
proof
intro_TAC ∀A O B P a b, aOAbOB, P_AOB;
consider α β such that ¬Collinear A O B
Line α ∧ O ∈ α ∧ A ∈ α ∧
Line β ∧ O ∈ β ∧B ∈ β ∧
P ∉ α ∧ P ∉ β ∧
P,B same_side α ∧ P,A same_side β [exists] by fol P_AOB IN_InteriorAngle;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) [] by fol - NonCollinearImpliesDistinct;
α = a ∧ β = b [] by fol - aOAbOB exists I1;
fol - exists;
qed;
`;;
let InteriorEZHelp = theorem `;
A O B P. P ∈ int_angle A O B
¬(P = A) ∧ ¬(P = O) ∧ ¬(P = B) ∧ ¬Collinear A O P
proof
intro_TAC ∀A O B P, P_AOB;
consider a b such that
¬Collinear A O B
Line a ∧ O ∈ a ∧ A ∈ a ∧
Line b ∧ O ∈ b ∧B ∈ b ∧
P ∉ a ∧ P ∉ b [def_int] by fol P_AOB IN_InteriorAngle;
¬(P = A) ∧ ¬(P = O) ∧ ¬(P = B) [PnotAOB] by fol - ∉;
¬(A = O) [] by fol def_int NonCollinearImpliesDistinct;
¬Collinear A O P [] by fol def_int - NonCollinearRaa CollinearSymmetry;
fol PnotAOB -;
qed;
`;;
let InteriorAngleSymmetry = theorem `;
A O B P: point. P ∈ int_angle A O BP ∈ int_angle B O A
proof rewrite IN_InteriorAngle; fol CollinearSymmetry; qed;
`;;
let InteriorWellDefined = theorem `;
A O B X P. P ∈ int_angle A O BX ∈ ray O B ━ {O} ⇒ P ∈ int_angle A O X
proof
intro_TAC ∀A O B X P, H1 H2;
consider a b such that
¬Collinear A O B
Line a ∧ O ∈ a ∧ A ∈ a ∧ P ∉ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ P ∉ b ∧
P,B same_side a ∧ P,A same_side b [def_int] by fol H1 IN_InteriorAngle;
¬(X = O) ∧ ¬(O = B) ∧ Collinear O B X [H2'] by fol H2 IN_Ray IN_DIFF IN_SING;
B ∉ a [notBa] by fol def_int Collinear_DEF ∉;
¬Collinear A O X [AOXnoncol] by fol def_int H2' NoncollinearityExtendsToLine;
X ∈ b [Xb] by fol def_int H2' CollinearLinear;
X ∉ a ∧ B,X same_side a [] by fol def_int notBa H2 RaySameSide SameSideSymmetric;
P,X same_side a [] by fol def_int - notBa SameSideTransitive;
fol AOXnoncol def_int Xb - IN_InteriorAngle;
qed;
`;;
let WholeRayInterior = theorem `;
A O B X P. X ∈ int_angle A O BP ∈ ray O X ━ {O} ⇒ P ∈ int_angle A O B
proof
intro_TAC ∀A O B X P, XintAOB PrOX;
consider a b such that
¬Collinear A O B
Line a ∧ O ∈ a ∧ A ∈ a ∧ X ∉ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ X ∉ b ∧
X,B same_side a ∧ X,A same_side b [def_int] by fol XintAOB IN_InteriorAngle;
P ∉ a ∧ P,X same_side a ∧ P ∉ b ∧ P,X same_side b [Psim_abX] by fol def_int PrOX RaySameSide;
P,B same_side a ∧ P,A same_side b [] by fol - def_int Collinear_DEF SameSideTransitive ∉;
fol def_int Psim_abX - IN_InteriorAngle;
qed;
`;;
let AngleOrdering = theorem `;
O A P Q a. ¬(O = A) ⇒ Line a ∧ O ∈ a ∧ A ∈ a ⇒
P ∉ a ∧ Q ∉ a ⇒ P,Q same_side a ⇒ ¬Collinear P O Q
P ∈ int_angle Q O AQ ∈ int_angle P O A
proof
intro_TAC ∀O A P Q a, H1, H2, H3, H4, H5;
¬(P = O) ∧ ¬(P = Q) ∧ ¬(O = Q) [Distinct] by fol H5 NonCollinearImpliesDistinct;
consider q such that
Line q ∧ O ∈ q ∧ Q ∈ q [q_line] by fol Distinct I1;
P ∉ q [notPq] by fol - H5 Collinear_DEF ∉;
assume ¬(P ∈ int_angle Q O A) [notPintQOA] by fol;
¬Collinear Q O A ∧ ¬Collinear P O A [POAncol] by fol H1 H2 H3 I1 Collinear_DEF ∉;
¬(P,A same_side q) [] by fol - H2 q_line H3 notPq H4 notPintQOA IN_InteriorAngle;
consider G such that
G ∈ q ∧ GOpen (P, A) [existG] by fol q_line - SameSide_DEF;
G ∈ int_angle P O A [G_POA] by fol POAncol existG ConverseCrossbar;
G ∉ a ∧ G,P same_side a ∧ ¬(G = O) [Gsim_aP] by fol - H1 H2 IN_InteriorAngle I1 ∉;
G,Q same_side a [] by fol H2 Gsim_aP H3 H4 SameSideTransitive;
OOpen (Q, G) [notQOG] by fol - H2 SameSide_DEF B1' ∉;
Collinear O G Q [] by fol q_line existG Collinear_DEF;
Q ∈ ray O G ━ {O} [] by fol Gsim_aP - notQOG Distinct IN_Ray IN_DIFF IN_SING;
fol G_POA - WholeRayInterior;
qed;
`;;
let InteriorsDisjointSupplement = theorem `;
A O B A'. ¬Collinear A O BOOpen (A, A') ⇒
int_angle B O A' ∩ int_angle A O B = ∅
proof
intro_TAC ∀A O B A', H1 H2;
D. D ∈ int_angle A O BD ∉ int_angle B O A' []
proof
intro_TAC ∀D, H3;
¬(A = O) ∧ ¬(O = B) [] by fol H1 NonCollinearImpliesDistinct;
consider a b such that
Line a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧ A' ∈ a [ab_line] by fol - H2 I1 BetweenLinear;
¬Collinear B O A' [] by fol H1 H2 CollinearSymmetry B1' NoncollinearityExtendsToLine;
A ∉ b ∧ A' ∉ b [notAb] by fol ab_line H1 - Collinear_DEF ∉;
¬(A',A same_side b) [A'nsim_bA] by fol ab_line H2 B1' SameSide_DEF;
D ∉ b ∧ D,A same_side b [DintAOB] by fol ab_line H3 InteriorUse;
¬(D,A' same_side b) [] by fol ab_line notAb DintAOB A'nsim_bA SameSideSymmetric SameSideTransitive;
fol ab_line - InteriorUse ∉;
qed;
fol - DisjointOneNotOther;
qed;
`;;
let InteriorReflectionInterior = theorem `;
A O B D A'. OOpen (A, A') ∧ D ∈ int_angle A O B
B ∈ int_angle D O A'
proof
intro_TAC ∀A O B D A', H1 H2;
consider a b such that
¬Collinear A O BLine a ∧ O ∈ a ∧ A ∈ a ∧ D ∉ a ∧
Line b ∧ O ∈ b ∧ B ∈ b ∧ D ∉ b ∧ D,B same_side a [DintAOB] by fol H2 IN_InteriorAngle;
¬(O = B) ∧ ¬(O = A') ∧ B ∉ a [Distinct] by fol - H1 NonCollinearImpliesDistinct B1' Collinear_DEF ∉;
¬Collinear D O B [DOB_ncol] by fol DintAOB - NonCollinearRaa CollinearSymmetry;
A' ∈ a [A'a] by fol H1 DintAOB BetweenLinear;
D ∉ int_angle B O A' [] by fol DintAOB H1 H2 InteriorsDisjointSupplement DisjointOneNotOther;
fol Distinct DintAOB A'a DOB_ncol - AngleOrdering ∉;
qed;
`;;
let Crossbar_THM = theorem `;
O A B D. D ∈ int_angle A O B ⇒ ∃G. GOpen (A, B) ∧ G ∈ ray O D ━ {O}
proof
intro_TAC ∀O A B D, H1;
consider a b such that
¬Collinear A O B
Line a ∧ O ∈ a ∧ A ∈ a ∧
Line b ∧ O ∈ b ∧ B ∈ b ∧
D ∉ a ∧ D ∉ b ∧ D,B same_side a ∧ D,A same_side b [DintAOB] by fol H1 IN_InteriorAngle;
B ∉ a [notBa] by fol DintAOB Collinear_DEF ∉;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ ¬(D = O) [Distinct] by fol DintAOB NonCollinearImpliesDistinct ∉;
consider l such that
Line l ∧ O ∈ l ∧ D ∈ l [l_line] by fol - I1;
consider A' such that
OOpen (A, A') [AOA'] by fol Distinct B2';
A' ∈ a ∧ Collinear A O A' ∧ ¬(A' = O) [A'a] by fol DintAOB - BetweenLinear B1';
¬(A,A' same_side l) [Ansim_lA'] by fol l_line AOA' SameSide_DEF;
B ∈ int_angle D O A' [] by fol H1 AOA' InteriorReflectionInterior;
B,A' same_side l [Bsim_lA'] by fol l_line DintAOB A'a - InteriorUse;
¬Collinear A O D ∧ ¬Collinear B O D [AODncol] by fol H1 InteriorEZHelp InteriorAngleSymmetry;
¬Collinear D O A' [] by fol - A'a CollinearSymmetry NoncollinearityExtendsToLine;
A ∉ l ∧ B ∉ l ∧ A' ∉ l [] by fol l_line AODncol - Collinear_DEF ∉;
¬(A,B same_side l) [] by fol l_line - Bsim_lA' Ansim_lA' SameSideTransitive;
consider G such that
GOpen (A, B) ∧ G ∈ l [AGB] by fol l_line - SameSide_DEF;
Collinear O D G [ODGcol] by fol - l_line Collinear_DEF;
G ∈ int_angle A O B [] by fol DintAOB AGB ConverseCrossbar;
G ∉ a ∧ G,B same_side a ∧ ¬(G = O) [Gsim_aB] by fol DintAOB - InteriorUse ∉;
B,D same_side a [] by fol DintAOB notBa SameSideSymmetric;
G,D same_side a [Gsim_aD] by fol DintAOB Gsim_aB notBa - SameSideTransitive;
OOpen (G, D) [] by fol DintAOB - SameSide_DEF ∉;
G ∈ ray O D ━ {O} [] by fol Distinct ODGcol - Gsim_aB IN_Ray IN_DIFF IN_SING;
fol AGB -;
qed;
`;;
let AlternateConverseCrossbar = theorem `;
O A B G. Collinear A G BG ∈ int_angle A O BGOpen (A, B)
proof
intro_TAC ∀O A B G, H1;
consider a b such that
¬Collinear A O BLine a ∧ O ∈ a ∧ A ∈ a ∧ Line b ∧ O ∈ b ∧ B ∈ b ∧
G,B same_side a ∧ G,A same_side b [GintAOB] by fol H1 IN_InteriorAngle;
¬(A = B) ∧ ¬(G = A) ∧ ¬(G = B) ∧ AOpen (G, B) ∧ BOpen (G, A) [] by fol - H1 NonCollinearImpliesDistinct InteriorEZHelp SameSide_DEF ∉;
fol - H1 B1' B3' ∉;
qed;
`;;
let InteriorOpposite = theorem `;
A O B P p. P ∈ int_angle A O BLine p ∧ O ∈ p ∧ P ∈ p
⇒ ¬(A,B same_side p)
proof
intro_TAC ∀A O B P p, PintAOB, p_line;
consider G such that
GOpen (A, B) ∧ G ∈ ray O P [Gexists] by fol PintAOB Crossbar_THM IN_DIFF;
fol p_line p_line - RayLine SUBSET Gexists SameSide_DEF;
qed;
`;;
let IntervalTransitivity = theorem `;
O P Q R m. Line m ∧ O ∈ m ⇒ P ∈ m ━ {O} ∧ Q ∈ m ━ {O} ∧ R ∈ m ━ {O} ⇒
OOpen (P, Q) ∧ OOpen (Q, R) ⇒ OOpen (P, R)
proof
intro_TAC ∀O P Q R m, H0, H2, H3;
consider E such that
E ∉ m ∧ ¬(O = E) [notEm] by fol H0 ExistsPointOffLine ∉;
consider l such that
Line l ∧ O ∈ l ∧ E ∈ l [l_line] by fol - I1;
¬(m = l) [] by fol notEm - ∉;
l ∩ m = {O} [lmO] by fol l_line H0 - l_line I1Uniqueness;
P ∉ l ∧ Q ∉ l ∧ R ∉ l [notPQRl] by fol - H2 EquivIntersectionHelp;
P,Q same_side l ∧ Q,R same_side l [] by fol l_line H0 lmO H2 H3 EquivIntersection;
P,R same_side l [Psim_lR] by fol l_line notPQRl - SameSideTransitive;
fol l_line - SameSide_DEF ∉;
qed;
`;;
let RayWellDefinedHalfway = theorem `;
O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ {O} ⇒ ray O P ⊂ ray O Q
proof
intro_TAC ∀O P Q, H1 H2;
consider m such that
Line m ∧ O ∈ m ∧ Q ∈ m [OQm] by fol H1 I1;
P ∈ ray O Q ∧ ¬(P = O) ∧ OOpen (P, Q) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING;
P ∈ m ∧ P ∈ m ━ {O} ∧ Q ∈ m ━ {O} [PQm_O] by fol OQm H2' RayLine SUBSET H2' OQm H1 IN_DIFF IN_SING;
OOpen (P, Q) [notPOQ] by fol H2' IN_Ray;
rewrite SUBSET;
intro_TAC ∀[X], XrayOP;
X ∈ m ∧ OOpen (X, P) [XrOP] by fol - SUBSET OQm PQm_O H2' RayLine IN_Ray;
Collinear O Q X [OQXcol] by fol OQm - Collinear_DEF;
assume ¬(X = O) [notXO] by fol H1 OriginInRay;
X ∈ m ━ {O} [] by fol XrOP - IN_DIFF IN_SING;
OOpen (X, Q) [] by fol OQm - PQm_O XrOP H2' IntervalTransitivity;
fol H1 OQXcol - IN_Ray;
qed;
`;;
let RayWellDefined = theorem `;
O P Q. ¬(Q = O) ∧ P ∈ ray O Q ━ {O} ⇒ ray O P = ray O Q
proof
intro_TAC ∀O P Q, H1 H2;
ray O P ⊂ ray O Q [PsubsetQ] by fol H1 H2 RayWellDefinedHalfway;
¬(P = O) ∧ Collinear O Q POOpen (P, Q) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING;
Q ∈ ray O P ━ {O} [] by fol H2' B1'CollinearSymmetry IN_Ray H1 IN_DIFF IN_SING;
ray O Q ⊂ ray O P [QsubsetP] by fol H2' - RayWellDefinedHalfway;
fol PsubsetQ QsubsetP SUBSET_ANTISYM;
qed;
`;;
let OppositeRaysIntersect1pointHelp = theorem `;
A O B X. OOpen (A, B) ∧ X ∈ ray O B ━ {O}
X ∉ ray O AOOpen (X, A)
proof
intro_TAC ∀A O B X, H1 H2;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ Collinear A O B [AOB] by fol H1 B1';
¬(X = O) ∧ Collinear O B XOOpen (X, B) [H2'] by fol H2 IN_Ray IN_DIFF IN_SING;
consider m such that
Line m ∧ A ∈ m ∧ B ∈ m [m_line] by fol AOB I1;
O ∈ m ∧ X ∈ m [Om] by fol m_line H2' AOB CollinearLinear;
A ∈ m ━ {O} ∧ X ∈ m ━ {O} ∧ B ∈ m ━ {O} [] by fol m_line - H2' AOB IN_DIFF IN_SING;
fol H1 m_line Om - H2' IntervalTransitivityB1' IN_Ray;
qed;
`;;
let OppositeRaysIntersect1point = theorem `;
A O B. OOpen (A, B) ⇒ ray O A ∩ ray O B = {O}
proof
intro_TAC ∀A O B, H1;
¬(A = O) ∧ ¬(O = B) [] by fol H1 B1';
rewrite GSYM SUBSET_ANTISYM_EQ SUBSET IN_INTER;
conj_tac [Right] by fol - OriginInRay IN_SING;
fol H1 OppositeRaysIntersect1pointHelp IN_DIFF IN_SING ∉;
qed;
`;;
let IntervalRay = theorem `;
A B C. BOpen (A, C) ⇒ ray A B = ray A C
by fol B1' IntervalRayEZ RayWellDefined`;;
let Reverse4Order = theorem `;
A B C D. ordered A B C D ⇒ ordered D C B A
proof
rewrite Ordered_DEF;
fol B1';
qed;
`;;
let TransitivityBetweennessHelp = theorem `;
A B C D. BOpen (A, C) ∧ COpen (B, D)
BOpen (A, D)
proof
intro_TAC ∀A B C D, H1;
D ∈ ray B C ━ {B} [] by fol H1 IntervalRayEZ;
fol H1 - OppositeRaysIntersect1pointHelp B1';
qed;
`;;
let TransitivityBetweenness = theorem `;
A B C D. BOpen (A, C) ∧ COpen (B, D) ⇒ ordered A B C D
proof
intro_TAC ∀A B C D, H1;
BOpen (A, D) [ABD] by fol H1 TransitivityBetweennessHelp;
COpen (D, B) ∧ BOpen (C, A) [] by fol H1 B1';
COpen (D, A) [] by fol - TransitivityBetweennessHelp;
fol H1 ABD - B1' Ordered_DEF;
qed;
`;;
let IntervalsAreConvex = theorem `;
A B C. BOpen (A, C) ⇒ Open (A, B) ⊂ Open (A, C)
proof
intro_TAC ∀A B C, H1;
X. XOpen (A, B) ⇒ XOpen (A, C) []
proof
intro_TAC ∀X, AXB;
X ∈ ray B A ━ {B} [] by fol AXB B1' IntervalRayEZ;
BOpen (X, C) [] by fol H1 B1' - OppositeRaysIntersect1pointHelp;
fol AXB - TransitivityBetweennessHelp;
qed;
fol - SUBSET;
qed;
`;;
let TransitivityBetweennessVariant = theorem `;
A X B C. XOpen (A, B) ∧ BOpen (A, C) ⇒ ordered A X B C
proof
intro_TAC ∀A X B C, H1;
X ∈ ray B A ━ {B} [] by fol H1 B1' IntervalRayEZ;
BOpen (X, C) [] by fol H1 B1' - OppositeRaysIntersect1pointHelp;
fol H1 - TransitivityBetweenness;
qed;
`;;
let Interval2sides2aLineHelp = theorem `;
A B C X. BOpen (A, C) ⇒ XOpen (A, B) ∨ XOpen (B, C)
proof
intro_TAC ∀A B C X, H1;
assume ¬(XOpen (A, B)) [AXB] by fol;
ordered A X B C [] by fol - ∉ H1 TransitivityBetweennessVariant;
fol MESON [-; Ordered_DEF] [BOpen (X, C)] B1' B3' ∉;
qed;
`;;
let Interval2sides2aLine = theorem `;
A B C X. Collinear A B C
XOpen (A, B) ∨ XOpen (A, C) ∨ XOpen (B, C)
proof
intro_TAC ∀A B C X, H1;
assume ¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol B1' ∉;
BOpen (A, C) ∨ COpen (B, A) ∨ AOpen (C, B) [] by fol - H1 B3';
fol - Interval2sides2aLineHelp B1' ∉;
qed;
`;;
let TwosidesTriangle2aLine = theorem `;
A B C l. Line l ∧ ¬Collinear A B CA ∉ l ∧ B ∉ l ∧ C ∉ l ⇒
¬(A,B same_side l) ∧ ¬(B,C same_side l) ⇒ A,C same_side l
proof
intro_TAC ∀ A B C l, H1, off_l, H2;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [ABCdistinct] by fol H1 NonCollinearImpliesDistinct;
consider m such that
Line m ∧ A ∈ m ∧ C ∈ m [m_line] by fol - I1;
assume ¬(l ∩ m = ∅) [lmIntersect] by fol H1 m_line DisjointLinesImplySameSide;
consider Y such that
Y ∈ l ∧ Y ∈ m [Ylm] by fol lmIntersect MEMBER_NOT_EMPTY IN_INTER;
consider X Z such that
X ∈ l ∧ XOpen (A, B) ∧ Z ∈ l ∧ ZOpen (C, B) [H2'] by fol H1 H2 SameSide_DEF B1';
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Y ∈ m ━ {A} ∧ Y ∈ m ━ {C} ∧ C ∈ m ━ {A} ∧ A ∈ m ━ {C} [Distinct] by fol H1 NonCollinearImpliesDistinct Ylm off_l ∉ m_line IN_DIFF IN_SING;
consider p such that
Line p ∧ B ∈ p ∧ A ∈ p [p_line] by fol Distinct I1;
consider q such that
Line q ∧ B ∈ q ∧ C ∈ q [q_line] by fol Distinct I1;
X ∈ p ∧ Z ∈ q [Xp] by fol p_line H2' BetweenLinear q_line H2';
A ∉ q ∧ B ∉ m ∧ C ∉ p [vertex_off_line] by fol q_line m_line p_line H1 Collinear_DEF ∉;
X ∉ q ∧ X,A same_side q ∧ Z ∉ p ∧ Z,C same_side p [Xsim_qA] by fol q_line p_line - H2' B1' IntervalRayEZ RaySameSide;
¬(m = p) ∧ ¬(m = q) [] by fol m_line vertex_off_line ∉;
p ∩ m = {A} ∧ q ∩ m = {C} [pmA] by fol p_line m_line q_line H1 - Xp H2' I1Uniqueness;
Y ∉ p ∧ Y ∉ q [notYpq] by fol - Distinct EquivIntersectionHelp;
X ∈ ray A B ━ {A} ∧ Z ∈ ray C B ━ {C} [] by fol H2' IntervalRayEZ H2' B1';
X ∉ m ∧ Z ∉ m ∧ X,B same_side m ∧ B,Z same_side m [notXZm] by fol m_line vertex_off_line - RaySameSide SameSideSymmetric;
X,Z same_side m [] by fol m_line - vertex_off_line SameSideTransitive;
Collinear X Y ZYOpen (X, Z) ∧ ¬(Y = X) ∧ ¬(Y = Z) ∧ ¬(X = Z) [] by fol H1 H2' Ylm Collinear_DEF m_line - SameSide_DEF notXZm Xsim_qA Xp ∉;
ZOpen (X, Y) ∨ XOpen (Z, Y) [] by fol - B3'B1';
case_split ZXY | XZY by fol -;
suppose XOpen (Z, Y);
¬(Z,Y same_side p) [] by fol p_line Xp - SameSide_DEF;
¬(C,Y same_side p) [] by fol p_line Xsim_qA vertex_off_line notYpq - SameSideTransitive;
AOpen (C, Y) [] by fol p_line m_line pmA Distinct - EquivIntersection ∉;
fol H1 Ylm off_l - B1' IntervalRayEZ RaySameSide;
end;
suppose ZOpen (X, Y);
¬(X,Y same_side q) [] by fol q_line Xp - SameSide_DEF;
¬(A,Y same_side q) [] by fol q_line Xsim_qA vertex_off_line notYpq - SameSideTransitive;
COpen (Y, A) [] by fol q_line m_line pmA Distinct - EquivIntersectionB1';
fol H1 Ylm off_l - IntervalRayEZ RaySameSide;
end;
qed;
`;;
let LineUnionOf2Rays = theorem `;
A O B l. Line l ∧ A ∈ l ∧ B ∈ l ⇒ OOpen (A, B)
⇒ l = ray O A ∪ ray O B
proof
intro_TAC ∀A O B l, H1, H2;
¬(A = O) ∧ ¬(O = B) ∧ O ∈ l [Distinct] by fol H2 B1' H1 BetweenLinear;
ray O A ∪ ray O B ⊂ l [AOBsub_l] by fol H1 - RayLine UNION_SUBSET;
X. X ∈ l ⇒ X ∈ ray O AX ∈ ray O B []
proof
intro_TAC ∀X, Xl;
assume ¬(X ∈ ray O B) [notXrOB] by fol;
Collinear O B XCollinear X A BCollinear O A X [XABcol] by fol Distinct H1 Xl Collinear_DEF;
OOpen (X, B) [] by fol notXrOB Distinct - IN_Ray ∉;
OOpen (X, A) [] by fol ∉ B1' XABcol - H2 Interval2sides2aLine;
fol Distinct XABcol - IN_Ray;
qed;
l ⊂ ray O A ∪ ray O B [] by fol - IN_UNION SUBSET;
fol - AOBsub_l SUBSET_ANTISYM;
qed;
`;;
let AtMost2Sides = theorem `;
A B C l. Line l ⇒ A ∉ l ∧ B ∉ l ∧ C ∉ l
A,B same_side l ∨ A,C same_side l ∨ B,C same_side l
proof
intro_TAC ∀A B C l, l_line, H2;
assume ¬(A = C) [notAC] by fol l_line H2 SameSideReflexive;
assume Collinear A B C [ABCcol] by fol l_line H2 TwosidesTriangle2aLine;
consider m such that
Line m ∧ A ∈ m ∧ B ∈ m ∧ C ∈ m [m_line] by fol notAC - I1 Collinear_DEF;
assume ¬(m ∩ l = ∅) [m_lNot0] by fol m_line l_line BetweenLinear SameSide_DEF IN_INTER NOT_IN_EMPTY;
consider X such that
X ∈ l ∧ X ∈ m [Xlm] by fol - IN_INTER MEMBER_NOT_EMPTY;
A ∈ m ━ {X} ∧ B ∈ m ━ {X} ∧ C ∈ m ━ {X} [ABCm_X] by fol m_line - H2IN_DIFF IN_SING;
XOpen (A, B) ∨ XOpen (A, C) ∨ XOpen (B, C) [] by fol ABCcol Interval2sides2aLine;
fol l_line m_line m_line Xlm H2I1Uniqueness ABCm_X - EquivIntersection;
qed;
`;;
let FourPointsOrder = theorem `;
A B C X l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ X ∈ l ⇒
¬(X = A) ∧ ¬(X = B) ∧ ¬(X = C) ⇒ BOpen (A, C)
⇒ ordered X A B C ∨ ordered A X B C
ordered A B X C ∨ ordered A B C X
proof
intro_TAC ∀A B C X l, H1, H2, H3;
AOpen (X, B) ∨ XOpen (A, B) ∨ XOpen (B, C) ∨ COpen (B, X) []
proof
¬(A = B) ∧ ¬(B = C) [ABCdistinct] by fol H3 B1';
Collinear A B XCollinear A C XCollinear C B X [ACXcol] by fol H1 Collinear_DEF;
AOpen (X, B) ∨ XOpen (A, B) ∨ BOpen (A, X) [3pos] by fol H2 ABCdistinct - B3' B1';
assume BOpen (A, X) [ABX] by fol 3pos;
BOpen (C, X) [] by fol ACXcol H3 - Interval2sides2aLine ∉;
fol H2 ABCdistinct ACXcol - B3' B1' ∉;
qed;
fol - H3 B1' TransitivityBetweenness TransitivityBetweennessVariant Reverse4Order;
qed;
`;;
let HilbertAxiomRedundantByMoore = theorem `;
A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l ∧ D ∈ l ⇒
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D)
⇒ ordered D A B C ∨ ordered A D B C ∨ ordered A B D C ∨ ordered A B C D
ordered D A C B ∨ ordered A D C B ∨ ordered A C D B ∨ ordered A C B D
ordered D C A B ∨ ordered C D A B ∨ ordered C A D B ∨ ordered C A B D
proof
intro_TAC ∀A B C D l, H1, H2;
Collinear A B C [] by fol H1 Collinear_DEF;
BOpen (A, C) ∨ COpen (A, B) ∨ AOpen (C, B) [] by fol H2 - B3' B1';
fol - H1 H2 FourPointsOrder;
qed;
`;;
let InteriorTransitivity = theorem `;
A O B M G. G ∈ int_angle A O BM ∈ int_angle A O G
M ∈ int_angle A O B
proof
intro_TAC ∀A O B M G, GintAOB MintAOG;
¬Collinear A O B [AOBncol] by fol GintAOB IN_InteriorAngle;
consider G' such that
G'Open (A, B) ∧ G' ∈ ray O G ━ {O} [CrossG] by fol GintAOB Crossbar_THM;
M ∈ int_angle A O G' [] by fol MintAOG - InteriorWellDefined;
consider M' such that
M'Open (A, G') ∧ M' ∈ ray O M ━ {O} [CrossM] by fol - Crossbar_THM;
¬(M' = O) ∧ ¬(M = O) ∧ Collinear O M M'OOpen (M', M) [] by fol - IN_Ray IN_DIFF IN_SING;
M ∈ ray O M' ━ {O} [MrOM'] by fol - CollinearSymmetry B1'IN_Ray IN_DIFF IN_SING;
Open (A, G') ⊂ Open (A, B) ∧ M'Open (A, B) [] by fol CrossG IntervalsAreConvex CrossM SUBSET;
M' ∈ int_angle A O B [] by fol AOBncol - ConverseCrossbar;
fol - MrOM' WholeRayInterior;
qed;
`;;
let HalfPlaneConvexNonempty = theorem `;
∀l H A. Line l ∧ A ∉ l ⇒ H = {X | X ∉ l ∧ X,A same_side l}
⇒ ¬(H = ∅) ∧ H ⊂ complement l ∧ Convex H
proof
intro_TAC ∀l H A, l_line, HalfPlane;
X. XHX ∉ l ∧ X,A same_side l [Hdef] by simplify HalfPlane IN_ELIM_THM;
H ⊂ complement l [Hsub] by fol - IN_PlaneComplement SUBSET;
A,A same_side l ∧ AH [] by fol l_line SameSideReflexive Hdef;
¬(H = ∅) [Hnonempty] by fol - MEMBER_NOT_EMPTY;
P Q X. PHQHXOpen (P, Q) ⇒ XH []
proof
intro_TAC ∀P Q X, PXQ;
P ∉ l ∧ P,A same_side l ∧ Q ∉ l ∧ Q,A same_side l [PQinH] by fol - Hdef;
P,Q same_side l [Psim_lQ] by fol l_line - SameSideSymmetric SameSideTransitive;
X ∉ l [notXl] by fol - PXQ SameSide_DEF ∉;
Open (X, P) ⊂ Open (P, Q) [] by fol PXQ IntervalsAreConvex B1' SUBSET;
X,P same_side l [] by fol l_line - SUBSET Psim_lQ SameSide_DEF;
X,A same_side l [] by fol l_line notXl PQinH - Psim_lQ PQinH SameSideTransitive;
fol - notXl Hdef;
qed;
fol Hnonempty Hsub - SUBSET CONVEX;
qed;
`;;
let PlaneSeparation = theorem `;
∀l. Line l
⇒ ∃H1 H2. H1H2 = ∅ ∧ ¬(H1 = ∅) ∧ ¬(H2 = ∅) ∧
Convex H1Convex H2 ∧ complement l = H1H2
P Q. PH1QH2 ⇒ ¬(P,Q same_side l)
proof
intro_TAC ∀l, l_line;
consider A such that
A ∉ l [notAl] by fol l_line ExistsPointOffLine;
consider E such that
E ∈ l ∧ ¬(A = E) [El] by fol l_line I2 - ∉;
consider B such that
EOpen (A, B) ∧ ¬(E = B) ∧ Collinear A E B [AEB] by fol - B2' B1';
B ∉ l [notBl] by fol - l_line El ∉ notAl NonCollinearRaa CollinearSymmetry;
¬(A,B same_side l) [Ansim_lB] by fol l_line El AEB SameSide_DEF;
consider H1 H2 such that
H1 = {X | X ∉ l ∧ X,A same_side l} ∧
H2 = {X | X ∉ l ∧ X,B same_side l} [H12sets] by fol;
X. (XH1X ∉ l ∧ X,A same_side l) ∧
(XH2X ∉ l ∧ X,B same_side l) [H12def] by simplify IN_ELIM_THM -;
H1H2 = ∅ [H12disjoint]
proof
assume ¬(H1H2 = ∅) [nonempty] by fol;
consider V such that
VH1VH2 [VinH12] by fol - MEMBER_NOT_EMPTY IN_INTER;
V ∉ l ∧ V,A same_side l ∧ V ∉ l ∧ V,B same_side l [] by fol - H12def;
A,B same_side l [] by fol l_line - notAl notBl SameSideSymmetric SameSideTransitive;
fol - Ansim_lB;
qed;
¬(H1 = ∅) ∧ ¬(H2 = ∅) ∧ H1 ⊂ complement l ∧ H2 ⊂ complement l ∧
Convex H1Convex H2 [H12convex_nonempty] by fol l_line notAl notBl H12sets HalfPlaneConvexNonempty;
H1H2 ⊂ complement l [H12sub] by fol H12convex_nonempty UNION_SUBSET;
C. C ∈ complement l ⇒ CH1H2 []
proof
intro_TAC ∀C, compl;
C ∉ l [notCl] by fol - IN_PlaneComplement;
C,A same_side l ∨ C,B same_side l [] by fol l_line notAl notBl - Ansim_lB AtMost2Sides;
fol notCl - H12def IN_UNION;
qed;
complement l ⊂ H1H2 [] by fol - SUBSET;
complement l = H1H2 [compl_H1unionH2] by fol H12sub - SUBSET_ANTISYM;
P Q. PH1QH2 ⇒ ¬(P,Q same_side l) [opp_sides]
proof
intro_TAC ∀P Q, both;
P ∉ l ∧ P,A same_side l ∧ Q ∉ l ∧ Q,B same_side l [PH1_QH2] by fol - H12def IN;
fol l_line - notAl SameSideSymmetric notBl Ansim_lB SameSideTransitive;
qed;
fol H12disjoint H12convex_nonempty compl_H1unionH2 opp_sides;
qed;
`;;
let TetralateralSymmetry = theorem `;
A B C D. Tetralateral A B C D
Tetralateral B C D ATetralateral A B D C
proof
intro_TAC ∀A B C D, H1;
¬Collinear A B D ∧ ¬Collinear B D C ∧ ¬Collinear D C A ∧ ¬Collinear C A B [TetraABCD] by fol H1 Tetralateral_DEF CollinearSymmetry;
simplify H1 - Tetralateral_DEF;
fol H1 Tetralateral_DEF;
qed;
`;;
let EasyEmptyIntersectionsTetralateralHelp = theorem `;
A B C D. Tetralateral A B C DOpen (A, B) ∩ Open (B, C) = ∅
proof
intro_TAC ∀A B C D, H1;
X. XOpen (B, C) ⇒ XOpen (A, B) []
proof
intro_TAC ∀X, BXC;
¬Collinear A B CCollinear B X C ∧ ¬(X = B) [] by fol H1 Tetralateral_DEF - B1';
¬Collinear A X B [] by fol - CollinearSymmetry B1' NoncollinearityExtendsToLine;
fol - B1' ∉;
qed;
fol - DisjointOneNotOther;
qed;
`;;
let EasyEmptyIntersectionsTetralateral = theorem `;
A B C D. Tetralateral A B C D
Open (A, B) ∩ Open (B, C) = ∅ ∧ Open (B, C) ∩ Open (C, D) = ∅ ∧
Open (C, D) ∩ Open (D, A) = ∅ ∧ Open (D, A) ∩ Open (A, B) = ∅
proof
intro_TAC ∀A B C D, H1;
Tetralateral B C D ATetralateral C D A BTetralateral D A B C [] by fol H1 TetralateralSymmetry;
fol H1 - EasyEmptyIntersectionsTetralateralHelp;
qed;
`;;
let SegmentSameSideOppositeLine = theorem `;
A B C D a c. Quadrilateral A B C D
Line a ∧ A ∈ a ∧ B ∈ a ⇒ Line c ∧ C ∈ c ∧ D ∈ c
A,B same_side c ∨ C,D same_side a
proof
intro_TAC ∀A B C D a c, H1, a_line, c_line;
assume ¬(C,D same_side a) [CDnsim_a] by fol;
consider G such that
G ∈ a ∧ GOpen (C, D) [CGD] by fol - a_line SameSide_DEF;
G ∈ c ∧ Collinear G B A [Gc] by fol c_line - BetweenLinear a_line Collinear_DEF;
¬Collinear B C D ∧ ¬Collinear C D AOpen (A, B) ∩ Open (C, D) = ∅ [quadABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF;
A ∉ c ∧ B ∉ c ∧ ¬(A = G) ∧ ¬(B = G) [Distinct] by fol - c_line Collinear_DEFGc;
GOpen (A, B) [] by fol quadABCD CGD DisjointOneNotOther;
A ∈ ray G B ━ {G} [] by fol Distinct Gc - IN_Ray IN_DIFF IN_SING;
fol c_line Gc Distinct - RaySameSide;
qed;
`;;
let ConvexImpliesQuad = theorem `;
A B C D. Tetralateral A B C D
C ∈ int_angle D A BD ∈ int_angle A B C
Quadrilateral A B C D
proof
intro_TAC ∀A B C D, H1, H2;
¬(A = B) ∧ ¬(B = C) ∧ ¬(A = D) [TetraABCD] by fol H1 Tetralateral_DEF;
consider a such that
Line a ∧ A ∈ a ∧ B ∈ a [a_line] by fol TetraABCD I1;
consider b such that
Line b ∧ B ∈ b ∧ C ∈ b [b_line] by fol TetraABCD I1;
consider d such that
Line d ∧ D ∈ d ∧ A ∈ d [d_line] by fol TetraABCD I1;
Open (B, C) ⊂ b ∧ Open (A, B) ⊂ a [BCbABa] by fol b_line a_line BetweenLinear SUBSET;
D,A same_side b ∧ C,D same_side a [] by fol H2 a_line b_line d_line InteriorUse;
b ∩ Open (D, A) = ∅ ∧ a ∩ Open (C, D) = ∅ [] by fol - b_line SameSide_DEF IN_INTER MEMBER_NOT_EMPTY;
fol H1 BCbABa - INTER_TENSOR SUBSET_REFL SUBSET_EMPTY Quadrilateral_DEF;
qed;
`;;
let DiagonalsIntersectImpliesConvexQuad = theorem `;
A B C D G. ¬Collinear B C D
GOpen (A, C) ∧ GOpen (B, D)
ConvexQuadrilateral A B C D
proof
intro_TAC ∀A B C D G, BCDncol, DiagInt;
¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧ ¬(C = A) ∧ ¬(A = G) ∧ ¬(D = G) ∧ ¬(B = G) [Distinct] by fol BCDncol NonCollinearImpliesDistinct DiagInt B1';
Collinear A G CCollinear B G D [Gcols] by fol DiagInt B1';
¬Collinear C D G ∧ ¬Collinear B C G [Gncols] by fol BCDncol CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine;
¬Collinear C D A [CDAncol] by fol - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine;
¬Collinear A B C ∧ ¬Collinear D A G [ABCncol] by fol Gncols - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine;
¬Collinear D A B [DABncol] by fol - CollinearSymmetry Distinct Gcols NoncollinearityExtendsToLine;
¬(A = B) ∧ ¬(A = D) [] by fol DABncol NonCollinearImpliesDistinct;
Tetralateral A B C D [TetraABCD] by fol Distinct - BCDncol CDAncol DABncol ABCncol Tetralateral_DEF;
A ∈ ray C G ━ {C} ∧ B ∈ ray D G ━ {D} ∧ C ∈ ray A G ━ {A} ∧ D ∈ ray B G ━ {B} [ArCG] by fol DiagInt B1' IntervalRayEZ;
G ∈ int_angle B C DG ∈ int_angle C D AG ∈ int_angle D A BG ∈ int_angle A B C [] by fol BCDncol CDAncol DABncol ABCncol DiagInt B1' ConverseCrossbar;
A ∈ int_angle B C DB ∈ int_angle C D AC ∈ int_angle D A BD ∈ int_angle A B C [] by fol - ArCG WholeRayInterior;
fol TetraABCD - ConvexImpliesQuad ConvexQuad_DEF;
qed;
`;;
let DoubleNotSimImpliesDiagonalsIntersect = theorem `;
A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ⇒ Line m ∧ B ∈ m ∧ D ∈ m ⇒
Tetralateral A B C D ⇒ ¬(B,D same_side l) ⇒ ¬(A,C same_side m)
⇒ (∃G. GOpen (A, C) ∩ Open (B, D)) ∧ ConvexQuadrilateral A B C D
proof
intro_TAC ∀A B C D l m, l_line, m_line, H1, H2, H3;
¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF;
consider G such that
GOpen (A, C) ∧ G ∈ m [AGC] by fol H3 m_line SameSide_DEF;
G ∈ l [Gl] by fol l_line - BetweenLinear;
A ∉ m ∧ B ∉ l ∧ D ∉ l [] by fol TetraABCD m_line l_line Collinear_DEF ∉;
¬(l = m) ∧ B ∈ m ━ {G} ∧ D ∈ m ━ {G} [BDm_G] by fol - l_line ∉ m_line Gl IN_DIFF IN_SING;
l ∩ m = {G} [] by fol l_line m_line - Gl AGC I1Uniqueness;
GOpen (B, D) [] by fol l_line m_line - BDm_G H2 EquivIntersection ∉;
fol AGC - IN_INTER TetraABCD DiagonalsIntersectImpliesConvexQuad;
qed;
`;;
let ConvexQuadImpliesDiagonalsIntersect = theorem `;
A B C D l m. Line l ∧ A ∈ l ∧ C ∈ l ⇒ Line m ∧ B ∈ m ∧ D ∈ m ⇒
ConvexQuadrilateral A B C D
⇒ ¬(B,D same_side l) ∧ ¬(A,C same_side m) ∧
(∃G. GOpen (A, C) ∩ Open (B, D)) ∧ ¬Quadrilateral A B D C
proof
intro_TAC ∀A B C D l m, l_line, m_line, ConvQuadABCD;
Tetralateral A B C DA ∈ int_angle B C DD ∈ int_angle A B C [convquadABCD] by fol ConvQuadABCD ConvexQuad_DEF Quadrilateral_DEF;
¬(B,D same_side l) ∧ ¬(A,C same_side m) [opp_sides] by fol convquadABCD l_line m_line InteriorOpposite;
consider G such that
GOpen (A, C) ∩ Open (B, D) [Gexists] by fol l_line m_line convquadABCD opp_sides DoubleNotSimImpliesDiagonalsIntersect;
¬(Open (B, D) ∩ Open (C, A) = ∅) [] by fol - IN_INTER B1' MEMBER_NOT_EMPTY;
¬Quadrilateral A B D C [] by fol - Quadrilateral_DEF;
fol opp_sides Gexists -;
qed;
`;;
let FourChoicesTetralateralHelp = theorem `;
A B C D. Tetralateral A B C DC ∈ int_angle D A B
ConvexQuadrilateral A B C DC ∈ int_triangle D A B
proof
intro_TAC ∀A B C D, H1 CintDAB;
¬(A = B) ∧ ¬(D = A) ∧ ¬(A = C) ∧ ¬(B = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF;
consider a d such that
Line a ∧ A ∈ a ∧ B ∈ a ∧
Line d ∧ D ∈ d ∧ A ∈ d [ad_line] by fol TetraABCD I1;
consider l m such that
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1;
C ∉ a ∧ C ∉ d ∧ B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m ∧ ¬Collinear A B D ∧ ¬Collinear B D A [tetra'] by fol TetraABCD ad_line lm_line Collinear_DEFCollinearSymmetry;
¬(B,D same_side l) [Bsim_lD] by fol CintDAB lm_line InteriorOpposite - SameSideSymmetric;
assume A,C same_side m [same] by fol lm_line H1 Bsim_lD DoubleNotSimImpliesDiagonalsIntersect;
C,A same_side m [Csim_mA] by fol lm_line - tetra' SameSideSymmetric;
C,B same_side d ∧ C,D same_side a [] by fol ad_line CintDAB InteriorUse;
C ∈ int_angle A B DC ∈ int_angle B D A [] by fol tetra' ad_line lm_line Csim_mA - IN_InteriorAngle;
fol CintDAB - IN_InteriorTriangle;
qed;
`;;
let FourChoicesTetralateralHelp = theorem `;
A B C D. Tetralateral A B C DC ∈ int_angle D A B
ConvexQuadrilateral A B C DC ∈ int_triangle D A B
proof
intro_TAC ∀A B C D, H1 CintDAB;
¬(A = B) ∧ ¬(D = A) ∧ ¬(A = C) ∧ ¬(B = D) ∧ ¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Tetralateral_DEF;
consider a d such that
Line a ∧ A ∈ a ∧ B ∈ a ∧
Line d ∧ D ∈ d ∧ A ∈ d [ad_line] by fol TetraABCD I1;
consider l m such that
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1;
C ∉ a ∧ C ∉ d ∧ B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m ∧ ¬Collinear A B D ∧ ¬Collinear B D A [tetra'] by fol TetraABCD ad_line lm_line Collinear_DEFCollinearSymmetry;
¬(B,D same_side l) [Bsim_lD] by fol CintDAB lm_line InteriorOpposite - SameSideSymmetric;
assume A,C same_side m [same] by fol lm_line H1 Bsim_lD DoubleNotSimImpliesDiagonalsIntersect;
C,A same_side m [Csim_mA] by fol lm_line - tetra' SameSideSymmetric;
C,B same_side d ∧ C,D same_side a [] by fol ad_line CintDAB InteriorUse;
C ∈ int_angle A B DC ∈ int_angle B D A [] by fol tetra' ad_line lm_line Csim_mA - IN_InteriorAngle;
fol CintDAB - IN_InteriorTriangle;
qed;
`;;
let InteriorTriangleSymmetry = theorem `;
A B C P. P ∈ int_triangle A B CP ∈ int_triangle B C A
by fol IN_InteriorTriangle`;;
let FourChoicesTetralateral = theorem `;
A B C D a. Tetralateral A B C D
Line a ∧ A ∈ a ∧ B ∈ a ⇒ C,D same_side a
ConvexQuadrilateral A B C DConvexQuadrilateral A B D C
D ∈ int_triangle A B CC ∈ int_triangle D A B
proof
intro_TAC ∀A B C D a, H1, a_line, Csim_aD;
¬(A = B) ∧ ¬Collinear A B C ∧ ¬Collinear C D A ∧ ¬Collinear D A BTetralateral A B D C [TetraABCD] by fol H1 Tetralateral_DEF TetralateralSymmetry;
¬Collinear C A DC ∉ a ∧ D ∉ a [notCDa] by fol TetraABCD CollinearSymmetry a_line Collinear_DEF ∉;
C ∈ int_angle D A BD ∈ int_angle C A B [] by fol TetraABCD a_line - Csim_aD AngleOrdering;
case_split CintDAB | DintCAB by fol -;
suppose C ∈ int_angle D A B;
ConvexQuadrilateral A B C DC ∈ int_triangle D A B [] by fol H1 - FourChoicesTetralateralHelp;
fol -;
end;
suppose D ∈ int_angle C A B;
ConvexQuadrilateral A B D CD ∈ int_triangle C A B [] by fol TetraABCD - FourChoicesTetralateralHelp;
fol - InteriorTriangleSymmetry;
end;
qed;
`;;
let QuadrilateralSymmetry = theorem `;
A B C D. Quadrilateral A B C D
Quadrilateral B C D AQuadrilateral C D A BQuadrilateral D A B C
by fol Quadrilateral_DEF INTER_COMM TetralateralSymmetry Quadrilateral_DEF`;;
let FiveChoicesQuadrilateral = theorem `;
A B C D l m. Quadrilateral A B C D
Line l ∧ A ∈ l ∧ C ∈ l ∧ Line m ∧ B ∈ m ∧ D ∈ m
⇒ (ConvexQuadrilateral A B C DA ∈ int_triangle B C D
B ∈ int_triangle C D AC ∈ int_triangle D A B
D ∈ int_triangle A B C) ∧
(¬(B,D same_side l) ∨ ¬(A,C same_side m))
proof
intro_TAC ∀A B C D l m, H1, lm_line;
Tetralateral A B C D [H1Tetra] by fol H1 Quadrilateral_DEF;
¬(A = B) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(C = D) [Distinct] by fol H1Tetra Tetralateral_DEF;
consider a c such that
Line a ∧ A ∈ a ∧ B ∈ a ∧
Line c ∧ C ∈ c ∧ D ∈ c [ac_line] by fol Distinct I1;
Quadrilateral C D A BTetralateral C D A B [tetraCDAB] by fol H1 QuadrilateralSymmetry Quadrilateral_DEF;
¬ConvexQuadrilateral A B D C ∧ ¬ConvexQuadrilateral C D B A [notconvquad] by fol Distinct I1 H1 - ConvexQuadImpliesDiagonalsIntersect;
ConvexQuadrilateral A B C DA ∈ int_triangle B C D
B ∈ int_triangle C D AC ∈ int_triangle D A B
D ∈ int_triangle A B C [5choices]
proof
A,B same_side c ∨ C,D same_side a [2pos] by fol H1 ac_line SegmentSameSideOppositeLine;
assume A,B same_side c [Asym_cB] by fol 2pos H1Tetra ac_line notconvquad FourChoicesTetralateral;
ConvexQuadrilateral C D A BB ∈ int_triangle C D A
A ∈ int_triangle B C D [X1] by fol tetraCDAB ac_line - notconvquad FourChoicesTetralateral;
fol - QuadrilateralSymmetry ConvexQuad_DEF;
qed;
¬(B,D same_side l) ∨ ¬(A,C same_side m) [] by fol - lm_line ConvexQuadImpliesDiagonalsIntersect IN_InteriorTriangle InteriorAngleSymmetry InteriorOpposite;
fol 5choices -;
qed;
`;;
let IntervalSymmetry = theorem `;
A B. Open (A, B) = Open (B, A)
by fol B1' EXTENSION`;;
let SegmentSymmetry = theorem `;
A B. seg A B = seg B A
by fol Segment_DEF INSERT_COMM IntervalSymmetry`;;
let C1OppositeRay = theorem `;
O P s. Segment s ∧ ¬(O = P) ⇒ ∃Q. POpen (O, Q) ∧ seg P Q ≡ s
proof
intro_TAC ∀O P s, H1;
consider Z such that
POpen (O, Z) ∧ ¬(P = Z) [OPZ] by fol H1 B2' B1';
consider Q such that
Q ∈ ray P Z ━ {P} ∧ seg P Q ≡ s [PQeq] by fol H1 - C1;
POpen (Q, O) [] by fol OPZ - OppositeRaysIntersect1pointHelp;
fol - B1' PQeq;
qed;
`;;
let OrderedCongruentSegments = theorem `;
A B C D G. ¬(A = C) ∧ ¬(D = G) ⇒ seg A C ≡ seg D GBOpen (A, C)
⇒ ∃E. EOpen (D, G) ∧ seg A B ≡ seg D E
proof
intro_TAC ∀A B C D G, H1, H2, H3;
Segment (seg A B) ∧ Segment (seg A C) ∧ Segment (seg B C) ∧ Segment (seg D G) [segs] by fol H3 B1' H1 SEGMENT;
seg D G ≡ seg A C [DGeqAC] by fol - H2 C2Symmetric;
consider E such that
E ∈ ray D G ━ {D} ∧ seg D E ≡ seg A B [DEeqAB] by fol segs H1 C1;
¬(E = D) ∧ Collinear D E GDOpen (G, E) [ErDG] by fol - IN_DIFF IN_SING IN_Ray B1' CollinearSymmetry ∉;
consider G' such that
EOpen (D, G') ∧ seg E G' ≡ seg B C [DEG'] by fol segs - C1OppositeRay;
seg D G' ≡ seg A C [DG'eqAC] by fol DEG' H3 DEeqAB C3;
Segment (seg D G') ∧ Segment (seg D E) [] by fol DEG' B1' SEGMENT;
seg A C ≡ seg D G' ∧ seg A B ≡ seg D E [ABeqDE] by fol segs - DG'eqAC C2Symmetric DEeqAB;
G' ∈ ray D E ━ {D} ∧ G ∈ ray D E ━ {D} [] by fol DEG' IntervalRayEZ ErDG IN_Ray H1 IN_DIFF IN_SING;
G' = G [] by fol ErDG segs - DG'eqAC DGeqAC C1;
fol - DEG' ABeqDE;
qed;
`;;
let SegmentSubtraction = theorem `;
A B C A' B' C'. BOpen (A, C) ∧ B'Open (A', C') ⇒
seg A B ≡ seg A' B' ⇒ seg A C ≡ seg A' C'
⇒ seg B C ≡ seg B' C'
proof
intro_TAC ∀A B C A' B' C', H1, H2, H3;
¬(A = B) ∧ ¬(A = C) ∧ Collinear A B CSegment (seg A' C') ∧ Segment (seg B' C') [Distinct] by fol H1 B1' SEGMENT;
consider Q such that
BOpen (A, Q) ∧ seg B Q ≡ seg B' C' [defQ] by fol - C1OppositeRay;
seg A Q ≡ seg A' C' [AQ_A'C'] by fol H1 H2 - C3;
¬(A = Q) ∧ Collinear A B QAOpen (C, B) ∧ AOpen (Q, B) []
proof simplify defQ B1' ∉; fol defQ B1' H1 B3'; qed;
C ∈ ray A B ━ {A} ∧ Q ∈ ray A B ━ {A} [] by fol Distinct - IN_Ray IN_DIFF IN_SING;
fol defQ Distinct - AQ_A'C' H3 C1;
qed;
`;;
let SegmentOrderingUse = theorem `;
A B s. Segment s ∧ ¬(A = B) ⇒ s <__ seg A B
⇒ ∃G. GOpen (A, B) ∧ s ≡ seg A G
proof
intro_TAC ∀A B s, H1, H2;
consider A' B' G' such that
seg A B = seg A' B'G'Open (A', B') ∧ s ≡ seg A' G' [H2'] by fol H2 SegmentOrdering_DEF;
¬(A' = G') ∧ ¬(A' = B') ∧ seg A' B' ≡ seg A B [A'notB'G'] by fol - B1' H1 SEGMENT C2Reflexive;
consider G such that
GOpen (A, B) ∧ seg A' G' ≡ seg A G [AGB] by fol A'notB'G' H1 H2' - OrderedCongruentSegments;
s ≡ seg A G [] by fol H1 A'notB'G' - B1' SEGMENT H2' C2Transitive;
fol AGB -;
qed;
`;;
let SegmentTrichotomy1 = theorem `;
∀s t. s <__ t ⇒ ¬(s ≡ t)
proof
intro_TAC ∀s t, H1;
consider A B G such that
Segment s ∧ t = seg A BGOpen (A, B) ∧ s ≡ seg A G [H1'] by fol H1 SegmentOrdering_DEF;
¬(A = G) ∧ ¬(A = B) ∧ ¬(G = B) [Distinct] by fol H1' B1';
seg A B ≡ seg A B [ABrefl] by fol - SEGMENT C2Reflexive;
G ∈ ray A B ━ {A} ∧ B ∈ ray A B ━ {A} [] by fol H1' IntervalRay EndpointInRay Distinct IN_DIFF IN_SING;
¬(seg A G ≡ seg A B) ∧ seg A G ≡ s [] by fol Distinct SEGMENT - ABrefl C1 H1' C2Symmetric;
fol Distinct H1' SEGMENT - C2Transitive;
qed;
`;;
let SegmentTrichotomy2 = theorem `;
∀s t u. s <__ t ∧ Segment u ∧ t ≡ u ⇒ s <__ u
proof
intro_TAC ∀s t u, H1 H2;
consider A B P such that
Segment s ∧ t = seg A BPOpen (A, B) ∧ s ≡ seg A P [H1'] by fol H1 SegmentOrdering_DEF;
¬(A = B) ∧ ¬(A = P) [Distinct] by fol - B1';
consider X Y such that
u = seg X Y ∧ ¬(X = Y) [uXY] by fol H2 SEGMENT;
consider Q such that
QOpen (X, Y) ∧ seg A P ≡ seg X Q [XQY] by fol Distinct - H1' H2 OrderedCongruentSegments;
¬(X = Q) ∧ s ≡ seg X Q [] by fol - B1' H1' Distinct SEGMENT XQY C2Transitive;
fol H1' uXY XQY - SegmentOrdering_DEF;
qed;
`;;
let SegmentOrderTransitivity = theorem `;
∀s t u. s <__ t ∧ t <__ u ⇒ s <__ u
proof
intro_TAC ∀s t u, H1;
consider A B G such that
u = seg A BGOpen (A, B) ∧ t ≡ seg A G [H1'] by fol H1 SegmentOrdering_DEF;
¬(A = B) ∧ ¬(A = G) ∧ Segment s [Distinct] by fol H1' B1' H1 SegmentOrdering_DEF;
s <__ seg A G [] by fol H1 H1' Distinct SEGMENT SegmentTrichotomy2;
consider F such that
FOpen (A, G) ∧ s ≡ seg A F [AFG] by fol Distinct - SegmentOrderingUse;
FOpen (A, B) [] by fol H1' IntervalsAreConvex - SUBSET;
fol Distinct H1' - AFG SegmentOrdering_DEF;
qed;
`;;
let SegmentTrichotomy = theorem `;
∀s t. Segment s ∧ Segment t
⇒ (s ≡ t ∨ s <__ t ∨ t <__ s) ∧ ¬(s ≡ t ∧ s <__ t) ∧
¬(s ≡ t ∧ t <__ s) ∧ ¬(s <__ t ∧ t <__ s)
proof
intro_TAC ∀s t, H1;
¬(s ≡ t ∧ s <__ t) [Not12] by fol - SegmentTrichotomy1;
¬(s ≡ t ∧ t <__ s) [Not13] by fol H1 - SegmentTrichotomy1 C2Symmetric;
¬(s <__ t ∧ t <__ s) [Not23] by fol H1 - SegmentOrderTransitivity SegmentTrichotomy1 H1 C2Reflexive;
consider O P such that
s = seg O P ∧ ¬(O = P) [sOP] by fol H1 SEGMENT;
consider Q such that
Q ∈ ray O P ━ {O} ∧ seg O Q ≡ t [QrOP] by fol H1 - C1;
OOpen (Q, P) ∧ Collinear O P Q ∧ ¬(O = Q) [notQOP] by fol - IN_DIFF IN_SING IN_Ray;
s ≡ seg O P ∧ t ≡ seg O Q ∧ seg O Q ≡ t ∧ seg O P ≡ s [stOPQ] by fol H1 sOP - SEGMENT QrOP C2Reflexive C2Symmetric;
assume ¬(Q = P) [notQP] by fol stOPQ sOP QrOP Not12 Not13 Not23;
POpen (O, Q) ∨ QOpen (O, P) [] by fol sOP - notQOP B3' B1' ∉;
s <__ seg O Q ∨ t <__ seg O P [] by fol H1 - stOPQ SegmentOrdering_DEF;
s <__ t ∨ t <__ s [] by fol - H1 stOPQ SegmentTrichotomy2;
fol - Not12 Not13 Not23;
qed;
`;;
let C4Uniqueness = theorem `;
O A B P l. Line l ∧ O ∈ l ∧ A ∈ l ∧ ¬(O = A) ⇒
B ∉ l ∧ P ∉ l ∧ P,B same_side l ⇒ ∡ A O P ≡ ∡ A O B
⇒ ray O B = ray O P
proof
intro_TAC ∀O A B P l, H1, H2, H3;
¬(O = B) ∧ ¬(O = P) ∧ Ray (ray O B) ∧ Ray (ray O P) [Distinct] by fol H2 H1RAY;
¬Collinear A O BB,B same_side l [Bsim_lB] by fol H1 H2 I1 Collinear_DEFSameSideReflexive;
Angle (∡ A O B) ∧ ∡ A O B ≡ ∡ A O B [] by fol - ANGLE C5Reflexive;
fol - H1 H2 Distinct Bsim_lB H3 C4;
qed;
`;;
let AngleSymmetry = theorem `;
A O B. ∡ A O B = ∡ B O A
by fol Angle_DEF UNION_COMM`;;
let TriangleCongSymmetry = theorem `;
A B C A' B' C'. A,B,CA',B',C'
A,C,BA',C',B'B,A,CB',A',C'
B,C,AB',C',A'C,A,BC',A',B'C,B,AC',B',A'
proof
intro_TAC ∀A B C A' B' C', H1;
¬Collinear A B C ∧ ¬Collinear A' B' C'
seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C'
A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ∧ ∡ C A B ≡ ∡ C' A' B' [H1'] by fol H1 TriangleCong_DEF;
seg B A ≡ seg B' A' ∧ seg C A ≡ seg C' A' ∧ seg C B ≡ seg C' B' [segments] by fol H1' SegmentSymmetry;
C B A ≡ ∡ C' B' A' ∧ ∡ A C B ≡ ∡ A' C' B' ∧ ∡ B A C ≡ ∡ B' A' C' [] by fol H1' AngleSymmetry;
fol CollinearSymmetry H1' segments - TriangleCong_DEF;
qed;
`;;
let SAS = theorem `;
A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C'
seg B A ≡ seg B' A' ∧ seg B C ≡ seg B' C' ⇒ ∡ A B C ≡ ∡ A' B' C'
A,B,CA',B',C'
proof
intro_TAC ∀A B C A' B' C', H1, H2, H3;
¬(A = B) ∧ ¬(A = C) ∧ ¬(A' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider c such that
Line c ∧ A ∈ c ∧ B ∈ c [c_line] by fol Distinct I1;
C ∉ c [notCc] by fol H1 c_line Collinear_DEF ∉;
B C A ≡ ∡ B' C' A' [BCAeq] by fol H1 H2 H3 C6;
B A C ≡ ∡ B' A' C' [BACeq] by fol H1 CollinearSymmetry H2 H3 AngleSymmetry C6;
consider Y such that
Y ∈ ray A C ━ {A} ∧ seg A Y ≡ seg A' C' [YrAC] by fol Distinct SEGMENT C1;
Y ∉ c ∧ Y,C same_side c [Ysim_cC] by fol c_line notCc - RaySameSide;
¬Collinear Y A B [YABncol] by fol Distinct c_line - NonCollinearRaa CollinearSymmetry;
ray A Y = ray A C ∧ ∡ Y A B = ∡ C A B [] by fol Distinct YrAC RayWellDefined Angle_DEF;
Y A B ≡ ∡ C' A' B' [] by fol BACeq - AngleSymmetry;
A B Y ≡ ∡ A' B' C' [ABYeq] by fol YABncol H1 CollinearSymmetry H2 SegmentSymmetry YrAC - C6;
Angle (∡ A B C) ∧ Angle (∡ A' B' C') ∧ Angle (∡ A B Y) [] by fol H1 CollinearSymmetry YABncol ANGLE;
A B Y ≡ ∡ A B C [ABYeqABC] by fol - ABYeq - H3 C5Symmetric C5Transitive;
ray B C = ray B Y ∧ ¬(Y = B) ∧ Y ∈ ray B C [] by fol c_line Distinct notCc Ysim_cC ABYeqABC C4Uniqueness ∉ - EndpointInRay;
Collinear B C YCollinear A C Y [ABCYcol] by fol - YrAC IN_DIFF IN_SING IN_Ray;
C = Y [] by fol H1 ABCYcol TwoSidesTriangle1Intersection;
seg A C ≡ seg A' C' [] by fol - YrAC;
fol H1 H2 SegmentSymmetry - H3 BCAeq BACeq AngleSymmetry TriangleCong_DEF;
qed;
`;;
let ASA = theorem `;
A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C'
seg A C ≡ seg A' C' ⇒ ∡ C A B ≡ ∡ C' A' B' ∧ ∡ B C A ≡ ∡ B' C' A'
A,B,CA',B',C'
proof
intro_TAC ∀A B C A' B' C', H1, H2, H3;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬(A' = B') ∧ ¬(A' = C') ∧ ¬(B' = C') ∧
Segment (seg C' B') [Distinct] by fol H1 NonCollinearImpliesDistinct SEGMENT;
consider D such that
D ∈ ray C B ━ {C} ∧ seg C D ≡ seg C' B' ∧ ¬(D = C) [DrCB] by fol - C1 IN_DIFF IN_SING;
Collinear C B D [CBDcol] by fol - IN_DIFF IN_SING IN_Ray;
¬Collinear D C AAngle (∡ C A D) ∧ Angle (∡ C' A' B') ∧ Angle (∡ C A B) [DCAncol] by fol H1 CollinearSymmetry - DrCB NoncollinearityExtendsToLine H1 ANGLE;
consider b such that
Line b ∧ A ∈ b ∧ C ∈ b [b_line] by fol Distinct I1;
B ∉ b ∧ ¬(D = A) [notBb] by fol H1 - Collinear_DEFDCAncol NonCollinearImpliesDistinct;
D ∉ b ∧ D,B same_side b [Dsim_bB] by fol b_line - DrCB RaySameSide;
ray C D = ray C B [] by fol Distinct DrCB RayWellDefined;
D C A ≡ ∡ B' C' A' [] by fol H3 - Angle_DEF;
D,C,AB',C',A' [] by fol DCAncol H1 CollinearSymmetry DrCB H2 SegmentSymmetry - SAS;
C A D ≡ ∡ C' A' B' [] by fol - TriangleCong_DEF;
C A D ≡ ∡ C A B [] by fol DCAncol - H3 C5Symmetric C5Transitive;
ray A B = ray A DD ∈ ray A B [] by fol b_line Distinct notBb Dsim_bB - C4Uniqueness notBb EndpointInRay;
Collinear A B D [ABDcol] by fol - IN_Ray;
D = B [] by fol H1 CBDcol ABDcol CollinearSymmetry TwoSidesTriangle1Intersection;
seg C B ≡ seg C' B' [] by fol - DrCB;
B,C,AB',C',A' [] by fol H1 CollinearSymmetry - H2 SegmentSymmetry H3 SAS;
fol - TriangleCongSymmetry;
qed;
`;;
let AngleSubtraction = theorem `;
A O B A' O' B' G G'. G ∈ int_angle A O BG' ∈ int_angle A' O' B'
A O B ≡ ∡ A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G'
⇒ ∡ G O B ≡ ∡ G' O' B'
proof
intro_TAC ∀A O B A' O' B' G G', H1, H2;
¬Collinear A O B ∧ ¬Collinear A' O' B' [A'O'B'ncol] by fol H1 IN_InteriorAngle;
¬(A = O) ∧ ¬(O = B) ∧ ¬(G = O) ∧ ¬(G' = O') ∧ Segment (seg O' A') ∧ Segment (seg O' B') [Distinct] by fol - NonCollinearImpliesDistinct H1 InteriorEZHelp SEGMENT;
consider X Y such that
X ∈ ray O A ━ {O} ∧ seg O X ≡ seg O' A'Y ∈ ray O B ━ {O} ∧ seg O Y ≡ seg O' B' [XYexists] by fol - C1;
G ∈ int_angle X O Y [GintXOY] by fol H1 XYexists InteriorWellDefined InteriorAngleSymmetry;
consider H H' such that
HOpen (X, Y) ∧ H ∈ ray O G ━ {O} ∧
H'Open (A', B') ∧ H' ∈ ray O' G' ━ {O'} [Hexists] by fol - H1 Crossbar_THM;
H ∈ int_angle X O YH' ∈ int_angle A' O' B' [HintXOY] by fol GintXOY H1 - WholeRayInterior;
ray O X = ray O A ∧ ray O Y = ray O B ∧ ray O H = ray O G ∧ ray O' H' = ray O' G' [Orays] by fol Distinct XYexists Hexists RayWellDefined;
X O Y ≡ ∡ A' O' B' ∧ ∡ X O H ≡ ∡ A' O' H' [H2'] by fol H2 - Angle_DEF;
¬Collinear X O Y [] by fol GintXOY IN_InteriorAngle;
X,O,YA',O',B' [] by fol - A'O'B'ncol H2' XYexists SAS;
seg X Y ≡ seg A' B' ∧ ∡ O Y X ≡ ∡ O' B' A' ∧ ∡ Y X O ≡ ∡ B' A' O' [XOYcong] by fol - TriangleCong_DEF;
¬Collinear O H X ∧ ¬Collinear O' H' A' ∧ ¬Collinear O Y H ∧ ¬Collinear O' B' H' [OHXncol] by fol HintXOY InteriorEZHelp InteriorAngleSymmetry CollinearSymmetry;
ray X H = ray X Y ∧ ray A' H' = ray A' B' ∧ ray Y H = ray Y X ∧ ray B' H' = ray B' A' [Hrays] by fol Hexists B1' IntervalRay;
H X O ≡ ∡ H' A' O' [] by fol XOYcong - Angle_DEF;
O,H,XO',H',A' [] by fol OHXncol XYexists - H2' ASA;
seg X H ≡ seg A' H' [] by fol - TriangleCong_DEF SegmentSymmetry;
seg H Y ≡ seg H' B' [] by fol Hexists XOYcong - SegmentSubtraction;
seg Y O ≡ seg B' O' ∧ seg Y H ≡ seg B' H' [YHeq] by fol XYexists - SegmentSymmetry;
O Y H ≡ ∡ O' B' H' [] by fol XOYcong Hrays Angle_DEF;
O,Y,HO',B',H' [] by fol OHXncol YHeq - SAS;
H O Y ≡ ∡ H' O' B' [] by fol - TriangleCong_DEF;
fol - Orays Angle_DEF;
qed;
`;;
let OrderedCongruentAngles = theorem `;
A O B A' O' B' G. ¬Collinear A' O' B' ∧ ∡ A O B ≡ ∡ A' O' B'G ∈ int_angle A O B
⇒ ∃G'. G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G'
proof
intro_TAC ∀A O B A' O' B' G, H1 H2 H3;
¬Collinear A O B [AOBncol] by fol H3 IN_InteriorAngle;
¬(A = O) ∧ ¬(O = B) ∧ ¬(A' = B') ∧ ¬(O = G) ∧ Segment (seg O' A') ∧ Segment (seg O' B') [Distinct] by fol AOBncol H1 NonCollinearImpliesDistinct H3 InteriorEZHelp SEGMENT;
consider X Y such that
X ∈ ray O A ━ {O} ∧ seg O X ≡ seg O' A'Y ∈ ray O B ━ {O} ∧ seg O Y ≡ seg O' B' [defXY] by fol - C1;
G ∈ int_angle X O Y [GintXOY] by fol H3 - InteriorWellDefined InteriorAngleSymmetry;
¬Collinear X O Y ∧ ¬(X = Y) [XOYncol] by fol - IN_InteriorAngle NonCollinearImpliesDistinct;
consider H such that
HOpen (X, Y) ∧ H ∈ ray O G ━ {O} [defH] by fol GintXOY Crossbar_THM;
ray O X = ray O A ∧ ray O Y = ray O B ∧ ray O H = ray O G [Orays] by fol Distinct defXY - RayWellDefined;
X O Y ≡ ∡ A' O' B' [] by fol H2 - Angle_DEF;
X,O,YA',O',B' [] by fol XOYncol H1 defXY - SAS;
seg X Y ≡ seg A' B' ∧ ∡ O X Y ≡ ∡ O' A' B' [YXOcong] by fol - TriangleCong_DEF AngleSymmetry;
consider G' such that
G'Open (A', B') ∧ seg X H ≡ seg A' G' [A'G'B'] by fol XOYncol Distinct - defH OrderedCongruentSegments;
G' ∈ int_angle A' O' B' [G'intA'O'B'] by fol H1 - ConverseCrossbar;
ray X H = ray X Y ∧ ray A' G' = ray A' B' [] by fol defH A'G'B' IntervalRay;
O X H ≡ ∡ O' A' G' [HXOeq] by fol - Angle_DEF YXOcong;
H ∈ int_angle X O Y [] by fol GintXOY defH WholeRayInterior;
¬Collinear O X H ∧ ¬Collinear O' A' G' [] by fol - G'intA'O'B' InteriorEZHelp CollinearSymmetry;
O,X,HO',A',G' [] by fol - A'G'B' defXY SegmentSymmetry HXOeq SAS;
X O H ≡ ∡ A' O' G' [] by fol - TriangleCong_DEF AngleSymmetry;
fol G'intA'O'B' - Orays Angle_DEF;
qed;
`;;
let AngleAddition = theorem `;
A O B A' O' B' G G'. G ∈ int_angle A O BG' ∈ int_angle A' O' B'
A O G ≡ ∡ A' O' G' ∧ ∡ G O B ≡ ∡ G' O' B'
⇒ ∡ A O B ≡ ∡ A' O' B'
proof
intro_TAC ∀A O B A' O' B' G G', H1, H2;
¬Collinear A O B ∧ ¬Collinear A' O' B' [AOBncol] by fol H1 IN_InteriorAngle;
¬(A = O) ∧ ¬(A = B) ∧ ¬(O = B) ∧ ¬(A' = O') ∧ ¬(A' = B') ∧ ¬(O' = B') ∧ ¬(G = O) [Distinct] by fol - NonCollinearImpliesDistinct H1 InteriorEZHelp;
consider a b such that
Line a ∧ O ∈ a ∧ A ∈ a ∧
Line b ∧ O ∈ b ∧ B ∈ b [a_line] by fol Distinct I1;
consider g such that
Line g ∧ O ∈ g ∧ G ∈ g [g_line] by fol Distinct I1;
G ∉ a ∧ G,B same_side a [H1'] by fol a_line H1 InteriorUse;
¬Collinear A O G ∧ ¬Collinear A' O' G' [AOGncol] by fol H1 InteriorEZHelp IN_InteriorAngle;
Angle (∡ A O B) ∧ Angle (∡ A' O' B') ∧ Angle (∡ A O G) ∧ Angle (∡ A' O' G') [angles] by fol AOBncol - ANGLE;
∃! r. Ray r ∧ ∃X. ¬(O = X) ∧ r = ray O XX ∉ a ∧ X,G same_side a ∧ ∡ A O X ≡ ∡ A' O' B' [] by simplify C4 - angles Distinct a_line H1';
consider X such that
X ∉ a ∧ X,G same_side a ∧ ∡ A O X ≡ ∡ A' O' B' [Xexists] by fol -;
¬Collinear A O X [AOXncol] by fol Distinct a_line Xexists NonCollinearRaa CollinearSymmetry;
A' O' B' ≡ ∡ A O X [] by fol - AOBncol ANGLE Xexists C5Symmetric;
consider Y such that
Y ∈ int_angle A O X ∧ ∡ A' O' G' ≡ ∡ A O Y [YintAOX] by fol AOXncol - H1 OrderedCongruentAngles;
¬Collinear A O Y [] by fol - InteriorEZHelp;
A O Y ≡ ∡ A O G [AOGeq] by fol - angles - ANGLE YintAOX H2 C5Transitive C5Symmetric;
consider x such that
Line x ∧ O ∈ x ∧ X ∈ x [x_line] by fol Distinct I1;
Y ∉ a ∧ Y,X same_side a [] by fol a_line - YintAOX InteriorUse;
Y ∉ a ∧ Y,G same_side a [] by fol a_line - Xexists H1' SameSideTransitive;
ray O G = ray O Y [] by fol a_line Distinct H1' - AOGeq C4Uniqueness;
G ∈ ray O Y ━ {O} [] by fol Distinct - EndpointInRay IN_DIFF IN_SING;
G ∈ int_angle A O X [GintAOX] by fol YintAOX - WholeRayInterior;
G O X ≡ ∡ G' O' B' [GOXeq] by fol - H1 Xexists H2 AngleSubtraction;
¬Collinear G O X ∧ ¬Collinear G O B ∧ ¬Collinear G' O' B' [GOXncol] by fol GintAOX H1 InteriorAngleSymmetry InteriorEZHelp CollinearSymmetry;
Angle (∡ G O X) ∧ Angle (∡ G O B) ∧ Angle (∡ G' O' B') [] by fol - ANGLE;
G O X ≡ ∡ G O B [G'O'Xeq] by fol angles - GOXeq C5Symmetric H2 C5Transitive;
¬(A,X same_side g) ∧ ¬(A,B same_side g) [Ansim_aXB] by fol g_line GintAOX H1 InteriorOpposite;
A ∉ g ∧ B ∉ g ∧ X ∉ g [notABXg] by fol g_line AOGncol GOXncol Distinct I1 Collinear_DEF ∉;
X,B same_side g [] by fol g_line - Ansim_aXB AtMost2Sides;
ray O X = ray O B [] by fol g_line Distinct notABXg - G'O'Xeq C4Uniqueness;
fol - Xexists Angle_DEF;
qed;
`;;
let AngleOrderingUse = theorem `;
A O B α. Angle α ∧ ¬Collinear A O B ⇒ α <_ang ∡ A O B
⇒ ∃G. G ∈ int_angle A O B ∧ α ≡ ∡ A O G
proof
intro_TAC ∀A O B α, H1, H3;
consider A' O' B' G' such that
¬Collinear A' O' B' ∧ ∡ A O B = ∡ A' O' B'G' ∈ int_angle A' O' B' ∧ α ≡ ∡ A' O' G' [H3'] by fol H3 AngleOrdering_DEF;
Angle (∡ A O B) ∧ Angle (∡ A' O' B') ∧ Angle (∡ A' O' G') [angles] by fol H1 - ANGLE InteriorEZHelp;
A' O' B' ≡ ∡ A O B [] by fol - H3' C5Reflexive;
consider G such that
G ∈ int_angle A O B ∧ ∡ A' O' G' ≡ ∡ A O G [GintAOB] by fol H1 H3' - OrderedCongruentAngles;
α ≡ ∡ A O G [] by fol H1 angles - InteriorEZHelp ANGLE H3' GintAOB C5Transitive;
fol - GintAOB;
qed;
`;;
let AngleTrichotomy1 = theorem `;
∀α β. α <_ang β ⇒ ¬(α ≡ β)
proof
intro_TAC ∀α β, H1;
assume α ≡ β [Con] by fol;
consider A O B G such that
Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O BG ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF;
¬(A = O) ∧ ¬(O = B) ∧ ¬Collinear A O G [Distinct] by fol H1' NonCollinearImpliesDistinct InteriorEZHelp;
consider a such that
Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol Distinct I1;
consider b such that
Line b ∧ O ∈ b ∧ B ∈ b [b_line] by fol Distinct I1;
B ∉ a [notBa] by fol a_line H1' Collinear_DEF ∉;
G ∉ a ∧ G ∉ b ∧ G,B same_side a [GintAOB] by fol a_line b_line H1' InteriorUse;
A O G ≡ α [] by fol H1' Distinct ANGLE C5Symmetric;
A O G ≡ ∡ A O B [] by fol H1' Distinct ANGLE - Con C5Transitive;
ray O B = ray O G [] by fol a_line Distinct notBa GintAOB - C4Uniqueness;
G ∈ b [] by fol Distinct - EndpointInRay b_line RayLine SUBSET;
fol - GintAOB ∉;
qed;
`;;
let AngleTrichotomy2 = theorem `;
∀α β γ. α <_ang β ∧ Angle γ ∧ β ≡ γ ⇒ α <_ang γ
proof
intro_TAC ∀α β γ, H1 H2 H3;
consider A O B G such that
Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O BG ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF;
consider A' O' B' such that
γ = ∡ A' O' B' ∧ ¬Collinear A' O' B'A'O'B'] by fol H2 ANGLE;
consider G' such that
G' ∈ int_angle A' O' B' ∧ ∡ A O G ≡ ∡ A' O' G' [G'intA'O'B'] by fol γA'O'B' H1' H3 OrderedCongruentAngles;
¬Collinear A O G ∧ ¬Collinear A' O' G' [ncol] by fol H1' - InteriorEZHelp;
α ≡ ∡ A' O' G' [] by fol H1' ANGLE - G'intA'O'B' C5Transitive;
fol H1' - ncol γA'O'B' G'intA'O'B' - AngleOrdering_DEF;
qed;
`;;
let AngleOrderTransitivity = theorem `;
∀α β γ. α <_ang β ∧ β <_ang γ ⇒ α <_ang γ
proof
intro_TAC ∀α β γ, H1 H2;
consider A O B G such that
Angle β ∧ ¬Collinear A O B ∧ γ = ∡ A O BG ∈ int_angle A O B ∧ β ≡ ∡ A O G [H2'] by fol H2 AngleOrdering_DEF;
¬Collinear A O G [AOGncol] by fol H2' InteriorEZHelp;
Angle α ∧ Angle (∡ A O G) ∧ Angle γ [angles] by fol H1 AngleOrdering_DEF H2' - ANGLE;
α <_ang ∡ A O G [] by fol H1 H2' - AngleTrichotomy2;
consider F such that
F ∈ int_angle A O G ∧ α ≡ ∡ A O F [FintAOG] by fol angles AOGncol - AngleOrderingUse;
F ∈ int_angle A O B [] by fol H2' - InteriorTransitivity;
fol angles H2' - FintAOG AngleOrdering_DEF;
qed;
`;;
let AngleTrichotomy = theorem `;
∀α β. Angle α ∧ Angle β
⇒ (α ≡ β ∨ α <_ang β ∨ β <_ang α) ∧
¬(α ≡ β ∧ α <_ang β) ∧
¬(α ≡ β ∧ β <_ang α) ∧
¬(α <_ang β ∧ β <_ang α)
proof
intro_TAC ∀α β, H1;
¬(α ≡ β ∧ α <_ang β) [Not12] by fol AngleTrichotomy1;
¬(α ≡ β ∧ β <_ang α) [Not13] by fol H1 C5Symmetric AngleTrichotomy1;
¬(α <_ang β ∧ β <_ang α) [Not23] by fol H1 AngleOrderTransitivity AngleTrichotomy1 C5Reflexive;
consider P O A such that
α = ∡ P O A ∧ ¬Collinear P O A [POA] by fol H1 ANGLE;
¬(P = O) ∧ ¬(O = A) [Distinct] by fol - NonCollinearImpliesDistinct;
consider a such that
Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol - I1;
P ∉ a [notPa] by fol - Distinct I1 POA Collinear_DEF ∉;
∃! r. Ray r ∧ ∃Q. ¬(O = Q) ∧ r = ray O QQ ∉ a ∧ Q,P same_side a ∧ ∡ A O Q ≡ β [] by simplify H1 Distinct a_line C4 -;
consider Q such that
¬(O = Q) ∧ Q ∉ a ∧ Q,P same_side a ∧ ∡ A O Q ≡ β [Qexists] by fol -;
OOpen (Q, P) [notQOP] by fol a_line Qexists SameSide_DEF ∉;
¬Collinear A O P [AOPncol] by fol POA CollinearSymmetry;
¬Collinear A O Q [AOQncol] by fol a_line Distinct I1 Collinear_DEF Qexists ∉;
Angle (∡ A O P) ∧ Angle (∡ A O Q) [] by fol AOPncol - ANGLE;
α ≡ ∡ A O P ∧ β ≡ ∡ A O Q ∧ ∡ A O P ≡ α [flip] by fol H1 - POA AngleSymmetry C5Reflexive Qexists C5Symmetric;
case_split QOPcol | QOPcolncol by fol -;
suppose Collinear Q O P;
Collinear O P Q [] by fol - CollinearSymmetry;
Q ∈ ray O P ━ {O} [] by fol Distinct - notQOP IN_Ray Qexists IN_DIFF IN_SING;
ray O Q = ray O P [] by fol Distinct - RayWellDefined;
P O A = ∡ A O Q [] by fol - Angle_DEF AngleSymmetry;
fol - POA Qexists Not12 Not13 Not23;
end;
suppose ¬Collinear Q O P;
P ∈ int_angle Q O AQ ∈ int_angle P O A [] by fol Distinct a_line Qexists notPa - AngleOrdering;
P ∈ int_angle A O QQ ∈ int_angle A O P [] by fol - InteriorAngleSymmetry;
α <_ang ∡ A O Q ∨ β <_ang ∡ A O P [] by fol H1 AOQncol AOPncol - flip AngleOrdering_DEF;
α <_ang β ∨ β <_ang α [] by fol H1 - Qexists flip AngleTrichotomy2;
fol - Not12 Not13 Not23;
end;
qed;
`;;
let SupplementExists = theorem `;
∀α. Angle α ⇒ ∃α'. α suppl α'
proof
intro_TAC ∀α, H1;
consider A O B such that
α = ∡ A O B ∧ ¬Collinear A O B ∧ ¬(A = O) [def_α] by fol H1 ANGLE NonCollinearImpliesDistinct;
consider A' such that
OOpen (A, A') [AOA'] by fol - B2';
A O B suppl ∡ A' O B [AOBsup] by fol def_α - SupplementaryAngles_DEF AngleSymmetry;
fol - def_α;
qed;
`;;
let SupplementImpliesAngle = theorem `;
∀α β. α suppl β ⇒ Angle α ∧ Angle β
proof
intro_TAC ∀α β, H1;
consider A O B A' such that
¬Collinear A O BOOpen (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A' [H1'] by fol H1 SupplementaryAngles_DEF;
¬(O = A') ∧ Collinear A O A' [Distinct] by fol - NonCollinearImpliesDistinct B1';
¬Collinear B O A' [] by fol H1' CollinearSymmetry - NoncollinearityExtendsToLine;
fol H1' - ANGLE;
qed;
`;;
let RightImpliesAngle = theorem `;
∀α. Right α ⇒ Angle α
by fol RightAngle_DEF SupplementImpliesAngle`;;
let SupplementSymmetry = theorem `;
∀α β. α suppl β ⇒ β suppl α
proof
intro_TAC ∀α β, H1;
consider A O B A' such that
¬Collinear A O BOOpen (A, A') ∧ α = ∡ A O B ∧ β = ∡ B O A' [H1'] by fol H1 SupplementaryAngles_DEF;
¬(O = A') ∧ Collinear A O A' [] by fol - NonCollinearImpliesDistinct B1';
¬Collinear A' O B [A'OBncol] by fol H1' CollinearSymmetry - NoncollinearityExtendsToLine;
OOpen (A', A) ∧ β = ∡ A' O B ∧ α = ∡ B O A [] by fol H1' B1' AngleSymmetry;
fol A'OBncol - SupplementaryAngles_DEF;
qed;
`;;
let SupplementsCongAnglesCong = theorem `;
∀α β α' β'. α suppl α' ∧ β suppl β' ⇒ α ≡ β
⇒ α' ≡ β'
proof
intro_TAC ∀α β α' β', H1, H2;
consider A O B A' such that
¬Collinear A O BOOpen (A, A') ∧ α = ∡ A O B ∧ α' = ∡ B O A' [def_α] by fol H1 SupplementaryAngles_DEF;
¬(A = O) ∧ ¬(O = B) ∧ ¬(A = A') ∧ ¬(O = A') ∧ Collinear A O A' [Distinctα] by fol - NonCollinearImpliesDistinct B1';
¬Collinear B A A' ∧ ¬Collinear O A' B [BAA'ncol] by fol def_α CollinearSymmetry - NoncollinearityExtendsToLine;
Segment (seg O A) ∧ Segment (seg O B) ∧ Segment (seg O A') [Osegments] by fol Distinctα SEGMENT;
consider C P D C' such that
¬Collinear C P DPOpen (C, C') ∧ β = ∡ C P D ∧ β' = ∡ D P C' [def_β] by fol H1 SupplementaryAngles_DEF;
¬(C = P) ∧ ¬(P = D) ∧ ¬(P = C') [Distinctβ] by fol def_β NonCollinearImpliesDistinct B1';
consider X such that
X ∈ ray P C ━ {P} ∧ seg P X ≡ seg O A [defX] by fol Osegments Distinctβ C1;
consider Y such that
Y ∈ ray P D ━ {P} ∧ seg P Y ≡ seg O B ∧ ¬(Y = P) [defY] by fol Osegments Distinctβ C1 IN_DIFF IN_SING;
consider X' such that
X' ∈ ray P C' ━ {P} ∧ seg P X' ≡ seg O A' [defX'] by fol Osegments Distinctβ C1;
POpen (X', C) ∧ POpen (X, X') [XPX'] by fol def_β - OppositeRaysIntersect1pointHelp defX;
¬(X = P) ∧ ¬(X' = P) ∧ Collinear X P X' ∧ ¬(X = X') ∧ ray A' O = ray A' A ∧ ray X' P = ray X' X [XPX'line] by fol defX defX' IN_DIFF IN_SING - B1' def_α IntervalRay;
Collinear P D YCollinear P C X [] by fol defY defX IN_DIFF IN_SING IN_Ray;
¬Collinear C P Y ∧ ¬Collinear X P Y [XPYncol] by fol def_β - defY NoncollinearityExtendsToLine CollinearSymmetry XPX'line;
¬Collinear Y X X' ∧ ¬Collinear P X' Y [YXX'ncol] by fol - CollinearSymmetry XPX' XPX'line NoncollinearityExtendsToLine;
ray P X = ray P C ∧ ray P Y = ray P D ∧ ray P X' = ray P C' [equalPrays] by fol Distinctβ defX defY defX' RayWellDefined;
β = ∡ X P Y ∧ β' = ∡ Y P X' ∧ ∡ A O B ≡ ∡ X P Y [AOBeqXPY] by fol def_β - Angle_DEF H2 def_α;
seg O A ≡ seg P X ∧ seg O B ≡ seg P Y ∧ seg A' O ≡ seg X' P [OAeq] by fol Osegments XPX'line SEGMENT defX defY defX' C2Symmetric SegmentSymmetry;
seg A A' ≡ seg X X' [AA'eq] by fol def_α XPX'line XPX' - SegmentSymmetry C3;
A,O,BX,P,Y [] by fol def_α XPYncol OAeq AOBeqXPY SAS;
seg A B ≡ seg X Y ∧ ∡ B A O ≡ ∡ Y X P [AOB≅] by fol - TriangleCong_DEF AngleSymmetry;
ray A O = ray A A' ∧ ray X P = ray X X' ∧ ∡ B A A' ≡ ∡ Y X X' [] by fol def_α XPX' IntervalRay - Angle_DEF;
B,A,A'Y,X,X' [] by fol BAA'ncol YXX'ncol AOB≅ - AA'eq - SAS;
seg A' B ≡ seg X' Y ∧ ∡ A A' B ≡ ∡ X X' Y [] by fol - TriangleCong_DEF SegmentSymmetry;
O,A',BP,X',Y [] by fol BAA'ncol YXX'ncol OAeq - XPX'line Angle_DEF SAS;
B O A' ≡ ∡ Y P X' [] by fol - TriangleCong_DEF;
fol - equalPrays def_β Angle_DEF def_α;
qed;
`;;
let SupplementUnique = theorem `;
∀α β β'. α suppl β ∧ α suppl β' ⇒ β ≡ β'
by fol SupplementaryAngles_DEF ANGLE C5Reflexive SupplementsCongAnglesCong`;;
let CongRightImpliesRight = theorem `;
∀α β. Angle α ∧ Right β ⇒ α ≡ β ⇒ Right α
proof
intro_TAC ∀α β, H1, H2;
consider α' β' such that
α suppl α' ∧ β suppl β' ∧ β ≡ β' [suppl] by fol H1 SupplementExists H1 RightAngle_DEF;
α' ≡ β''eqβ'] by fol suppl H2 SupplementsCongAnglesCong;
Angle β ∧ Angle α'Angle β' [] by fol suppl SupplementImpliesAngle;
α ≡ α' [] by fol H1 - H2 suppl α'eqβ' C5Symmetric C5Transitive;
fol suppl - RightAngle_DEF;
qed;
`;;
let RightAnglesCongruentHelp = theorem `;
∀A O B A' P a. ¬Collinear A O BOOpen (A, A') ⇒
Right (∡ A O B) ∧ Right (∡ A O P)
P ∉ int_angle A O B
proof
intro_TAC ∀A O B A' P a, H1, H2;
assume ¬(P ∉ int_angle A O B) [Con] by fol;
P ∈ int_angle A O B [PintAOB] by fol - ∉;
B ∈ int_angle P O A'B ∈ int_angle A' O P [BintA'OP] by fol H1 - InteriorReflectionInterior InteriorAngleSymmetry ;
¬Collinear A O P ∧ ¬Collinear P O A' [AOPncol] by fol PintAOB InteriorEZHelp - IN_InteriorAngle;
A O B suppl ∡ B O A' ∧ ∡ A O P suppl ∡ P O A' [AOBsup] by fol H1 - SupplementaryAngles_DEF;
consider α' β' such that
A O B suppl α' ∧ ∡ A O B ≡ α' ∧ ∡ A O P suppl β' ∧ ∡ A O P ≡ β' [supplα'] by fol H2 RightAngle_DEF;
α' ≡ ∡ B O A' ∧ β' ≡ ∡ P O A''eqA'OB] by fol - AOBsup SupplementUnique;
Angle (∡ A O B) ∧ Angle α' ∧ Angle (∡ B O A') ∧ Angle (∡ A O P) ∧ Angle β' ∧ Angle (∡ P O A') [angles] by fol AOBsup supplα' SupplementImpliesAngle AngleSymmetry;
∡ A O B ≡ ∡ B O A' ∧ ∡ A O P ≡ ∡ P O A' [H2'] by fol - supplα' α'eqA'OB C5Transitive;
A O P ≡ ∡ A O P ∧ ∡ B O A' ≡ ∡ B O A' [refl] by fol angles C5Reflexive;
A O P <_ang ∡ A O B ∧ ∡ B O A' <_ang ∡ P O A' [BOA'lessPOA'] by fol angles H1 PintAOB - AngleOrdering_DEF AOPncol CollinearSymmetry BintA'OP AngleSymmetry;
A O P <_ang ∡ B O A' [] by fol - angles H2' AngleTrichotomy2;
A O P <_ang ∡ P O A' [] by fol - BOA'lessPOA' AngleOrderTransitivity;
fol - H2' AngleTrichotomy1;
qed;
`;;
let RightAnglesCongruent = theorem `;
∀α β. Right α ∧ Right β ⇒ α ≡ β
proof
intro_TAC ∀α β, H1;
consider α' such that
α suppl α' ∧ α ≡ α' [αright] by fol H1 RightAngle_DEF;
consider A O B A' such that
¬Collinear A O BOOpen (A, A') ∧ α = ∡ A O B ∧ α' = ∡ B O A' [def_α] by fol - SupplementaryAngles_DEF;
¬(A = O) ∧ ¬(O = B) [Distinct] by fol def_α NonCollinearImpliesDistinct B1';
consider a such that
Line a ∧ O ∈ a ∧ A ∈ a [a_line] by fol Distinct I1;
B ∉ a [notBa] by fol - def_α Collinear_DEF ∉;
Angle β [] by fol H1 RightImpliesAngle;
∃! r. Ray r ∧ ∃P. ¬(O = P) ∧ r = ray O PP ∉ a ∧ P,B same_side a ∧ ∡ A O P ≡ β [] by simplify C4 - Distinct a_line notBa;
consider P such that
¬(O = P) ∧ P ∉ a ∧ P,B same_side a ∧ ∡ A O P ≡ β [defP] by fol -;
OOpen (P, B) [notPOB] by fol a_line - SameSide_DEF ∉;
¬Collinear A O P [AOPncol] by fol a_line Distinct defP NonCollinearRaa CollinearSymmetry;
Right (∡ A O P) [AOPright] by fol - ANGLE H1 defP CongRightImpliesRight;
P ∉ int_angle A O BB ∉ int_angle A O P [] by fol def_α H1 - AOPncol AOPright RightAnglesCongruentHelp;
Collinear P O B [] by fol Distinct a_line defP notBa - AngleOrdering InteriorAngleSymmetry ∉;
P ∈ ray O B ━ {O} [] by fol Distinct - CollinearSymmetry notPOB IN_Ray defP IN_DIFF IN_SING;
ray O P = ray O B ∧ ∡ A O P = ∡ A O B [] by fol Distinct - RayWellDefined Angle_DEF;
fol - defP def_α;
qed;
`;;
let OppositeRightAnglesLinear = theorem `;
A B O H h. ¬Collinear A O H ∧ ¬Collinear H O B
Right (∡ A O H) ∧ Right (∡ H O B) ⇒
Line h ∧ O ∈ h ∧ H ∈ h ∧ ¬(A,B same_side h)
OOpen (A, B)
proof
intro_TAC ∀A B O H h, H0, H1, H2;
¬(A = O) ∧ ¬(O = H) ∧ ¬(O = B) [Distinct] by fol H0 NonCollinearImpliesDistinct;
A ∉ h ∧ B ∉ h [notABh] by fol H0 H2 Collinear_DEF ∉;
consider E such that
OOpen (A, E) ∧ ¬(E = O) [AOE] by fol Distinct B2' B1';
A O H suppl ∡ H O E [AOHsupplHOE] by fol H0 - SupplementaryAngles_DEF;
E ∉ h [notEh] by fol H2AOE BetweenLinear notABh;
¬(A,E same_side h) [] by fol H2 AOE SameSide_DEF;
B,E same_side h [Bsim_hE] by fol H2 notABh notEh - H2 AtMost2Sides;
consider α' such that
∡ A O H suppl α' ∧ ∡ A O H ≡ α' [AOHsupplα'] by fol H1 RightAngle_DEF;
Angle (∡ H O B) ∧ Angle (∡ A O H) ∧ Angle α' ∧ Angle (∡ H O E) [angα'] by fol H1 RightImpliesAngle - AOHsupplHOE SupplementImpliesAngle;
H O B ≡ ∡ A O H ∧ α' ≡ ∡ H O E [] by fol H1 RightAnglesCongruent AOHsupplα' AOHsupplHOE SupplementUnique;
H O B ≡ ∡ H O E [] by fol angα' - AOHsupplα' C5Transitive;
ray O B = ray O E [] by fol H2 Distinct notABh notEh Bsim_hE - C4Uniqueness;
B ∈ ray O E ━ {O} [] by fol Distinct EndpointInRay - IN_DIFF IN_SING;
fol AOE - OppositeRaysIntersect1pointHelp B1';
qed;
`;;
let RightImpliesSupplRight = theorem `;
A O B A'. ¬Collinear A O BOOpen (A, A') ∧ Right (∡ A O B)
Right (∡ B O A')
proof
intro_TAC ∀A O B A', H1 H2 H3;
A O B suppl ∡ B O A'Angle (∡ A O B) ∧ Angle (∡ B O A') [AOBsuppl] by fol H1 H2 SupplementaryAngles_DEF SupplementImpliesAngle;
consider β such that
A O B suppl β ∧ ∡ A O B ≡ β [βsuppl] by fol H3 RightAngle_DEF;
Angle β ∧ β ≡ ∡ A O B [angβ] by fol - SupplementImpliesAngle C5Symmetric;
B O A' ≡ β [] by fol AOBsuppl βsuppl SupplementUnique;
B O A' ≡ ∡ A O B [] by fol AOBsuppl angβ - βsuppl C5Transitive;
fol AOBsuppl H3 - CongRightImpliesRight;
qed;
`;;
let IsoscelesCongBaseAngles = theorem `;
A B C. ¬Collinear A B C ∧ seg B A ≡ seg B C ⇒ ∡ C A B ≡ ∡ A C B
proof
intro_TAC ∀A B C, H1 H2;
¬(A = B) ∧ ¬(B = C) ∧ ¬Collinear C B A [CBAncol] by fol H1 NonCollinearImpliesDistinct CollinearSymmetry;
seg B C ≡ seg B A ∧ ∡ A B C ≡ ∡ C B A [] by fol - SEGMENT H2 C2Symmetric H1 ANGLE AngleSymmetry C5Reflexive;
fol H1 CBAncol H2 - SAS TriangleCong_DEF;
qed;
`;;
let C4withC1 = theorem `;
∀α l O A Y P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ⇒
Line l ∧ O ∈ l ∧ A ∈ l ∧ Y ∉ l ⇒
N. ¬(O = N) ∧ N ∉ l ∧ N,Y same_side l ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α
proof
intro_TAC ∀α l O A Y P Q, H1, l_line;
∃! r. Ray r ∧ ∃B. ¬(O = B) ∧ r = ray O BB ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α [] by simplify C4 H1 l_line;
consider B such that
¬(O = B) ∧ B ∉ l ∧ B,Y same_side l ∧ ∡ A O B ≡ α [Bexists] by fol -;
consider N such that
N ∈ ray O B ━ {O} ∧ seg O N ≡ seg P Q [Nexists] by fol H1 - SEGMENT C1;
N ∉ l ∧ N,B same_side l [notNl] by fol l_line Bexists Nexists RaySameSide;
N,Y same_side l [Nsim_lY] by fol l_line - Bexists SameSideTransitive;
ray O N = ray O B [] by fol Bexists Nexists RayWellDefined;
A O N ≡ α [] by fol - Bexists Angle_DEF;
fol Nexists IN_DIFF IN_SING notNl Nsim_lY Nexists -;
qed;
`;;
let C4OppositeSide = theorem `;
∀α l O A Z P Q. Angle α ∧ ¬(O = A) ∧ ¬(P = Q) ⇒
Line l ∧ O ∈ l ∧ A ∈ l ∧ Z ∉ l
⇒ ∃N. ¬(O = N) ∧ N ∉ l ∧ ¬(Z,N same_side l) ∧
seg O N ≡ seg P Q ∧ ∡ A O N ≡ α
proof
intro_TAC ∀α l O A Z P Q, H1, l_line;
¬(Z = O) [] by fol l_line ∉;
consider Y such that
OOpen (Z, Y) [ZOY] by fol - B2';
¬(O = Y) ∧ Collinear O Z Y [notOY] by fol - B1' CollinearSymmetry;
Y ∉ l [notYl] by fol notOY l_line NonCollinearRaa ∉;
consider N such that
¬(O = N) ∧ N ∉ l ∧ N,Y same_side l ∧ seg O N ≡ seg P Q ∧ ∡ A O N ≡ α [Nexists] by simplify C4withC1 H1 l_line -;
¬(Z,Y same_side l) [] by fol l_line ZOY SameSide_DEF;
¬(Z,N same_side l) [] by fol l_line Nexists notYl - SameSideTransitive;
fol - Nexists;
qed;
`;;
let SSS = theorem `;
A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C'
seg A B ≡ seg A' B' ∧ seg A C ≡ seg A' C' ∧ seg B C ≡ seg B' C'
A,B,CA',B',C'
proof
intro_TAC ∀A B C A' B' C', H1, H2;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬(A' = B') ∧ ¬(B' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider h such that
Line h ∧ A ∈ h ∧ C ∈ h [h_line] by fol Distinct I1;
B ∉ h [notBh] by fol h_line H1Collinear_DEF;
Segment (seg A B) ∧ Segment (seg C B) ∧ Segment (seg A' B') ∧ Segment (seg C' B') [segments] by fol Distinct - SEGMENT;
Angle (∡ C' A' B') [] by fol H1 CollinearSymmetry ANGLE;
consider N such that
¬(A = N) ∧ N ∉ h ∧ ¬(B,N same_side h) ∧ seg A N ≡ seg A' B' ∧ ∡ C A N ≡ ∡ C' A' B' [Nexists] by simplify C4OppositeSide - Distinct h_line notBh;
¬(C = N) [] by fol h_line Nexists ∉;
Segment (seg A N) ∧ Segment (seg C N) [segN] by fol Nexists - SEGMENT;
¬Collinear A N C [ANCncol] by fol Distinct h_line Nexists NonCollinearRaa;
Angle (∡ A B C) ∧ Angle (∡ A' B' C') ∧ Angle (∡ A N C) [angles] by fol H1 - ANGLE;
seg A B ≡ seg A N [ABeqAN] by fol segments segN Nexists H2 C2Symmetric C2Transitive;
C,A,NC',A',B' [] by fol ANCncol H1 CollinearSymmetry H2 Nexists SAS;
A N C ≡ ∡ A' B' C' ∧ seg C N ≡ seg C' B' [ANCeq] by fol - TriangleCong_DEF;
seg C B ≡ seg C N [CBeqCN] by fol segments segN - H2 SegmentSymmetry C2Symmetric C2Transitive;
consider G such that
G ∈ h ∧ GOpen (B, N) [BGN] by fol Nexists h_line SameSide_DEF;
¬(B = N) [notBN] by fol - B1';
ray B G = ray B N ∧ ray N G = ray N B [Grays] by fol BGN B1' IntervalRay;
consider v such that
Line v ∧ B ∈ v ∧ N ∈ v [v_line] by fol notBN I1;
G ∈ v ∧ ¬(h = v) [] by fol v_line BGN BetweenLinear notBh ∉;
h ∩ v = {G} [hvG] by fol h_line v_line - BGN I1Uniqueness;
¬(G = A) ⇒ ∡ A B G ≡ ∡ A N G [ABGeqANG]
proof
intro_TAC notGA;
A ∉ v [] by fol hvG h_line - EquivIntersectionHelp IN_DIFF IN_SING;
¬Collinear B A N [] by fol v_line notBN I1 Collinear_DEF - ∉;
N B A ≡ ∡ B N A [] by fol - ABeqAN IsoscelesCongBaseAngles;
G B A ≡ ∡ G N A [] by fol - Grays Angle_DEF notGA;
fol - AngleSymmetry;
qed;
¬(G = C) ⇒ ∡ G B C ≡ ∡ G N C [GBCeqGNC]
proof
intro_TAC notGC;
C ∉ v [] by fol hvG h_line - EquivIntersectionHelp IN_DIFF IN_SING;
¬Collinear B C N [] by fol v_line notBN I1 Collinear_DEF - ∉;
N B C ≡ ∡ B N C [] by fol - CBeqCN IsoscelesCongBaseAngles AngleSymmetry;
fol - Grays Angle_DEF;
qed;
A B C ≡ ∡ A N C []
proof
assume ¬(G = A) ∧ ¬(G = C) [AGCdistinct] by fol Distinct GBCeqGNC ABGeqANG;
A B G ≡ ∡ A N G ∧ ∡ G B C ≡ ∡ G N C [Gequivs] by fol - ABGeqANG GBCeqGNC;
¬Collinear G B C ∧ ¬Collinear G N C ∧ ¬Collinear G B A ∧ ¬Collinear G N A [Gncols] by fol AGCdistinct h_line BGN notBh Nexists NonCollinearRaa;
Collinear A G C [] by fol h_line BGN Collinear_DEF;
GOpen (A, C) ∨ COpen (G, A) ∨ AOpen (C, G) [] by fol Distinct AGCdistinct - B3';
case_split AGC | GAC | CAG by fol -;
suppose GOpen (A, C);
G ∈ int_angle A B CG ∈ int_angle A N C [] by fol H1 ANCncol - ConverseCrossbar;
fol - Gequivs AngleAddition;
end;
suppose COpen (G, A);
C ∈ int_angle G B AC ∈ int_angle G N A [] by fol Gncols - B1' ConverseCrossbar;
fol - Gequivs AngleSubtraction AngleSymmetry;
end;
suppose AOpen (C, G);
A ∈ int_angle G B CA ∈ int_angle G N C [] by fol Gncols - B1' ConverseCrossbar;
fol - Gequivs AngleSymmetry AngleSubtraction;
end;
qed;
A B C ≡ ∡ A' B' C' [] by fol angles - ANCeq C5Transitive;
fol H1 H2 SegmentSymmetry - SAS;
qed;
`;;
let AngleBisector = theorem `;
A B C. ¬Collinear B A C ⇒ ∃M. M ∈ int_angle B A C ∧ ∡ B A M ≡ ∡ M A C
proof
intro_TAC ∀A B C, H1;
¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider D such that
BOpen (A, D) [ABD] by fol Distinct B2';
¬(A = D) ∧ Collinear A B DSegment (seg A D) [ABD'] by fol - B1' SEGMENT;
consider E such that
E ∈ ray A C ━ {A} ∧ seg A E ≡ seg A D ∧ ¬(A = E) [ErAC] by fol - Distinct C1 IN_Ray IN_DIFF IN_SING;
Collinear A C ED ∈ ray A B ━ {A} [notAE] by fol - IN_Ray ABD IntervalRayEZ IN_DIFF IN_SING;
ray A D = ray A B ∧ ray A E = ray A C [equalrays] by fol Distinct notAE ErAC RayWellDefined;
¬Collinear D A E ∧ ¬Collinear E A D ∧ ¬Collinear A E D [EADncol] by fol H1 ABD' notAE ErAC CollinearSymmetry NoncollinearityExtendsToLine;
D E A ≡ ∡ E D A [DEAeq] by fol EADncol ErAC IsoscelesCongBaseAngles;
¬Collinear E D AAngle (∡ E D A) ∧ ¬Collinear A D E ∧ ¬Collinear D E A [angEDA] by fol EADncol CollinearSymmetry ANGLE;
¬(D = E) [notDE] by fol EADncol NonCollinearImpliesDistinct;
consider h such that
Line h ∧ D ∈ h ∧ E ∈ h [h_line] by fol - I1;
A ∉ h [notAh] by fol - Collinear_DEF EADncol ∉;
consider M such that
¬(D = M) ∧ M ∉ h ∧ ¬(A,M same_side h) ∧ seg D M ≡ seg D A ∧ ∡ E D M ≡ ∡ E D A [Mexists] by simplify C4OppositeSide angEDA notDE ABD' h_line -;
¬(A = M) [notAM] by fol h_line - SameSideReflexive;
¬Collinear E D M ∧ ¬Collinear D E M ∧ ¬Collinear M E D [EDMncol] by fol notDE h_line Mexists NonCollinearRaa CollinearSymmetry;
seg D E ≡ seg D E ∧ seg M A ≡ seg M A [MArefl] by fol notDE notAM SEGMENT C2Reflexive;
E,D,ME,D,A [] by fol EDMncol angEDA - Mexists SAS;
seg M E ≡ seg A E ∧ ∡ M E D ≡ ∡ A E D ∧ ∡ D E M ≡ ∡ D E A [MED≅] by fol - TriangleCong_DEF SegmentSymmetry AngleSymmetry;
E D A ≡ ∡ D E A ∧ ∡ E D A ≡ ∡ E D M ∧ ∡ D E A ≡ ∡ D E M [EDAeqEDM] by fol EDMncol ANGLE angEDA Mexists MEDDEAeq C5Symmetric;
consider G such that
G ∈ h ∧ GOpen (A, M) [AGM] by fol Mexists h_line SameSide_DEF;
M ∈ ray A G ━ {A} [MrAG] by fol - IntervalRayEZ;
consider v such that
Line v ∧ A ∈ v ∧ M ∈ v ∧ G ∈ v [v_line] by fol notAM I1 AGM BetweenLinear;
¬(v = h) ∧ v ∩ h = {G} [vhG] by fol - notAh ∉ h_line AGM I1Uniqueness;
D ∉ v [notDv]
proof
assume ¬(D ∉ v) [Con] by fol;
D ∈ v ∧ D = G [DG] by fol h_line - ∉ vhG IN_INTER IN_SING;
DOpen (A, M) [] by fol DG AGM;
E D A suppl ∡ E D M [EDAsuppl] by fol angEDA - SupplementaryAngles_DEF AngleSymmetry;
Right (∡ E D A) [] by fol EDAsuppl EDAeqEDM RightAngle_DEF;
Right (∡ A E D) [RightAED] by fol angEDA ANGLE - DEAeq CongRightImpliesRight AngleSymmetry;
Right (∡ D E M) [] by fol EDMncol ANGLE - MEDCongRightImpliesRight AngleSymmetry;
EOpen (A, M) [] by fol EADncol EDMncol RightAED - h_line Mexists OppositeRightAnglesLinear;
E ∈ v ∧ E = G [] by fol v_line - BetweenLinear h_line vhG IN_INTER IN_SING;
fol - DG notDE;
qed;
E ∉ v [notEv]
proof
assume ¬(E ∉ v) [Con] by fol;
E ∈ v ∧ E = G [EG] by fol h_line - ∉ vhG IN_INTER IN_SING;
EOpen (A, M) [] by fol - AGM;
D E A suppl ∡ D E M [DEAsuppl] by fol EADncol - SupplementaryAngles_DEF AngleSymmetry;
Right (∡ D E A) [RightDEA] by fol DEAsuppl EDAeqEDM RightAngle_DEF;
Right (∡ E D A) [RightEDA] by fol angEDA RightDEA EDAeqEDM CongRightImpliesRight;
Right (∡ E D M) [] by fol EDMncol ANGLE RightEDA Mexists CongRightImpliesRight;
DOpen (A, M) [] by fol angEDA EDMncol RightEDA AngleSymmetry - h_line Mexists OppositeRightAnglesLinear;
D ∈ v ∧ D = G [] by fol v_line - BetweenLinear h_line vhG IN_INTER IN_SING;
fol - EG notDE;
qed;
¬Collinear M A E ∧ ¬Collinear M A D ∧ ¬(M = E) [MAEncol] by fol notAM v_line notEv notDv NonCollinearRaa CollinearSymmetry NonCollinearImpliesDistinct;
seg M E ≡ seg A D [MEeqAD] by fol - ErAC ABD' SEGMENT MEDErAC C2Transitive;
seg A D ≡ seg M D [] by fol SegmentSymmetry ABD' Mexists SEGMENT C2Symmetric;
seg M E ≡ seg M D [] by fol MAEncol ABD' Mexists SEGMENT MEeqAD - C2Transitive;
M,A,EM,A,D [] by fol MAEncol MArefl - ErAC SSS;
M A E ≡ ∡ M A D [MAEeq] by fol - TriangleCong_DEF;
D A M ≡ ∡ M A E [] by fol MAEncol ANGLE MAEeq C5Symmetric AngleSymmetry;
B A M ≡ ∡ M A C [BAMeqMAC] by fol - equalrays Angle_DEF;
¬(E,D same_side v) []
proof
assume E,D same_side v [Con] by fol;
ray A D = ray A E [] by fol v_line notAM notDv notEv - MAEeq C4Uniqueness;
fol ABD' EndpointInRay - IN_Ray EADncol;
qed;
consider H such that
H ∈ v ∧ HOpen (E, D) [EHD] by fol v_line - SameSide_DEF;
H = G [] by fol - h_line BetweenLinear IN_INTER vhG IN_SING;
G ∈ int_angle E A D [GintEAD] by fol EADncol - EHD ConverseCrossbar;
M ∈ int_angle E A D [MintEAD] by fol GintEAD MrAG WholeRayInterior;
B ∈ ray A D ━ {A} ∧ C ∈ ray A E ━ {A} [] by fol equalrays Distinct EndpointInRay IN_DIFF IN_SING;
M ∈ int_angle B A C [] by fol MintEAD - InteriorWellDefined InteriorAngleSymmetry;
fol - BAMeqMAC;
qed;
`;;
let EuclidPropositionI_6 = theorem `;
A B C. ¬Collinear A B C ∧ ∡ B A C ≡ ∡ B C A ⇒ seg B A ≡ seg B C
proof
intro_TAC ∀A B C, H1 H2;
¬(A = C) [] by fol H1 NonCollinearImpliesDistinct;
seg C A ≡ seg A C [CAeqAC] by fol SegmentSymmetry - SEGMENT C2Reflexive;
¬Collinear B C A ∧ ¬Collinear C B A ∧ ¬Collinear B A C [BCAncol] by fol H1 CollinearSymmetry;
A C B ≡ ∡ C A B [] by fol - ANGLE H2 C5Symmetric AngleSymmetry;
C,B,AA,B,C [] by fol H1 BCAncol CAeqAC H2 - ASA;
fol - TriangleCong_DEF;
qed;
`;;
let IsoscelesExists = theorem `;
A B. ¬(A = B) ⇒ ∃D. ¬Collinear A D B ∧ seg D A ≡ seg D B
proof
intro_TAC ∀A B, H1;
consider l such that
Line l ∧ A ∈ l ∧ B ∈ l [l_line] by fol H1 I1;
consider C such that
C ∉ l [notCl] by fol - ExistsPointOffLine;
¬Collinear C A B ∧ ¬Collinear C B A ∧ ¬Collinear A B C ∧ ¬Collinear A C B ∧ ¬Collinear B A C [CABncol] by fol l_line H1 I1 Collinear_DEF - ∉;
C A B ≡ ∡ C B A ∨ ∡ C A B <_ang ∡ C B A ∨ ∡ C B A <_ang ∡ C A B [] by fol - ANGLE AngleTrichotomy;
case_split cong | less | greater by fol -;
suppose ∡ C A B ≡ ∡ C B A;
fol - CABncol EuclidPropositionI_6;
end;
suppose ∡ C A B <_ang ∡ C B A;
C A B <_ang ∡ A B C [] by fol - AngleSymmetry;
consider E such that
E ∈ int_angle A B C ∧ ∡ C A B ≡ ∡ A B E [Eexists] by fol CABncol ANGLE - AngleOrderingUse;
¬(B = E) [notBE] by fol - InteriorEZHelp;
consider D such that
DOpen (A, C) ∧ D ∈ ray B E ━ {B} [Dexists] by fol Eexists Crossbar_THM;
D ∈ int_angle A B C [] by fol Eexists - WholeRayInterior;
¬Collinear A D B [ADBncol] by fol - InteriorEZHelp CollinearSymmetry;
ray B D = ray B E ∧ ray A D = ray A C [] by fol notBE Dexists RayWellDefined IntervalRay;
D A B ≡ ∡ A B D [] by fol Eexists - Angle_DEF;
fol ADBncol - AngleSymmetry EuclidPropositionI_6;
end;
suppose ∡ C B A <_ang ∡ C A B;
C B A <_ang ∡ B A C [] by fol - AngleSymmetry;
consider E such that
E ∈ int_angle B A C ∧ ∡ C B A ≡ ∡ B A E [Eexists] by fol CABncol ANGLE - AngleOrderingUse;
¬(A = E) [notAE] by fol - InteriorEZHelp;
consider D such that
DOpen (B, C) ∧ D ∈ ray A E ━ {A} [Dexists] by fol Eexists Crossbar_THM;
D ∈ int_angle B A C [] by fol Eexists - WholeRayInterior;
¬Collinear A D B ∧ ¬Collinear D A B ∧ ¬Collinear D B A [ADBncol] by fol - InteriorEZHelp CollinearSymmetry;
ray A D = ray A E ∧ ray B D = ray B C [] by fol notAE Dexists RayWellDefined IntervalRay;
D B A ≡ ∡ B A D [] by fol Eexists - Angle_DEF;
D A B ≡ ∡ D B A [] by fol AngleSymmetry ADBncol ANGLE - C5Symmetric;
fol ADBncol - EuclidPropositionI_6;
end;
qed;
`;;
let MidpointExists = theorem `;
A B. ¬(A = B) ⇒ ∃M. MOpen (A, B) ∧ seg A M ≡ seg M B
proof
intro_TAC ∀A B, H1;
consider D such that
¬Collinear A D B ∧ seg D A ≡ seg D B [Dexists] by fol H1 IsoscelesExists;
consider F such that
F ∈ int_angle A D B ∧ ∡ A D F ≡ ∡ F D B [Fexists] by fol - AngleBisector;
¬(D = F) [notDF] by fol - InteriorEZHelp;
consider M such that
MOpen (A, B) ∧ M ∈ ray D F ━ {D} [Mexists] by fol Fexists Crossbar_THM;
ray D M = ray D F [] by fol notDF - RayWellDefined;
A D M ≡ ∡ M D B [ADMeqMDB] by fol Fexists - Angle_DEF;
M ∈ int_angle A D B [] by fol Fexists Mexists WholeRayInterior;
¬(D = M) ∧ ¬Collinear A D M ∧ ¬Collinear B D M [ADMncol] by fol - InteriorEZHelp InteriorAngleSymmetry;
seg D M ≡ seg D M [] by fol - SEGMENT C2Reflexive;
A,D,MB,D,M [] by fol ADMncol Dexists - ADMeqMDB AngleSymmetry SAS;
fol Mexists - TriangleCong_DEF SegmentSymmetry;
qed;
`;;
let EuclidPropositionI_7short = theorem `;
A B C D a. ¬(A = B) ∧ Line a ∧ A ∈ a ∧ B ∈ a ⇒
¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒ seg A C ≡ seg A D
⇒ ¬(seg B C ≡ seg B D)
proof
intro_TAC ∀A B C D a, a_line, Csim_aD, ACeqAD;
¬(A = C) ∧ ¬(A = D) [AnotCD] by fol a_line Csim_aD ∉;
assume seg B C ≡ seg B D [Con] by fol;
seg C B ≡ seg D B ∧ seg A B ≡ seg A B ∧ seg A D ≡ seg A D [segeqs] by fol - SegmentSymmetry a_line AnotCD SEGMENT C2Reflexive;
¬Collinear A C B ∧ ¬Collinear A D B [] by fol a_line I1 Csim_aD Collinear_DEF ∉;
A,C,BA,D,B [] by fol - ACeqAD segeqs SSS;
B A C ≡ ∡ B A D [] by fol - TriangleCong_DEF;
ray A D = ray A C [] by fol a_line Csim_aD - C4Uniqueness;
C ∈ ray A D ━ {A} ∧ D ∈ ray A D ━ {A} [] by fol AnotCD - EndpointInRay IN_DIFF IN_SING;
C = D [] by fol AnotCD SEGMENT - ACeqAD segeqs C1;
fol - Csim_aD;
qed;
`;;
let EuclidPropositionI_7Help = theorem `;
A B C D a. ¬(A = B) ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒
¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒ seg A C ≡ seg A D
C ∈ int_triangle D A BConvexQuadrilateral A B C D
⇒ ¬(seg B C ≡ seg B D)
proof
intro_TAC ∀A B C D a, notAB, a_line, Csim_aD, ACeqAD, Int_ConvQuad;
¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) [Distinct] by fol a_line Csim_aDSameSide_DEF;
case_split convex | CintDAB by fol Int_ConvQuad;
suppose ConvexQuadrilateral A B C D;
A ∈ int_angle B C DB ∈ int_angle C D ATetralateral A B C D [ABint] by fol - ConvexQuad_DEF Quadrilateral_DEF;
¬Collinear B C D ∧ ¬Collinear D C B ∧ ¬Collinear C B D ∧ ¬Collinear C D A ∧ ¬Collinear D A CAngle (∡ D C A) ∧ Angle (∡ C D B) [angCDB] by fol - Tetralateral_DEF CollinearSymmetry ANGLE;
C D A ≡ ∡ D C A [CDAeqDCA] by fol angCDB Distinct SEGMENT ACeqAD C2Symmetric IsoscelesCongBaseAngles;
A ∈ int_angle D C B ∧ ∡ D C A ≡ ∡ D C A ∧ ∡ C D B ≡ ∡ C D B [] by fol ABint InteriorAngleSymmetry angCDB ANGLE C5Reflexive;
D C A <_ang ∡ D C B ∧ ∡ C D B <_ang ∡ C D A [] by fol angCDB ABint - AngleOrdering_DEF;
C D B <_ang ∡ D C B [] by fol - angCDB CDAeqDCA AngleTrichotomy2 AngleOrderTransitivity;
¬(∡ D C B ≡ ∡ C D B) [] by fol - AngleTrichotomy1 angCDB ANGLE C5Symmetric;
fol angCDB - IsoscelesCongBaseAngles;
end;
suppose C ∈ int_triangle D A B;
C ∈ int_angle A D BC ∈ int_angle D A B [CintADB] by fol - IN_InteriorTriangle InteriorAngleSymmetry;
¬Collinear A D C ∧ ¬Collinear B D C [ADCncol] by fol CintADB InteriorEZHelp InteriorAngleSymmetry;
¬Collinear D A C ∧ ¬Collinear C D A ∧ ¬Collinear A C D ∧ ¬Collinear A D C [DACncol] by fol - CollinearSymmetry;
¬Collinear B C DAngle (∡ D C A) ∧ Angle (∡ C D B) ∧ ¬Collinear D C B [angCDB] by fol ADCncol - CollinearSymmetry ANGLE;
C D A ≡ ∡ D C A [CDAeqDCA] by fol DACncol Distinct ADCncol SEGMENT ACeqAD C2Symmetric IsoscelesCongBaseAngles;
consider E such that
DOpen (A, E) ∧ ¬(D = E) ∧ Collinear A D E [ADE] by fol Distinct B2' B1';
B ∈ int_angle C D ECollinear D A E [BintCDE] by fol CintADB - InteriorReflectionInterior CollinearSymmetry;
¬Collinear C D E [CDEncol] by fol DACncol - ADE NoncollinearityExtendsToLine;
consider F such that
FOpen (B, D) ∧ F ∈ ray A C ━ {A} [Fexists] by fol CintADB Crossbar_THM B1';
F ∈ int_angle B C D [FintBCD] by fol ADCncol CollinearSymmetry - ConverseCrossbar;
¬Collinear D C F [DCFncol] by fol Distinct ADCncol CollinearSymmetry Fexists B1' NoncollinearityExtendsToLine;
Collinear A C FF ∈ ray D B ━ {D} ∧ C ∈ int_angle A D F [] by fol Fexists IN_DIFF IN_SING IN_Ray B1' IntervalRayEZ CintADB InteriorWellDefined;
COpen (A, F) [] by fol - AlternateConverseCrossbar;
A D C suppl ∡ C D E ∧ ∡ A C D suppl ∡ D C F [] by fol ADE DACncol - SupplementaryAngles_DEF;
C D E ≡ ∡ D C F [CDEeqDCF] by fol - CDAeqDCA AngleSymmetry SupplementsCongAnglesCong;
C D B <_ang ∡ C D E [] by fol angCDB CDEncol BintCDE C5Reflexive AngleOrdering_DEF;
C D B <_ang ∡ D C F [CDBlessDCF] by fol - DCFncol ANGLE CDEeqDCF AngleTrichotomy2;
D C F <_ang ∡ D C B [] by fol DCFncol ANGLE angCDB FintBCD InteriorAngleSymmetry C5Reflexive AngleOrdering_DEF;
C D B <_ang ∡ D C B [] by fol CDBlessDCF - AngleOrderTransitivity;
¬(∡ D C B ≡ ∡ C D B) [] by fol - AngleTrichotomy1 angCDB CollinearSymmetry ANGLE C5Symmetric;
fol Distinct ADCncol CollinearSymmetry - IsoscelesCongBaseAngles;
end;
qed;
`;;
let EuclidPropositionI_7 = theorem `;
A B C D a. ¬(A = B) ⇒ Line a ∧ A ∈ a ∧ B ∈ a ⇒
¬(C = D) ∧ C ∉ a ∧ D ∉ a ∧ C,D same_side a ⇒
seg A C ≡ seg A D
⇒ ¬(seg B C ≡ seg B D)
proof
intro_TAC ∀A B C D a, notAB, a_line, Csim_aD, ACeqAD;
¬Collinear A B C ∧ ¬Collinear D A B [ABCncol] by fol a_line notAB Csim_aD NonCollinearRaa CollinearSymmetry;
¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ AOpen (C, D) [Distinct] by fol a_line Csim_aDSameSide_DEF;
¬Collinear A D C [ADCncol]
proof
assume Collinear A D C [Con] by fol;
C ∈ ray A D ━ {A} ∧ D ∈ ray A D ━ {A} ∧ seg A D ≡ seg A D [] by fol Distinct - IN_Ray EndpointInRay IN_DIFF IN_SING SEGMENT C2Reflexive;
fol Distinct SEGMENT - ACeqAD C1 Csim_aD;
qed;
D,C same_side a [Dsim_aC] by fol a_line Csim_aD SameSideSymmetric;
seg A D ≡ seg A C ∧ seg B D ≡ seg B D [ADeqAC] by fol Distinct SEGMENT ACeqAD C2Symmetric C2Reflexive;
¬Collinear D A C ∧ ¬Collinear C D A ∧ ¬Collinear A C D ∧ ¬Collinear A D C [DACncol] by fol ADCncol CollinearSymmetry;
¬(seg B D ≡ seg B C) ⇒ ¬(seg B C ≡ seg B D) [BswitchDC] by fol Distinct SEGMENT C2Symmetric;
case_split BDCcol | BDCncol by fol -;
suppose Collinear B D C;
BOpen (C, D) ∧ C ∈ ray B D ━ {B} ∧ D ∈ ray B D ━ {B} [] by fol a_line Csim_aD SameSide_DEFDistinct - IN_Ray Distinct IN_DIFF IN_SING EndpointInRay;
fol Distinct SEGMENT - ACeqAD ADeqAC C1 Csim_aD;
end;
suppose ¬Collinear B D C;
Tetralateral A B C D [] by fol notAB Distinct Csim_aD ABCncol - CollinearSymmetry DACncol Tetralateral_DEF;
ConvexQuadrilateral A B C DC ∈ int_triangle D A B
ConvexQuadrilateral A B D CD ∈ int_triangle C A B [] by fol - a_line Csim_aD FourChoicesTetralateral InteriorTriangleSymmetry;
fol notAB a_line Csim_aD Dsim_aC ACeqAD ADeqAC - EuclidPropositionI_7Help BswitchDC;
end;
qed;
`;;
let EuclidPropositionI_11 = theorem `;
A B. ¬(A = B) ⇒ ∃F. Right (∡ A B F)
proof
intro_TAC ∀A B, notAB;
consider C such that
BOpen (A, C) ∧ seg B C ≡ seg B A [ABC] by fol notAB SEGMENT C1OppositeRay;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ Collinear A B C [Distinct] by fol ABC B1';
seg B A ≡ seg B C [BAeqBC] by fol - SEGMENT ABC C2Symmetric;
consider F such that
¬Collinear A F C ∧ seg F A ≡ seg F C [Fexists] by fol Distinct IsoscelesExists;
¬Collinear B F A ∧ ¬Collinear B F C [BFAncol] by fol - CollinearSymmetry Distinct NoncollinearityExtendsToLine;
¬Collinear A B FAngle (∡ A B F) [angABF] by fol BFAncol CollinearSymmetry ANGLE;
A B F suppl ∡ F B C [ABFsuppl] by fol - ABC SupplementaryAngles_DEF;
¬(B = F) ∧ seg B F ≡ seg B F [] by fol BFAncol NonCollinearImpliesDistinct SEGMENT C2Reflexive;
B,F,AB,F,C [] by fol BFAncol - BAeqBC Fexists SSS;
A B F ≡ ∡ F B C [] by fol - TriangleCong_DEF AngleSymmetry;
fol angABF ABFsuppl - RightAngle_DEF;
qed;
`;;
let DropPerpendicularToLine = theorem `;
P l. Line l ∧ P ∉ l ⇒ ∃E Q. E ∈ l ∧ Q ∈ l ∧ Right (∡ P Q E)
proof
intro_TAC ∀P l, l_line;
consider A B such that
A ∈ l ∧ B ∈ l ∧ ¬(A = B) [ABl] by fol l_line I2;
¬Collinear B A P ∧ ¬Collinear P A B ∧ ¬(A = P) [BAPncol] by fol ABl l_line NonCollinearRaa CollinearSymmetry ∉;
Angle (∡ B A P) ∧ Angle (∡ P A B) [angBAP] by fol - ANGLE AngleSymmetry;
consider P' such that
¬(A = P') ∧ P' ∉ l ∧ ¬(P,P' same_side l) ∧ seg A P' ≡ seg A P ∧ ∡ B A P' ≡ ∡ B A P [P'exists] by simplify C4OppositeSide - ABl BAPncol l_line;
consider Q such that
Q ∈ l ∧ QOpen (P, P') ∧ Collinear A B Q [Qexists] by fol l_line - SameSide_DEF ABl Collinear_DEF;
¬Collinear B A P' [BAP'ncol] by fol l_line ABl I1 Collinear_DEF P'exists ∉;
B A P ≡ ∡ B A P' [BAPeqBAP'] by fol - ANGLE angBAP P'exists C5Symmetric;
E. E ∈ l ∧ ¬Collinear P Q E ∧ ∡ P Q E ≡ ∡ E Q P' []
proof
assume ¬(A = Q) [notAQ] by fol ABl BAPncol BAPeqBAP' AngleSymmetry;
seg A Q ≡ seg A Q ∧ seg A P ≡ seg A P' [APeqAP'] by fol - SEGMENT C2Reflexive BAPncol P'exists C2Symmetric;
¬Collinear Q A P' ∧ ¬Collinear Q A P [QAP'ncol] by fol notAQ l_line ABl Qexists P'exists NonCollinearRaa CollinearSymmetry;
Q A P ≡ ∡ Q A P' []
proof
case_split QAB | notQAB by fol - ∉;
suppose AOpen (Q, B);
B A P suppl ∡ P A Q ∧ ∡ B A P' suppl ∡ P' A Q [] by fol BAPncol BAP'ncol - B1' SupplementaryAngles_DEF;
fol - BAPeqBAP' SupplementsCongAnglesCong AngleSymmetry;
end;
suppose AOpen (Q, B);
Q ∈ ray A B ━ {A} [QrayAB_A] by fol ABl Qexists notQAB IN_Ray notAQ IN_DIFF IN_SING;
ray A Q = ray A B [] by fol - ABl RayWellDefined;
fol notAQ QrayAB_A - BAPeqBAP' Angle_DEF;
end;
qed;
Q,A,PQ,A,P' [] by fol QAP'ncol APeqAP' - SAS;
fol - TriangleCong_DEF AngleSymmetry ABl QAP'ncol CollinearSymmetry;
qed;
consider E such that
E ∈ l ∧ ¬Collinear P Q E ∧ ∡ P Q E ≡ ∡ E Q P' [Eexists] by fol -;
P Q E suppl ∡ E Q P'Right (∡ P Q E) [] by fol - Qexists SupplementaryAngles_DEF RightAngle_DEF;
fol Eexists Qexists -;
qed;
`;;
let EuclidPropositionI_14 = theorem `;
A B C D l. Line l ∧ A ∈ l ∧ B ∈ l ∧ ¬(A = B) ⇒
C ∉ l ∧ D ∉ l ∧ ¬(C,D same_side l) ⇒ ∡ C B A suppl ∡ A B D
BOpen (C, D)
proof
intro_TAC ∀A B C D l, l_line, Cnsim_lD, CBAsupplABD;
¬(B = C) ∧ ¬(B = D) ∧ ¬Collinear C B A [Distinct] by fol l_line Cnsim_lDI1 Collinear_DEF;
consider E such that
BOpen (C, E) [CBE] by fol Distinct B2';
E ∉ l ∧ ¬(C,E same_side l) [Csim_lE] by fol l_line ∉ - BetweenLinear Cnsim_lD SameSide_DEF;
D,E same_side l [Dsim_lE] by fol l_line Cnsim_lD - AtMost2Sides;
C B A suppl ∡ A B E [] by fol Distinct CBE SupplementaryAngles_DEF;
A B D ≡ ∡ A B E [] by fol CBAsupplABD - SupplementUnique;
ray B E = ray B D [] by fol l_line Csim_lE Cnsim_lD Dsim_lE - C4Uniqueness;
D ∈ ray B E ━ {B} [] by fol Distinct - EndpointInRay IN_DIFF IN_SING;
fol CBE - OppositeRaysIntersect1pointHelp B1';
qed;
`;;
(* Euclid's Proposition I.15 *)
let VerticalAnglesCong = theorem `;
A B O A' B'. ¬Collinear A O BOOpen (A, A') ∧ OOpen (B, B')
⇒ ∡ B O A' ≡ ∡ B' O A
proof
intro_TAC ∀A B O A' B', H1, H2;
A O B suppl ∡ B O A' [AOBsupplBOA'] by fol H1 H2 SupplementaryAngles_DEF;
B O A suppl ∡ A O B' [] by fol H1 CollinearSymmetry H2 SupplementaryAngles_DEF;
fol AOBsupplBOA' - AngleSymmetry SupplementUnique;
qed;
`;;
let EuclidPropositionI_16 = theorem `;
A B C D. ¬Collinear A B CCOpen (B, D)
⇒ ∡ B A C <_ang ∡ D C A
proof
intro_TAC ∀A B C D, H1 H2;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider l such that
Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol Distinct I1;
consider m such that
Line m ∧ B ∈ m ∧ C ∈ m [m_line] by fol Distinct I1;
D ∈ m [Dm] by fol m_line H2 BetweenLinear;
consider E such that
EOpen (A, C) ∧ seg A E ≡ seg E C [AEC] by fol Distinct MidpointExists;
¬(A = E) ∧ ¬(E = C) ∧ Collinear A E C ∧ ¬(B = E) [AECcol] by fol - B1' H1;
E ∈ l [El] by fol l_line AEC BetweenLinear;
consider F such that
EOpen (B, F) ∧ seg E F ≡ seg E B [BEF] by fol AECcol SEGMENT C1OppositeRay;
¬(B = E) ∧ ¬(B = F) ∧ ¬(E = F) ∧ Collinear B E F [BEF'] by fol BEF B1';
B ∉ l [notBl] by fol l_line Distinct I1 Collinear_DEF H1 ∉;
¬Collinear A E B ∧ ¬Collinear C E B [AEBncol] by fol AECcol l_line El notBl NonCollinearRaa CollinearSymmetry;
Angle (∡ B A E) [angBAE] by fol - CollinearSymmetry ANGLE;
¬Collinear C E F [CEFncol] by fol AEBncol BEF' CollinearSymmetry NoncollinearityExtendsToLine;
B E A ≡ ∡ F E C [BEAeqFEC] by fol AEBncol AEC B1' BEF VerticalAnglesCong;
seg E A ≡ seg E C ∧ seg E B ≡ seg E F [] by fol AEC SegmentSymmetry AECcol BEF' SEGMENT BEF C2Symmetric;
A,E,BC,E,F [] by fol AEBncol CEFncol - BEAeqFEC AngleSymmetry SAS;
B A E ≡ ∡ F C E [BAEeqFCE] by fol - TriangleCong_DEF;
¬Collinear E C D [ECDncol] by fol AEBncol H2 B1' CollinearSymmetry NoncollinearityExtendsToLine;
F ∉ l ∧ D ∉ l [notFl] by fol l_line El Collinear_DEF CEFncol - ∉;
F ∈ ray B E ━ {B} ∧ E ∉ m [] by fol BEF IntervalRayEZ m_line Collinear_DEF AEBncol ∉;
F ∉ m ∧ F,E same_side m [Fsim_mE] by fol m_line - RaySameSide;
¬(B,F same_side l) ∧ ¬(B,D same_side l) [] by fol El l_line BEF H2 SameSide_DEF;
F,D same_side l [] by fol l_line notBl notFl - AtMost2Sides;
F ∈ int_angle E C D [] by fol ECDncol l_line El m_line Dm notFl Fsim_mE - IN_InteriorAngle;
B A E <_ang ∡ E C D [BAElessECD] by fol angBAE ECDncol - BAEeqFCE AngleSymmetry AngleOrdering_DEF;
ray A E = ray A C ∧ ray C E = ray C A [] by fol AEC B1' IntervalRay;
B A C <_ang ∡ A C D [] by fol BAElessECD - Angle_DEF;
fol - AngleSymmetry;
qed;
`;;
let ExteriorAngle = theorem `;
A B C D. ¬Collinear A B CCOpen (B, D)
⇒ ∡ A B C <_ang ∡ A C D
proof
intro_TAC ∀A B C D, H1 H2;
¬(C = D) ∧ COpen (D, B) ∧ Collinear B C D [H2'] by fol H2 BetweenLinear B1';
¬Collinear B A C ∧ ¬(A = C) [BACncol] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct;
consider E such that
COpen (A, E) [ACE] by fol - B2';
¬(C = E) ∧ COpen (E, A) ∧ Collinear A C E [ACE'] by fol - B1';
¬Collinear A C D ∧ ¬Collinear D C E [DCEncol] by fol H1 CollinearSymmetry H2' - NoncollinearityExtendsToLine;
A B C <_ang ∡ E C B [ABClessECB] by fol BACncol ACE EuclidPropositionI_16;
E C B ≡ ∡ A C D [] by fol DCEncol ACE' H2' VerticalAnglesCong;
fol ABClessECB DCEncol ANGLE - AngleTrichotomy2;
qed;
`;;
let EuclidPropositionI_17 = theorem `;
A B C α β γ. ¬Collinear A B C ∧ α = ∡ A B C ∧ β = ∡ B C A
β suppl γ
⇒ α <_ang γ
proof
intro_TAC ∀A B C α β γ, H1, H2;
Angle γ [angγ] by fol H2 SupplementImpliesAngle;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
¬Collinear B A C ∧ ¬Collinear A C B [BACncol] by fol H1 CollinearSymmetry;
consider D such that
COpen (A, D) [ACD] by fol Distinct B2';
A B C <_ang ∡ D C B [ABClessDCB] by fol BACncol ACD EuclidPropositionI_16;
β suppl ∡ B C D [] by fol - H1 AngleSymmetry BACncol ACD SupplementaryAngles_DEF;
B C D ≡ γ [] by fol H2 - SupplementUnique;
fol ABClessDCB H1 AngleSymmetry angγ - AngleTrichotomy2;
qed;
`;;
let EuclidPropositionI_18 = theorem `;
A B C. ¬Collinear A B C ∧ seg A C <__ seg A B
⇒ ∡ A B C <_ang ∡ B C A
proof
intro_TAC ∀A B C, H1 H2;
¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider D such that
DOpen (A, B) ∧ seg A C ≡ seg A D [ADB] by fol Distinct SEGMENT H2 SegmentOrderingUse;
¬(D = A) ∧ ¬(D = B) ∧ DOpen (B, A) ∧ Collinear A D B ∧ ray B D = ray B A [ADB'] by fol - B1' IntervalRay;
D ∈ int_angle A C B ∧ ¬Collinear A C B [DintACB] by fol H1 CollinearSymmetry ADB ConverseCrossbar;
¬Collinear D A C ∧ ¬Collinear C B D ∧ ¬Collinear C D A [DACncol] by fol H1 CollinearSymmetry ADB' NoncollinearityExtendsToLine;
seg A D ≡ seg A C [] by fol ADB' Distinct SEGMENT ADB C2Symmetric;
C D A ≡ ∡ A C D [] by fol DACncol - IsoscelesCongBaseAngles AngleSymmetry;
C D A <_ang ∡ A C B [CDAlessACB] by fol DACncol ANGLE H1 DintACB - AngleOrdering_DEF;
B D C suppl ∡ C D A [] by fol DACncol CollinearSymmetry ADB' SupplementaryAngles_DEF;
C B D <_ang ∡ C D A [] by fol DACncol - EuclidPropositionI_17;
C B D <_ang ∡ A C B [] by fol - CDAlessACB AngleOrderTransitivity;
fol - ADB' Angle_DEF AngleSymmetry;
qed;
`;;
let EuclidPropositionI_19 = theorem `;
A B C. ¬Collinear A B C ∧ ∡ A B C <_ang ∡ B C A
⇒ seg A C <__ seg A B
proof
intro_TAC ∀A B C, H1 H2;
¬Collinear B A C ∧ ¬Collinear B C A ∧ ¬Collinear A C B [BACncol] by fol H1 CollinearSymmetry;
¬(A = B) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
assume ¬(seg A C <__ seg A B) [Con] by fol;
seg A B ≡ seg A C ∨ seg A B <__ seg A C [] by fol Distinct SEGMENT - SegmentTrichotomy;
case_split cong | less by fol -;
suppose seg A B ≡ seg A C;
C B A ≡ ∡ B C A [] by fol BACncol - IsoscelesCongBaseAngles;
fol - AngleSymmetry H2 AngleTrichotomy1;
end;
suppose seg A B <__ seg A C;
A C B <_ang ∡ C B A [] by fol BACncol - EuclidPropositionI_18;
fol H1 BACncol ANGLE - AngleSymmetry H2 AngleTrichotomy;
end;
qed;
`;;
let EuclidPropositionI_20 = theorem `;
A B C D. ¬Collinear A B CAOpen (B, D) ∧ seg A D ≡ seg A C
⇒ seg B C <__ seg B D
proof
intro_TAC ∀A B C D, H1, H2;
¬(B = D) ∧ ¬(A = D) ∧ AOpen (D, B) ∧ Collinear B A D ∧ ray D A = ray D B [BAD'] by fol H2 B1' IntervalRay;
¬Collinear C A D [CADncol] by fol H1 CollinearSymmetry BAD' NoncollinearityExtendsToLine;
¬Collinear D C B ∧ ¬Collinear B D C [DCBncol] by fol H1 CollinearSymmetry BAD' NoncollinearityExtendsToLine;
Angle (∡ C D A) [angCDA] by fol CADncol CollinearSymmetry ANGLE;
C D A ≡ ∡ D C A [CDAeqDCA] by fol CADncol CollinearSymmetry H2 IsoscelesCongBaseAngles;
A ∈ int_angle D C B [] by fol DCBncol BAD' ConverseCrossbar;
C D A <_ang ∡ D C B [] by fol angCDA DCBncol - CDAeqDCA AngleOrdering_DEF;
B D C <_ang ∡ D C B [] by fol - BAD' Angle_DEF AngleSymmetry;
fol DCBncol - EuclidPropositionI_19;
qed;
`;;
let EuclidPropositionI_21 = theorem `;
A B C D. ¬Collinear A B CD ∈ int_triangle A B C
⇒ ∡ A B C <_ang ∡ C D A
proof
intro_TAC ∀A B C D, H1 H2;
¬(B = A) ∧ ¬(B = C) ∧ ¬(A = C) [Distinct] by fol H1 NonCollinearImpliesDistinct;
D ∈ int_angle B A CD ∈ int_angle C B A [DintTri] by fol H2 IN_InteriorTriangle InteriorAngleSymmetry;
consider E such that
EOpen (B, C) ∧ E ∈ ray A D ━ {A} [BEC] by fol - Crossbar_THM;
¬(B = E) ∧ ¬(E = C) ∧ Collinear B E CCollinear A D E [BEC'] by fol - B1' IN_Ray IN_DIFF IN_SING;
ray B E = ray B CE ∈ ray B C ━ {B} [rBErBC] by fol BEC IntervalRay IntervalRayEZ;
D ∈ int_angle A B E [DintABE] by fol DintTri - InteriorAngleSymmetry InteriorWellDefined;
DOpen (A, E) [ADE] by fol BEC' - AlternateConverseCrossbar;
ray E D = ray E A [rEDrEA] by fol - B1' IntervalRay;
¬Collinear A B E ∧ ¬Collinear B E A ∧ ¬Collinear C B D ∧ ¬(A = D) [ABEncol] by fol DintABE IN_InteriorAngle CollinearSymmetry DintTri InteriorEZHelp;
¬Collinear E D C ∧ ¬Collinear C E D [EDCncol] by fol - CollinearSymmetry BEC' NoncollinearityExtendsToLine;
A B E <_ang ∡ A E C ∧ ∡ C E D = ∡ D E C [] by fol ABEncol BEC ExteriorAngle AngleSymmetry;
A B C <_ang ∡ C E D [ABClessAEC] by fol - rBErBC rEDrEA Angle_DEF;
C E D <_ang ∡ C D A [] by fol EDCncol ADE B1' ExteriorAngle;
fol ABClessAEC - AngleOrderTransitivity;
qed;
`;;
let AngleTrichotomy3 = theorem `;
∀α β γ. α <_ang β ∧ Angle γ ∧ γ ≡ α ⇒ γ <_ang β
proof
intro_TAC ∀α β γ, H1;
consider A O B G such that
Angle α ∧ ¬Collinear A O B ∧ β = ∡ A O BG ∈ int_angle A O B ∧ α ≡ ∡ A O G [H1'] by fol H1 AngleOrdering_DEF;
¬Collinear A O G [] by fol - InteriorEZHelp;
γ ≡ ∡ A O G [] by fol H1 H1' - ANGLE C5Transitive;
fol H1 H1' - AngleOrdering_DEF;
qed;
`;;
let InteriorCircleConvexHelp = theorem `;
O A B C. ¬Collinear A O CBOpen (A, C) ⇒
seg O A <__ seg O C ∨ seg O A ≡ seg O C
⇒ seg O B <__ seg O C
proof
intro_TAC ∀O A B C, H1, H2, H3;
¬Collinear O C A ∧ ¬Collinear C O A ∧ ¬(O = A) ∧ ¬(O = C) [H1'] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct;
ray A B = ray A C ∧ ray C B = ray C A [equal_rays] by fol H2 IntervalRay B1';
O C A <_ang ∡ C A O ∨ ∡ O C A ≡ ∡ C A O []
proof
assume seg O A ≡ seg O C [seg_eq] by fol H3 H1' EuclidPropositionI_18;
seg O C ≡ seg O A [] by fol H1' SEGMENT - C2Symmetric;
fol H1' - IsoscelesCongBaseAngles AngleSymmetry;
qed;
O C B <_ang ∡ B A O ∨ ∡ O C B ≡ ∡ B A O [] by fol - equal_rays Angle_DEF;
B C O <_ang ∡ O A B ∨ ∡ B C O ≡ ∡ O A B [BCOlessOAB] by fol - AngleSymmetry;
¬Collinear O A B ∧ ¬Collinear B C O ∧ ¬Collinear O C B [OABncol] by fol H1 CollinearSymmetry H2 B1' NoncollinearityExtendsToLine;
O A B <_ang ∡ O B C [] by fol - H2 ExteriorAngle;
B C O <_ang ∡ O B C [] by fol BCOlessOAB - AngleOrderTransitivity OABncol ANGLE - AngleTrichotomy3;
fol OABncol - AngleSymmetry EuclidPropositionI_19;
qed;
`;;
let InteriorCircleConvex = theorem `;
O R A B C. ¬(O = R) ⇒ BOpen (A, C) ⇒
A ∈ int_circle O RC ∈ int_circle O R
B ∈ int_circle O R
proof
intro_TAC ∀O R A B C, H1, H2, H3;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ BOpen (C, A) [H2'] by fol H2 B1';
(A = O ∨ seg O A <__ seg O R) ∧ (C = O ∨ seg O C <__ seg O R) [ACintOR] by fol H3 H1 IN_InteriorCircle;
case_split OAC | OnotAC by fol -;
suppose O = AO = C;
BOpen (O, C) ∨ BOpen (O, A) [] by fol - H2 B1';
seg O B <__ seg O A ∧ ¬(O = A) ∨ seg O B <__ seg O C ∧ ¬(O = C) [] by fol - B1' SEGMENT C2Reflexive SegmentOrdering_DEF;
seg O B <__ seg O R [] by fol - ACintOR SegmentOrderTransitivity;
fol - H1 IN_InteriorCircle;
end;
suppose ¬(O = A) ∧ ¬(O = C);
case_split AOCncol | AOCcol by fol -;
suppose ¬Collinear A O C;
seg O A <__ seg O C ∨ seg O A ≡ seg O C ∨ seg O C <__ seg O A [] by fol OnotAC SEGMENT SegmentTrichotomy;
seg O B <__ seg O C ∨ seg O B <__ seg O A [] by fol AOCncol H2 - InteriorCircleConvexHelp CollinearSymmetry B1';
fol OnotAC ACintOR - SegmentOrderTransitivity H1 IN_InteriorCircle;
end;
suppose Collinear A O C;
consider l such that
Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol H2' I1;
Collinear B A OCollinear B C O [OABCcol] by fol - H2 BetweenLinear H2' AOCcol CollinearLinear Collinear_DEF;
BOpen (O, A) ∧ BOpen (O, C) ⇒ B = O []
proof
intro_TAC Assumption;
O ∈ ray B A ∩ ray B C [] by fol H2' OABCcol - IN_Ray IN_INTER;
fol - H2 OppositeRaysIntersect1point IN_SING;
qed;
BOpen (O, A) ∨ BOpen (O, C) ∨ B = O [] by fol - ∉;
seg O B <__ seg O A ∨ seg O B <__ seg O CB = O [] by fol - B1' SEGMENT C2Reflexive SegmentOrdering_DEF;
seg O B <__ seg O RB = O [] by fol - ACintOR OnotAC SegmentOrderTransitivity;
fol - H1 IN_InteriorCircle;
end;
end;
qed;
`;;
let SegmentTrichotomy3 = theorem `;
∀s t u. s <__ t ∧ Segment u ∧ u ≡ s ⇒ u <__ t
proof
intro_TAC ∀s t u, H1;
consider C D X such that
Segment s ∧ t = seg C DXOpen (C, D) ∧ s ≡ seg C X ∧ ¬(C = X) [H1'] by fol H1 SegmentOrdering_DEF B1';
u ≡ seg C X [] by fol H1 - SEGMENT C2Transitive;
fol H1 H1' - SegmentOrdering_DEF;
qed;
`;;
let EuclidPropositionI_24Help = theorem `;
O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M
seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ ∡ D O' M <_ang ∡ A O C
seg O A <__ seg O C ∨ seg O A ≡ seg O C
⇒ seg D M <__ seg A C
proof
intro_TAC ∀O A C O' D M, H1, H2, H3, H4;
consider K such that
K ∈ int_angle A O C ∧ ∡ D O' M ≡ ∡ A O K [KintAOC] by fol H1 ANGLE H3 AngleOrderingUse;
¬(O = C) ∧ ¬(D = M) ∧ ¬(O' = M) ∧ ¬(O = K) [Distinct] by fol H1 NonCollinearImpliesDistinct - InteriorEZHelp;
consider B such that
B ∈ ray O K ━ {O} ∧ seg O B ≡ seg O C [BrOK] by fol Distinct SEGMENT - C1;
ray O B = ray O K [] by fol Distinct - RayWellDefined;
D O' M ≡ ∡ A O B [DO'MeqAOB] by fol KintAOC - Angle_DEF;
B ∈ int_angle A O C [BintAOC] by fol KintAOC BrOK WholeRayInterior;
¬(B = O) ∧ ¬Collinear A O B [AOBncol] by fol - InteriorEZHelp;
seg O C ≡ seg O B [OCeqOB] by fol Distinct - SEGMENT BrOK C2Symmetric;
seg O' M ≡ seg O B [] by fol Distinct SEGMENT AOBncol H2 - C2Transitive;
D,O',MA,O,B [] by fol H1 AOBncol H2 - DO'MeqAOB SAS;
seg D M ≡ seg A B [DMeqAB] by fol - TriangleCong_DEF;
consider G such that
GOpen (A, C) ∧ G ∈ ray O B ━ {O} ∧ ¬(G = O) [AGC] by fol BintAOC Crossbar_THM B1' IN_DIFF IN_SING;
Segment (seg O G) ∧ ¬(O = B) [notOB] by fol - SEGMENT BrOK IN_DIFF IN_SING;
seg O G <__ seg O C [] by fol H1 AGC H4 InteriorCircleConvexHelp;
seg O G <__ seg O B [] by fol - OCeqOB BrOK SEGMENT SegmentTrichotomy2 IN_DIFF IN_SING;
consider G' such that
G'Open (O, B) ∧ seg O G ≡ seg O G' [OG'B] by fol notOB - SegmentOrderingUse;
¬(G' = O) ∧ seg O G' ≡ seg O G'Segment (seg O G') [notG'O] by fol - B1' SEGMENT C2Reflexive SEGMENT;
G' ∈ ray O B ━ {O} [] by fol OG'B IntervalRayEZ;
G' = GGOpen (B, O) [] by fol notG'O notOB - AGC OG'B C1 B1';
ConvexQuadrilateral B A O C [] by fol H1 - AGC DiagonalsIntersectImpliesConvexQuad;
A ∈ int_angle O C BO ∈ int_angle C B AQuadrilateral B A O C [OintCBA] by fol - ConvexQuad_DEF;
A ∈ int_angle B C O [AintBCO] by fol - InteriorAngleSymmetry;
Tetralateral B A O C [] by fol OintCBA Quadrilateral_DEF;
¬Collinear C B A ∧ ¬Collinear B C O ∧ ¬Collinear C O B ∧ ¬Collinear C B O [BCOncol] by fol - Tetralateral_DEF CollinearSymmetry;
B C O ≡ ∡ C B O [BCOeqCBO] by fol - OCeqOB IsoscelesCongBaseAngles;
¬Collinear B C A ∧ ¬Collinear A C B [ACBncol] by fol AintBCO InteriorEZHelp CollinearSymmetry;
B C A ≡ ∡ B C AAngle (∡ B C A) ∧ ∡ C B O ≡ ∡ C B O [CBOref] by fol - ANGLE BCOncol C5Reflexive;
B C A <_ang ∡ B C O [] by fol - BCOncol ANGLE AintBCO AngleOrdering_DEF;
B C A <_ang ∡ C B O [BCAlessCBO] by fol - BCOncol ANGLE BCOeqCBO AngleTrichotomy2;
C B O <_ang ∡ C B A [] by fol BCOncol ANGLE OintCBA CBOref AngleOrdering_DEF;
A C B <_ang ∡ C B A [] by fol BCAlessCBO - AngleOrderTransitivity AngleSymmetry;
seg A B <__ seg A C [] by fol ACBncol - EuclidPropositionI_19;
fol - Distinct SEGMENT DMeqAB SegmentTrichotomy3;
qed;
`;;
let EuclidPropositionI_24 = theorem `;
O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M
seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ ∡ D O' M <_ang ∡ A O C
⇒ seg D M <__ seg A C
proof
intro_TAC ∀O A C O' D M, H1, H2, H3;
¬(O = A) ∧ ¬(O = C) ∧ ¬Collinear C O A ∧ ¬Collinear M O' D [Distinct] by fol H1 NonCollinearImpliesDistinct CollinearSymmetry;
seg O A ≡ seg O C ∨ seg O A <__ seg O C ∨ seg O C <__ seg O A [3pos] by fol - SEGMENT SegmentTrichotomy;
assume seg O C <__ seg O A [H4] by fol 3pos H1 H2 H3 EuclidPropositionI_24Help;
M O' D <_ang ∡ C O A [] by fol H3 AngleSymmetry;
fol Distinct H3 AngleSymmetry H2 H4 EuclidPropositionI_24Help SegmentSymmetry;
qed;
`;;
let EuclidPropositionI_25 = theorem `;
O A C O' D M. ¬Collinear A O C ∧ ¬Collinear D O' M
seg O' D ≡ seg O A ∧ seg O' M ≡ seg O C ⇒ seg D M <__ seg A C
⇒ ∡ D O' M <_ang ∡ A O C
proof
intro_TAC ∀O A C O' D M, H1, H2, H3;
¬(O = A) ∧ ¬(O = C) ∧ ¬(A = C) ∧ ¬(D = M) ∧ ¬(O' = D) ∧ ¬(O' = M) [Distinct] by fol H1 NonCollinearImpliesDistinct;
assume ¬(∡ D O' M <_ang ∡ A O C) [Contradiction] by fol;
D O' M ≡ ∡ A O C ∨ ∡ A O C <_ang ∡ D O' M [] by fol H1 ANGLE - AngleTrichotomy;
case_split Cong | Con by fol -;
suppose ∡ D O' M ≡ ∡ A O C;
D,O',MA,O,C [] by fol H1 H2 - SAS;
seg D M ≡ seg A C [] by fol - TriangleCong_DEF;
fol Distinct SEGMENT - H3 SegmentTrichotomy;
end;
suppose ∡ A O C <_ang ∡ D O' M;
seg O A ≡ seg O' D ∧ seg O C ≡ seg O' M [H2'] by fol Distinct SEGMENT H2 C2Symmetric;
seg A C <__ seg D M [] by fol H1 - Con EuclidPropositionI_24;
fol Distinct SEGMENT - H3 SegmentTrichotomy;
end;
qed;
`;;
let AAS = theorem `;
A B C A' B' C'. ¬Collinear A B C ∧ ¬Collinear A' B' C'
A B C ≡ ∡ A' B' C' ∧ ∡ B C A ≡ ∡ B' C' A' ⇒ seg A B ≡ seg A' B'
A,B,CA',B',C'
proof
intro_TAC ∀A B C A' B' C', H1, H2, H3;
¬(A = B) ∧ ¬(B = C) ∧ ¬(B' = C') [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider G such that
G ∈ ray B C ━ {B} ∧ seg B G ≡ seg B' C' [Gexists] by fol Distinct SEGMENT C1;
¬(G = B) ∧ BOpen (G, C) ∧ Collinear G B C [notGBC] by fol - IN_Ray CollinearSymmetry IN_DIFF IN_SING;
¬Collinear A B G ∧ ¬Collinear B G A [ABGncol] by fol H1 notGBC CollinearSymmetry NoncollinearityExtendsToLine;
ray B G = ray B C [] by fol Distinct Gexists RayWellDefined;
A B G = ∡ A B C [] by fol Distinct - Angle_DEF;
A,B,GA',B',C' [ABGA'B'C'] by fol H1 ABGncol H3 SegmentSymmetry H2 - Gexists SAS;
B G A ≡ ∡ B' C' A' [BGAeqB'C'A'] by fol - TriangleCong_DEF;
¬Collinear B C A ∧ ¬Collinear B' C' A' [BCAncol] by fol H1 CollinearSymmetry;
B' C' A' ≡ ∡ B C A ∧ ∡ B C A ≡ ∡ B C A [BCArefl] by fol - ANGLE H2 C5Symmetric C5Reflexive;
B G A ≡ ∡ B C A [BGAeqBCA] by fol ABGncol BCAncol ANGLE BGAeqB'C'A' - C5Transitive;
assume ¬(G = C) [notGC] by fol BGAeqBCA ABGA'B'C';
¬Collinear A C G ∧ ¬Collinear A G C [ACGncol] by fol H1 notGBC - CollinearSymmetry NoncollinearityExtendsToLine;
COpen (B, G) ∨ GOpen (C, B) [] by fol notGBC notGC Distinct B3' ∉;
case_split BCG | CGB by fol -;
suppose COpen (B, G) ;
COpen (G, B) ∧ ray G C = ray G B [rGCrBG] by fol - B1' IntervalRay;
A G C <_ang ∡ A C B [] by fol ACGncol - ExteriorAngle;
B G A <_ang ∡ B C A [] by fol - rGCrBG Angle_DEF AngleSymmetry AngleSymmetry;
fol ABGncol BCAncol ANGLE - AngleSymmetry BGAeqBCA AngleTrichotomy;
end;
suppose GOpen (C, B);
ray C G = ray C B ∧ ∡ A C G <_ang ∡ A G B [] by fol - IntervalRay ACGncol ExteriorAngle;
A C B <_ang ∡ B G A [] by fol - Angle_DEF AngleSymmetry;
B C A <_ang ∡ B C A [] by fol - BCAncol ANGLE BGAeqBCA AngleTrichotomy2 AngleSymmetry;
fol - BCArefl AngleTrichotomy1;
end;
qed;
`;;
let ParallelSymmetry = theorem `;
∀l k. l ∥ k ⇒ k ∥ l
by fol PARALLEL INTER_COMM`;;
let AlternateInteriorAngles = theorem `;
A B C E l m t. Line l ∧ A ∈ l ∧ E ∈ l ⇒
Line m ∧ B ∈ m ∧ C ∈ m ⇒ Line t ∧ A ∈ t ∧ B ∈ t ⇒
¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ⇒
¬(C,E same_side t) ⇒ ∡ E A B ≡ ∡ C B A
⇒ l ∥ m
proof
intro_TAC ∀A B C E l m t, l_line, m_line, t_line, Distinct, Cnsim_tE, AltIntAngCong;
¬Collinear E A B ∧ ¬Collinear C B A [EABncol] by fol t_line Distinct NonCollinearRaa CollinearSymmetry;
B ∉ l ∧ A ∉ m [notAmBl] by fol l_line m_line Collinear_DEF - ∉;
assume ¬(l ∥ m) [Con] by fol;
¬(l ∩ m = ∅) [] by fol - l_line m_line PARALLEL;
consider G such that
G ∈ l ∧ G ∈ m [Glm] by fol - MEMBER_NOT_EMPTY IN_INTER;
¬(G = A) ∧ ¬(G = B) ∧ Collinear B G CCollinear B C GCollinear A E GCollinear A G E [GnotAB] by fol - notAmBl ∉ m_line l_line Collinear_DEF;
¬Collinear A G B ∧ ¬Collinear B G AG ∉ t [AGBncol] by fol EABncol CollinearSymmetry - NoncollinearityExtendsToLine t_line Collinear_DEF ∉;
¬(E,C same_side t) [Ensim_tC] by fol t_line - Distinct Cnsim_tE SameSideSymmetric;
E ∈ l ━ {A} ∧ G ∈ l ━ {A} [] by fol l_line Glm Distinct GnotAB IN_DIFF IN_SING;
¬(G,E same_side t) []
proof
assume G,E same_side t [Gsim_tE] by fol;
AOpen (G, E) [notGAE] by fol t_line - SameSide_DEF ∉;
G ∈ ray A E ━ {A} [] by fol Distinct GnotAB notGAE IN_Ray GnotAB IN_DIFF IN_SING;
ray A G = ray A E [rAGrAE] by fol Distinct - RayWellDefined;
¬(C,G same_side t) [Cnsim_tG] by fol t_line AGBncol Distinct Gsim_tE Cnsim_tE SameSideTransitive;
C ∉ ray B G [notCrBG] by fol - IN_Ray Distinct t_line AGBncol RaySameSide Cnsim_tG IN_DIFF IN_SING ∉;
BOpen (C, G) [] by fol - GnotABIN_Ray;
G A B <_ang ∡ C B A [] by fol AGBncol notCrBG - B1' EuclidPropositionI_16;
E A B <_ang ∡ C B A [] by fol - rAGrAE Angle_DEF;
fol EABncol ANGLE AltIntAngCong - AngleTrichotomy1;
qed;
G,C same_side t [Gsim_tC] by fol t_line AGBncol Distinct - Cnsim_tE AtMost2Sides;
BOpen (G, C) [notGBC] by fol t_line - SameSide_DEF ∉;
G ∈ ray B C ━ {B} [] by fol Distinct GnotAB notGBC IN_Ray GnotAB IN_DIFF IN_SING;
ray B G = ray B C [rBGrBC] by fol Distinct - RayWellDefined;
C B A ≡ ∡ E A B [flipAltIntAngCong] by fol EABncol ANGLE AltIntAngCong C5Symmetric;
¬(E,G same_side t) [Ensim_tG] by fol t_line AGBncol Distinct Gsim_tC Ensim_tC SameSideTransitive;
E ∉ ray A G [notErAG] by fol - IN_Ray Distinct t_line AGBncol RaySameSide Ensim_tG IN_DIFF IN_SING ∉;
AOpen (E, G) [] by fol - GnotABIN_Ray;
G B A <_ang ∡ E A B [] by fol AGBncol notErAG - B1' EuclidPropositionI_16;
C B A <_ang ∡ E A B [] by fol - rBGrBC Angle_DEF;
fol EABncol ANGLE flipAltIntAngCong - AngleTrichotomy1;
qed;
`;;
let EuclidPropositionI_28 = theorem `;
A B C D E F G H l m t. Line l ∧ A ∈ l ∧ B ∈ l ∧ G ∈ l ⇒
Line m ∧ C ∈ m ∧ D ∈ m ∧ H ∈ m ⇒
Line t ∧ G ∈ t ∧ H ∈ t ⇒
G ∉ m ∧ H ∉ l ⇒
GOpen (A, B) ∧ HOpen (C, D) ⇒
GOpen (E, H) ∧ HOpen (F, G) ⇒
¬(D,A same_side t) ⇒
E G B ≡ ∡ G H D ∨ ∡ B G H suppl ∡ G H D
⇒ l ∥ m
proof
intro_TAC ∀A B C D E F G H l m t, l_line, m_line, t_line, notGmHl, H1, H2, H3, H4;
¬(A = G) ∧ ¬(G = B) ∧ ¬(H = D) ∧ ¬(E = G) ∧ ¬(G = H) ∧ Collinear A G BCollinear E G H [Distinct] by fol H1 H2 B1';
¬Collinear H G A ∧ ¬Collinear G H DA ∉ t ∧ D ∉ t [HGAncol] by fol Distinct l_line m_line notGmHl NonCollinearRaa CollinearSymmetry Collinear_DEF t_line ∉;
¬Collinear B G H ∧ ¬Collinear A G E ∧ ¬Collinear E G B [BGHncol] by fol - Distinct CollinearSymmetry NoncollinearityExtendsToLine;
A G H ≡ ∡ D H G []
proof
case_split EGBeqGHD | BGHeqGHD by fol H4;
suppose ∡ E G B ≡ ∡ G H D;
E G B ≡ ∡ H G A
Angle (∡ E G B) ∧ Angle (∡ H G A) ∧ Angle (∡ G H D) [boo] by fol BGHncol H1 H2 VerticalAnglesCong HGAncol ANGLE;
H G A ≡ ∡ E G B [] by fol - C5Symmetric;
H G A ≡ ∡ G H D [] by fol boo - EGBeqGHD C5Transitive;
fol - AngleSymmetry;
end;
suppose ∡ B G H suppl ∡ G H D;
B G H suppl ∡ H G A [] by fol BGHncol H1 B1' SupplementaryAngles_DEF;
fol - BGHeqGHD AngleSymmetry SupplementUnique AngleSymmetry;
end;
qed;
fol l_line m_line t_line Distinct HGAncol H3 - AlternateInteriorAngles;
qed;
`;;
let OppositeSidesCongImpliesParallelogram = theorem `;
A B C D. Quadrilateral A B C D
seg A B ≡ seg C D ∧ seg B C ≡ seg D A
Parallelogram A B C D
proof
intro_TAC ∀A B C D, H1, H2;
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧
¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF;
consider a c such that
Line a ∧ A ∈ a ∧ B ∈ a ∧
Line c ∧ C ∈ c ∧ D ∈ c [ac_line] by fol TetraABCD I1;
consider b d such that
Line b ∧ B ∈ b ∧ C ∈ b ∧
Line d ∧ D ∈ d ∧ A ∈ d [bd_line] by fol TetraABCD I1;
consider l such that
Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol TetraABCD I1;
consider m such that
Line m ∧ B ∈ m ∧ D ∈ m [m_line] by fol TetraABCD I1;
B ∉ l ∧ D ∉ l ∧ A ∉ m ∧ C ∉ m [notBDlACm] by fol l_line m_line TetraABCD Collinear_DEF ∉;
seg A C ≡ seg C A ∧ seg B D ≡ seg D B [seg_refl] by fol TetraABCD SEGMENT C2Reflexive SegmentSymmetry;
A,B,CC,D,A [] by fol TetraABCD H2 - SSS;
B C A ≡ ∡ D A C ∧ ∡ C A B ≡ ∡ A C D [BCAeqDAC] by fol - TriangleCong_DEF;
seg C D ≡ seg A B [CDeqAB] by fol TetraABCD SEGMENT H2 C2Symmetric;
B,C,DD,A,B [] by fol TetraABCD H2 - seg_refl SSS;
C D B ≡ ∡ A B D ∧ ∡ D B C ≡ ∡ B D A ∧ ∡ C B D ≡ ∡ A D B [CDBeqABD] by fol - TriangleCong_DEF AngleSymmetry;
¬(B,D same_side l) ∨ ¬(A,C same_side m) [] by fol H1 l_line m_line FiveChoicesQuadrilateral;
case_split Case1 | Ansim_mC by fol -;
suppose ¬(B,D same_side l);
¬(D,B same_side l) [] by fol l_line notBDlACm - SameSideSymmetric;
a ∥ c ∧ b ∥ d [] by fol ac_line l_line TetraABCD notBDlACm - BCAeqDAC AngleSymmetry AlternateInteriorAngles bd_line BCAeqDAC;
fol H1 ac_line bd_line - Parallelogram_DEF;
end;
suppose ¬(A,C same_side m);
b ∥ d [b∥d] by fol bd_line m_line TetraABCD notBDlACm - CDBeqABD AlternateInteriorAngles;
c ∥ a [] by fol ac_line m_line TetraABCD notBDlACm Ansim_mC CDBeqABD AlternateInteriorAngles;
fol H1 ac_line bd_line b∥d - ParallelSymmetry Parallelogram_DEF;
end;
qed;
`;;
let OppositeAnglesCongImpliesParallelogramHelp = theorem `;
A B C D a c. Quadrilateral A B C D
A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D
Line a ∧ A ∈ a ∧ B ∈ a ⇒ Line c ∧ C ∈ c ∧ D ∈ c
⇒ a ∥ c
proof
intro_TAC ∀A B C D a c, H1, H2, a_line, c_line;
¬(A = B) ∧ ¬(A = C) ∧ ¬(A = D) ∧ ¬(B = C) ∧ ¬(B = D) ∧ ¬(C = D) ∧
¬Collinear A B C ∧ ¬Collinear B C D ∧ ¬Collinear C D A ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF;
C D A ≡ ∡ A B C ∧ ∡ B C D ≡ ∡ D A B [H2'] by fol TetraABCD ANGLE H2 C5Symmetric;
consider l m such that
Line l ∧ A ∈ l ∧ C ∈ l ∧
Line m ∧ B ∈ m ∧ D ∈ m [lm_line] by fol TetraABCD I1;
consider b d such that
Line b ∧ B ∈ b ∧ C ∈ b ∧ Line d ∧ D ∈ d ∧ A ∈ d [bd_line] by fol TetraABCD I1;
A ∉ c ∧ B ∉ c ∧ A ∉ b ∧ D ∉ b ∧ B ∉ d ∧ C ∉ d [point_off_line] by fol c_line bd_line Collinear_DEF TetraABCD ∉;
¬(A ∈ int_triangle B C DB ∈ int_triangle C D A
C ∈ int_triangle D A BD ∈ int_triangle A B C) []
proof
assume A ∈ int_triangle B C DB ∈ int_triangle C D A
C ∈ int_triangle D A BD ∈ int_triangle A B C [Con] by fol;
B C D <_ang ∡ D A B ∨ ∡ C D A <_ang ∡ A B C
D A B <_ang ∡ B C D ∨ ∡ A B C <_ang ∡ C D A [] by fol TetraABCD - EuclidPropositionI_21;
fol - H2' H2 AngleTrichotomy1;
qed;
ConvexQuadrilateral A B C D [] by fol H1 lm_line - FiveChoicesQuadrilateral;
A ∈ int_angle B C DB ∈ int_angle C D A
C ∈ int_angle D A BD ∈ int_angle A B C [AintBCD] by fol - ConvexQuad_DEF;
B,A same_side c ∧ B,C same_side d [Bsim_cA] by fol c_line bd_line - InteriorUse;
A,D same_side b [Asim_bD] by fol bd_line c_line AintBCD InteriorUse;
assume ¬(a ∥ c) [Con] by fol;
consider G such that
G ∈ a ∧ G ∈ c [Gac] by fol - a_line c_line PARALLEL MEMBER_NOT_EMPTY IN_INTER;
Collinear A B GCollinear D G CCollinear C G D [ABGcol] by fol a_line - Collinear_DEF c_line;
¬(G = A) ∧ ¬(G = B) ∧ ¬(G = C) ∧ ¬(G = D) [GnotABCD] by fol Gac ABGcol TetraABCD CollinearSymmetry Collinear_DEF;
¬Collinear B G C ∧ ¬Collinear A D G [BGCncol] by fol c_line Gac GnotABCD point_off_line NonCollinearRaa CollinearSymmetry;
¬Collinear B C G ∧ ¬Collinear G B C ∧ ¬Collinear G A D ∧ ¬Collinear A G D [BCGncol] by fol - CollinearSymmetry;
G ∉ b ∧ G ∉ d [notGb] by fol bd_line Collinear_DEF BGCncol ∉;
GOpen (B, A) [notBGA] by fol Bsim_cA Gac SameSide_DEF ∉;
BOpen (A, G) [notABG]
proof
assume ¬(BOpen (A, G)) [Con] by fol;
BOpen (A, G) [ABG] by fol - ∉;
ray A B = ray A G [rABrAG] by fol - IntervalRay;
¬(A,G same_side b) [] by fol bd_line ABG SameSide_DEF;
¬(D,G same_side b) [] by fol bd_line point_off_line notGb Asim_bD - SameSideTransitive;
D ∉ ray C G [] by fol bd_line notGb - RaySameSide TetraABCD IN_DIFF IN_SING ∉;
COpen (D, G) [DCG] by fol GnotABCD ABGcol - IN_Ray ∉;
consider M such that
DOpen (C, M) [CDM] by fol TetraABCD B2';
DOpen (G, M) [GDM] by fol - B1' DCG TransitivityBetweennessHelp;
C D A suppl ∡ A D M ∧ ∡ A B C suppl ∡ C B G [] by fol TetraABCD CDM ABG SupplementaryAngles_DEF;
M D A ≡ ∡ G B C [MDAeqGBC] by fol - H2' SupplementsCongAnglesCong AngleSymmetry;
G A D <_ang ∡ M D A ∧ ∡ G B C <_ang ∡ D C B [] by fol BCGncol BGCncol GDM DCG B1' EuclidPropositionI_16;
G A D <_ang ∡ D C B [] by fol - BCGncol ANGLE MDAeqGBC AngleTrichotomy2 AngleOrderTransitivity;
D A B <_ang ∡ B C D [] by fol - rABrAG Angle_DEF AngleSymmetry;
fol - H2 AngleTrichotomy1;
qed;
AOpen (G, B) []
proof
assume ¬(AOpen (G, B)) [Con] by fol;
AOpen (B, G) [BAG] by fol - B1' ∉;
ray B A = ray B G [rBArBG] by fol - IntervalRay;
¬(B,G same_side d) [] by fol bd_line BAG SameSide_DEF;
¬(C,G same_side d) [] by fol bd_line point_off_line notGb Bsim_cA - SameSideTransitive;
C ∉ ray D G [] by fol bd_line notGb - RaySameSide TetraABCD IN_DIFF IN_SING ∉;
DOpen (C, G) [CDG] by fol GnotABCD ABGcol - IN_Ray ∉;
consider M such that
COpen (D, M) [DCM] by fol B2' TetraABCD;
COpen (G, M) [GCM] by fol - B1' CDG TransitivityBetweennessHelp;
B C D suppl ∡ M C B ∧ ∡ D A B suppl ∡ G A D [] by fol TetraABCD CollinearSymmetry DCM BAG SupplementaryAngles_DEF AngleSymmetry;
M C B ≡ ∡ G A D [GADeqMCB] by fol - H2' SupplementsCongAnglesCong;
G B C <_ang ∡ M C B ∧ ∡ G A D <_ang ∡ C D A [] by fol BGCncol GCM BCGncol CDG B1' EuclidPropositionI_16;
G B C <_ang ∡ C D A [] by fol - BCGncol ANGLE GADeqMCB AngleTrichotomy2 AngleOrderTransitivity;
A B C <_ang ∡ C D A [] by fol - rBArBG Angle_DEF;
fol - H2 AngleTrichotomy1;
qed;
fol TetraABCD GnotABCD ABGcol notABG notBGA - B3' ∉;
qed;
`;;
let OppositeAnglesCongImpliesParallelogram = theorem `;
A B C D. Quadrilateral A B C D
A B C ≡ ∡ C D A ∧ ∡ D A B ≡ ∡ B C D
Parallelogram A B C D
proof
intro_TAC ∀A B C D, H1, H2;
Quadrilateral B C D A [QuadBCDA] by fol H1 QuadrilateralSymmetry;
¬(A = B) ∧ ¬(B = C) ∧ ¬(C = D) ∧ ¬(D = A) ∧ ¬Collinear B C D ∧ ¬Collinear D A B [TetraABCD] by fol H1 Quadrilateral_DEF Tetralateral_DEF;
B C D ≡ ∡ D A B [H2'] by fol TetraABCD ANGLE H2 C5Symmetric;
consider a such that
Line a ∧ A ∈ a ∧ B ∈ a [a_line] by fol TetraABCD I1;
consider b such that
Line b ∧ B ∈ b ∧ C ∈ b [b_line] by fol TetraABCD I1;
consider c such that
Line c ∧ C ∈ c ∧ D ∈ c [c_line] by fol TetraABCD I1;
consider d such that
Line d ∧ D ∈ d ∧ A ∈ d [d_line] by fol TetraABCD I1;
fol H1 QuadBCDA H2 H2' a_line b_line c_line d_line OppositeAnglesCongImpliesParallelogramHelp Parallelogram_DEF;
qed;
`;;
let P = NewAxiom
`;∀P l. Line l ∧ P ∉ l ⇒ ∃! m. Line m ∧ P ∈ m ∧ m ∥ l`;;
NewConstant("μ",`:(point->bool)->real`);;
let AMa = NewAxiom
`;∀α. Angle α ⇒ &0 < μ α ∧ μ α < &180`;;
let AMb = NewAxiom
`;∀α. Right α ⇒ μ α = &90`;;
let AMc = NewAxiom
`;∀α β. Angle α ∧ Angle β ∧ α ≡ β ⇒ μ α = μ β`;;
let AMd = NewAxiom
`;∀A O B P. P ∈ int_angle A O B ⇒ μ (∡ A O B) = μ (∡ A O P) + μ (∡ P O B)`;;
let ConverseAlternateInteriorAngles = theorem `;
A B C E l m. Line l ∧ A ∈ l ∧ E ∈ l ⇒
Line m ∧ B ∈ m ∧ C ∈ m ⇒ Line t ∧ A ∈ t ∧ B ∈ t ⇒
¬(A = E) ∧ ¬(B = C) ∧ ¬(A = B) ∧ E ∉ t ∧ C ∉ t ⇒
¬(C,E same_side t) ⇒ l ∥ m
⇒ ∡ E A B ≡ ∡ C B A
proof
intro_TAC ∀A B C E l m, l_line, m_line, t_line, Distinct, Cnsim_tE, para_lm;
¬Collinear C B A [] by fol Distinct t_line NonCollinearRaa CollinearSymmetry;
A ∉ m ∧ Angle (∡ C B A) [notAm] by fol m_line - Collinear_DEFANGLE;
consider D such that
¬(A = D) ∧ D ∉ t ∧ ¬(C,D same_side t) ∧ seg A D ≡ seg A E ∧ ∡ B A D ≡ ∡ C B A [Dexists] by simplify C4OppositeSide - Distinct t_line;
consider k such that
Line k ∧ A ∈ k ∧ D ∈ k [k_line] by fol Distinct I1;
k ∥ m [] by fol - m_line t_line Dexists Distinct AngleSymmetry AlternateInteriorAngles;
k = l [] by fol m_line notAm l_line k_line - para_lm P;
D,E same_side t ∧ AOpen (D, E) ∧ Collinear A E D [] by fol t_line Distinct Dexists Cnsim_tE AtMost2Sides SameSide_DEF ∉ - k_line l_line Collinear_DEF;
ray A D = ray A E [] by fol Distinct - IN_Ray Dexists RayWellDefined IN_DIFF IN_SING;
fol - Dexists AngleSymmetry Angle_DEF;
qed;
`;;
let HilbertTriangleSum = theorem `;
A B C. ¬Collinear A B C
⇒ ∃E F. BOpen (E, F) ∧ C ∈ int_angle A B F
E B A ≡ ∡ C A B ∧ ∡ C B F ≡ ∡ B C A
proof
intro_TAC ∀A B C, ABCncol;
¬(A = B) ∧ ¬(A = C) ∧ ¬(B = C) ∧ ¬Collinear C A B [Distinct] by fol ABCncol NonCollinearImpliesDistinct CollinearSymmetry;
consider l such that
Line l ∧ A ∈ l ∧ C ∈ l [l_line] by fol Distinct I1;
consider x such that
Line x ∧ A ∈ x ∧ B ∈ x [x_line] by fol Distinct I1;
consider y such that
Line y ∧ B ∈ y ∧ C ∈ y [y_line] by fol Distinct I1;
C ∉ x [notCx] by fol x_line ABCncol Collinear_DEF ∉;
Angle (∡ C A B) [] by fol ABCncol CollinearSymmetry ANGLE;
consider E such that
¬(B = E) ∧ E ∉ x ∧ ¬(C,E same_side x) ∧ seg B E ≡ seg A B ∧ ∡ A B E ≡ ∡ C A B [Eexists] by simplify C4OppositeSide - Distinct x_line notCx;
consider m such that
Line m ∧ B ∈ m ∧ E ∈ m [m_line] by fol - I1;
E B A ≡ ∡ C A B [EBAeqCAB] by fol Eexists AngleSymmetry;
m ∥ l [para_lm] by fol m_line l_line x_line Eexists Distinct notCx - AlternateInteriorAngles;
m ∩ l = ∅ [ml0] by fol - PARALLEL;
C ∉ m ∧ A ∉ m [notACm] by fol - l_line INTER_COMM DisjointOneNotOther;
consider F such that
BOpen (E, F) [EBF] by fol Eexists B2';
¬(B = F) ∧ F ∈ m [EBF'] by fol - B1' m_line BetweenLinear;
¬Collinear A B FF ∉ x [ABFncol] by fol EBF' m_line notACm NonCollinearRaa CollinearSymmetry Collinear_DEF x_line ∉;
¬(E,F same_side x) ∧ ¬(E,F same_side y) [Ensim_yF] by fol EBF x_line y_line SameSide_DEF;
C,F same_side x [Csim_xF] by fol x_line notCx Eexists ABFncol Eexists - AtMost2Sides;
C,A same_side m [] by fol m_line l_line ml0 DisjointLinesImplySameSide;
C ∈ int_angle A B F [CintABF] by fol ABFncol x_line m_line EBF' notCx notACm Csim_xF - IN_InteriorAngle;
A ∈ int_angle C B E [] by fol EBF B1' - InteriorAngleSymmetry InteriorReflectionInterior;
A ∉ y ∧ A,E same_side y [Asim_yE] by fol y_line m_line - InteriorUse;
E ∉ y ∧ F ∉ y [notEFy] by fol y_line m_line EBF' Eexists EBF' I1 Collinear_DEF notACm ∉;
E,A same_side y [] by fol y_line - Asim_yE SameSideSymmetric;
¬(A,F same_side y) [Ansim_yF] by fol y_line notEFy Asim_yE - Ensim_yF SameSideTransitive;
F B C ≡ ∡ A C B [] by fol m_line EBF' l_line y_line EBF' Distinct notEFy Asim_yE Ansim_yF para_lm ConverseAlternateInteriorAngles;
fol EBF CintABF EBAeqCAB - AngleSymmetry;
qed;
`;;
let EuclidPropositionI_13 = theorem `;
A O B A'. ¬Collinear A O BOOpen (A, A')
⇒ μ (∡ A O B) + μ (∡ B O A') = &180
proof
intro_TAC ∀A O B A', H1 H2;
case_split RightAOB | notRightAOB by fol -;
suppose Right (∡ A O B);
Right (∡ B O A') ∧ μ (∡ A O B) = &90 ∧ μ (∡ B O A') = &90 [] by fol H1 H2 - RightImpliesSupplRight AMb;
real_arithmetic -;
end;
suppose ¬Right (∡ A O B);
¬(A = O) ∧ ¬(O = B) [Distinct] by fol H1 NonCollinearImpliesDistinct;
consider l such that
Line l ∧ O ∈ l ∧ A ∈ l ∧ A' ∈ l [l_line] by fol - I1 H2 BetweenLinear;
B ∉ l [notBl] by fol - Distinct I1 Collinear_DEF H1 ∉;
consider F such that
Right (∡ O A F) ∧ Angle (∡ O A F) [RightOAF] by fol Distinct EuclidPropositionI_11 RightImpliesAngle;
∃! r. Ray r ∧ ∃E. ¬(O = E) ∧ r = ray O EE ∉ l ∧ E,B same_side l ∧ ∡ A O E ≡ ∡ O A F [] by simplify C4 - Distinct l_line notBl;
consider E such that
¬(O = E) ∧ E ∉ l ∧ E,B same_side l ∧ ∡ A O E ≡ ∡ O A F [Eexists] by fol -;
¬Collinear A O E [AOEncol] by fol Distinct l_line - NonCollinearRaa CollinearSymmetry;
Right (∡ A O E) [RightAOE] by fol - ANGLE RightOAF Eexists CongRightImpliesRight;
Right (∡ E O A') ∧ μ (∡ A O E) = &90 ∧ μ (∡ E O A') = &90 [RightEOA'] by fol AOEncol H2 - RightImpliesSupplRight AMb;
¬(∡ A O B ≡ ∡ A O E) [] by fol notRightAOB H1 ANGLE RightAOE CongRightImpliesRight;
¬(∡ A O B = ∡ A O E) [] by fol H1 AOEncol ANGLE - C5Reflexive;
¬(ray O B = ray O E) [] by fol - Angle_DEF;
B ∉ ray O EOOpen (B, E) [] by fol Distinct - Eexists RayWellDefined IN_DIFF IN_SING ∉ l_line B1' SameSide_DEF;
¬Collinear O E B [] by fol - Eexists IN_Ray ∉;
E ∈ int_angle A O BB ∈ int_angle A O E [] by fol Distinct l_line Eexists notBl AngleOrdering - CollinearSymmetry InteriorAngleSymmetry;
case_split EintAOB | BintAOE by fol -;
suppose E ∈ int_angle A O B;
B ∈ int_angle E O A' [] by fol H2 - InteriorReflectionInterior;
μ (∡ A O B) = μ (∡ A O E) + μ (∡ E O B) ∧
μ (∡ E O A') = μ (∡ E O B) + μ (∡ B O A') [] by fol EintAOB - AMd;
real_arithmetic - RightEOA';
end;
suppose B ∈ int_angle A O E;
E ∈ int_angle B O A' [] by fol H2 - InteriorReflectionInterior;
μ (∡ A O E) = μ (∡ A O B) + μ (∡ B O E) ∧
μ (∡ B O A') = μ (∡ B O E) + μ (∡ E O A') [] by fol BintAOE - AMd;
real_arithmetic - RightEOA';
end;
end;
qed;
`;;
let TriangleSum = theorem `;
A B C. ¬Collinear A B C
⇒ μ (∡ A B C) + μ (∡ B C A) + μ (∡ C A B) = &180
proof
intro_TAC ∀A B C, ABCncol;
¬Collinear C A B ∧ ¬Collinear B C A [CABncol] by fol ABCncol CollinearSymmetry;
consider E F such that
BOpen (E, F) ∧ C ∈ int_angle A B F ∧ ∡ E B A ≡ ∡ C A B ∧ ∡ C B F ≡ ∡ B C A [EBF] by fol ABCncol HilbertTriangleSum;
¬Collinear C B F ∧ ¬Collinear A B FCollinear E B F ∧ ¬(B = E) [CBFncol] by fol - InteriorAngleSymmetry InteriorEZHelp IN_InteriorAngle B1' CollinearSymmetry;
¬Collinear E B A [EBAncol] by fol CollinearSymmetry - NoncollinearityExtendsToLine;
μ (∡ A B F) = μ (∡ A B C) + μ (∡ C B F) [μCintABF] by fol EBF AMd;
μ (∡ E B A) + μ (∡ A B F) = &180 [suppl180] by fol EBAncol EBF EuclidPropositionI_13;
μ (∡ C A B) = μ (∡ E B A) ∧ μ (∡ B C A) = μ (∡ C B F) [] by fol CABncol EBAncol CBFncol ANGLE EBF AMc;
real_arithmetic suppl180 μCintABF -;
qed;
`;;
let CircleConvex2_THM = theorem `;
O A B C. ¬Collinear A O BBOpen (A, C) ⇒
seg O A <__ seg O B ∨ seg O A ≡ seg O B
⇒ seg O B <__ seg O C
proof
intro_TAC ∀O A B C, H1, H2, H3;
¬Collinear O B A ∧ ¬Collinear B O A ∧ ¬Collinear O A B ∧ ¬(O = A) ∧ ¬(O = B) [H1'] by fol H1 CollinearSymmetry NonCollinearImpliesDistinct;
BOpen (C, A) ∧ ¬(C = A) ∧ ¬(C = B) ∧ Collinear A B CCollinear B A C [H2'] by fol H2 B1' CollinearSymmetry;
¬Collinear O B C ∧ ¬Collinear O C B [OBCncol] by fol H1' - NoncollinearityExtendsToLine CollinearSymmetry;
¬Collinear O A C [OABncol] by fol H1' H2' NoncollinearityExtendsToLine;
O C B <_ang ∡ O B A [OCBlessOBA] by fol OBCncol H2' ExteriorAngle;
O A B <_ang ∡ O B C [OABlessOBC] by fol H1' H2 ExteriorAngle;
O B A <_ang ∡ B A O ∨ ∡ O B A ≡ ∡ B A O []
proof
assume seg O A ≡ seg O B [Cong] by fol H3 H1' EuclidPropositionI_18;
seg O B ≡ seg O A [] by fol H1' SEGMENT - C2Symmetric;
fol H1' - IsoscelesCongBaseAngles AngleSymmetry;
qed;
O B A <_ang ∡ O A B ∨ ∡ O B A ≡ ∡ O A B [OBAlessOAB] by fol - AngleSymmetry;
O C B <_ang ∡ O B C [] by fol OCBlessOBA - OABlessOBC OBCncol H1' OABncol OBCncol ANGLE - AngleOrderTransitivity AngleTrichotomy2;
fol OBCncol - AngleSymmetry EuclidPropositionI_19;
qed;
`;;