Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.95 kB
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* Definitions of FunctionSpace and FunctionComposition. A proof that the *)
(* Cartesian product satisfies the universal property that given functions *)
(* α ∈ M → A and β ∈ M → B, there is a unique γ ∈ M → A ∏ B whose *)
(* projections to A and B are f and g. *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
ParseAsInfix("∉",(11, "right"));;
ParseAsInfix("∏",(20, "right"));;
ParseAsInfix("∘",(20, "right"));;
ParseAsInfix("→",(13,"right"));;
(*
∉ |- ∀a l. a ∉ l ⇔ ¬(a ∈ l)
CartesianProduct
|- ∀X Y. X ∏ Y = {x,y | x ∈ X ∧ y ∈ Y}
FUNCTION |- ∀α. FUNCTION α ⇔
(∃f s t. α = t,f,s ∧
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x. x ∉ s ⇒ f x = (@y. T)))
SOURCE |- ∀α. SOURCE α = SND (SND α)
FUN |- ∀α. FUN α = FST (SND α)
TARGET |- ∀α. TARGET α = FST α
FunctionSpace
|- ∀s t. s → t = {α | FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α}
makeFunction
|- ∀t f s. makeFunction t f s = t,(λx. if x ∈ s then f x else @y. T),s
Projection1Function
|- ∀X Y. Pi1 X Y = makeFunction X FST (X ∏ Y)
Projection2Function
|- ∀X Y. Pi2 X Y = makeFunction Y SND (X ∏ Y)
FunctionComposition
|- ∀α β. α ∘ β = makeFunction (TARGET α) (FUN α o FUN β) (SOURCE β)
IN_CartesianProduct
|- ∀X Y x y. x,y ∈ X ∏ Y ⇔ x ∈ X ∧ y ∈ Y
CartesianFstSnd
|- ∀pair. pair ∈ X ∏ Y ⇒ FST pair ∈ X ∧ SND pair ∈ Y
FUNCTION_EQ
|- ∀α β. FUNCTION α ∧ FUNCTION β ∧ SOURCE α = SOURCE β ∧ FUN α = FUN β ∧
TARGET α = TARGET β ⇒ α = β
IN_FunctionSpace
|- ∀s t α. α ∈ s → t ⇔
FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α
makeFunction_EQ
|- ∀f g s t. (∀x. x ∈ s ⇒ f x = g x)
⇒ makeFunction t f s = makeFunction t g s
makeFunctionyieldsFUN
|- ∀α g t f s. α = makeFunction t f s ∧ g = FUN α
⇒ ∀x. x ∈ s ⇒ f x = g x
makeFunctionEq
|- ∀α β f g s t.
α = makeFunction t f s ∧ β = makeFunction t g s ∧
(∀x. x ∈ s ⇒ f x = g x) ⇒ α = β
FunctionSpaceOnSource
|- ∀α f s t. α ∈ s → t ∧ f = FUN α ⇒ (∀x. x ∈ s ⇒ f x ∈ t)
FunctionSpaceOnOffSource
|- ∀α f s t. α ∈ s → t ∧ f = FUN α
⇒ (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x. x ∉ s ⇒ f x = (@y. T))
ImpliesTruncatedFunctionSpace
|- ∀α s t f.
α = makeFunction t f s ∧ (∀x. x ∈ s ⇒ f x ∈ t)
⇒ α ∈ s → t
FunFunctionSpaceImplyFunction
|- ∀α s t f. α ∈ s → t ∧ f = FUN α ⇒ α = makeFunction t f s
UseFunctionComposition
|- ∀α β u f t g s.
α = makeFunction u f t ∧ β = makeFunction t g s ∧ β ∈ s → t
⇒ α ∘ β = makeFunction u (f o g) s
PairProjectionFunctions
|- ∀X Y. Pi1 X Y ∈ X ∏ Y → X ∧ Pi2 X Y ∈ X ∏ Y → Y
UniversalPropertyProduct
|- ∀M A B α β. α ∈ M → A ∧ β ∈ M → B
⇒ (∃!γ. γ ∈ M → A ∏ B ∧
Pi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β)
*)
let NOTIN = NewDefinition `;
∀a l. a ∉ l ⇔ ¬(a ∈ l)`;;
let CartesianProduct = NewDefinition `;
X Y. XY = {x,y | x ∈ X ∧ y ∈ Y}`;;
let FUNCTION = NewDefinition `;
FUNCTION α ⇔ ∃f s t. α = (t, f, s) ∧
(∀x. x IN s ⇒ f x IN t) ∧ ∀x. x ∉ s ⇒ f x = @y. T`;;
let SOURCE = NewDefinition `;
SOURCE α = SND (SND α)`;;
let FUN = NewDefinition `;
FUN α = FST (SND α)`;;
let TARGET = NewDefinition `;
TARGET α = FST α`;;
let FunctionSpace = NewDefinition `;
∀s t. s → t = {α | FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α}`;;
let makeFunction = NewDefinition `;
∀t f s. makeFunction t f s = (t, (λx. if x ∈ s then f x else @y. T), s)`;;
let Projection1Function = NewDefinition `;
Pi1 X Y = makeFunction X FST (XY)`;;
let Projection2Function = NewDefinition `;
Pi2 X Y = makeFunction Y SND (XY)`;;
let FunctionComposition = NewDefinition `;
∀α β. α ∘ β = makeFunction (TARGET α) (FUN α o FUN β) (SOURCE β)`;;
let IN_CartesianProduct = theorem `;
X Y x y. x,y ∈ XY ⇔ x ∈ X ∧ y ∈ Y
proof
rewrite IN_ELIM_THM CartesianProduct; fol PAIR_EQ; qed;
`;;
let IN_CartesianProduct = theorem `;
X Y x y. x,y ∈ XY ⇔ x ∈ X ∧ y ∈ Y
proof
rewrite IN_ELIM_THM CartesianProduct; fol PAIR_EQ; qed;
`;;
let CartesianFstSnd = theorem `;
∀pair. pair ∈ XYFST pair ∈ XSND pair ∈ Y
by rewrite FORALL_PAIR_THM PAIR_EQ IN_CartesianProduct`;;
let FUNCTION_EQ = theorem `;
∀α β. FUNCTION α ∧ FUNCTION β ∧ SOURCE α = SOURCE β ∧
FUN α = FUN β ∧ TARGET α = TARGET β
⇒ α = β
by simplify FORALL_PAIR_THM FUNCTION SOURCE TARGET FUN PAIR_EQ`;;
let IN_FunctionSpace = theorem `;
∀s t α. α ∈ s → t
FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α
by rewrite IN_ELIM_THM FunctionSpace`;;
let makeFunction_EQ = theorem `;
∀f g s t. (∀x. x ∈ s ⇒ f x = g x)
⇒ makeFunction t f s = makeFunction t g s
by simplify makeFunction ∉ FUN_EQ_THM`;;
let makeFunctionyieldsFUN = theorem `;
∀α g t f s. α = makeFunction t f s ∧ g = FUN α
⇒ ∀x. x ∈ s ⇒ f x = g x
by simplify makeFunction FORALL_PAIR_THM FUN PAIR_EQ`;;
let makeFunctionEq = theorem `;
∀α β f g s t. α = makeFunction t f s ∧ β = makeFunction t g s ∧
(∀x. x ∈ s ⇒ f x = g x) ⇒ α = β
by simplify FORALL_PAIR_THM makeFunction PAIR_EQ`;;
let FunctionSpaceOnSource = theorem `;
∀α f s t. α ∈ s → t ∧ f = FUN α
⇒ ∀x. x ∈ s ⇒ f x ∈ t
proof
rewrite FORALL_PAIR_THM IN_FunctionSpace FUNCTION SOURCE TARGET PAIR_EQ FUN;
fol; qed;
`;;
let FunctionSpaceOnOffSource = theorem `;
∀α f s t. α ∈ s → t ∧ f = FUN α
⇒ (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x. x ∉ s ⇒ f x = @y. T
proof
rewrite FORALL_PAIR_THM IN_FunctionSpace FUNCTION SOURCE TARGET PAIR_EQ FUN;
fol; qed;
`;;
let ImpliesTruncatedFunctionSpace = theorem `;
∀α s t f. α = makeFunction t f s ∧ (∀x. x ∈ s ⇒ f x ∈ t)
⇒ α ∈ s → t
proof
rewrite FORALL_PAIR_THM IN_FunctionSpace makeFunction FUNCTION SOURCE TARGET NOTIN PAIR_EQ;
fol;
qed;
`;;
let FunFunctionSpaceImplyFunction = theorem `;
∀α s t f. α ∈ s → t ∧ f = FUN α ⇒ α = makeFunction t f s
proof
rewrite FORALL_PAIR_THM IN_FunctionSpace makeFunction FUNCTION SOURCE TARGET FUN NOTIN PAIR_EQ;
fol FUN_EQ_THM;
qed;
`;;
let UseFunctionComposition = theorem `;
∀α β u f t g s. α = makeFunction u f t ∧
β = makeFunction t g s ∧ β ∈ s → t
⇒ α _o_ β = makeFunction u (f o g) s
proof
rewrite FORALL_PAIR_THM makeFunction FunctionComposition SOURCE TARGET FUN BETA_THM o_THM IN_FunctionSpace FUNCTION SOURCE TARGET NOTIN PAIR_EQ;
intro_TAC ∀[u'] [f'] [t'] [t1] [g1] [s1] [u] [f] [t] [g] [s],
Hα Hβ Hβ_st Hs Ht;
(∀x. x ∈ s ⇒ g x ∈ t) [g_st] by fol Hβ_st Hβ;
simplify Hα GSYM Hs Hβ g_st;
qed;
`;;
let PairProjectionFunctions = theorem `;
X Y. Pi1 X YXYXPi2 X YXYY
proof
intro_TAC ∀X Y;
∀pair. pair ∈ XYFST pair ∈ XSND pair ∈ Y [] by fol CartesianFstSnd;
fol Projection1Function Projection2Function - ImpliesTruncatedFunctionSpace;
qed;
`;;
let UniversalPropertyProduct = theorem `;
M A B α β. α ∈ MA ∧ β ∈ MB
⇒ ∃!γ. γ ∈ MABPi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β
proof
intro_TAC ∀M A B α β, H1;
consider f g such that f = FUN α ∧ g = FUN β [fgExist] by fol;
consider h such that h = λx. (f x,g x) [hExists] by fol;
∀x. x ∈ M ⇒ h x ∈ AB [hProd] by fol hExists IN_CartesianProduct H1 fgExist FunctionSpaceOnSource;
consider γ such that γ = makeFunction (AB) h MExists] by fol;
γ ∈ MABFunSpace] by fol - hProd ImpliesTruncatedFunctionSpace;
∀x. x ∈ M ⇒ (FST o h) x = f x ∧ (SND o h) x = g x [h_fg] by simplify hExists PAIR o_THM;
Pi1 A B ∘ γ = makeFunction A (FST o h) M
Pi2 A B ∘ γ = makeFunction B (SND o h) M [] by fol Projection1Function Projection2Function γExists γFunSpace UseFunctionComposition;
Pi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β [γWorks] by fol - h_fg makeFunction_EQ H1 fgExist FunFunctionSpaceImplyFunction;
∀θ. θ ∈ MABPi1 A B ∘ θ = α ∧ Pi2 A B ∘ θ = β ⇒ θ = γ []
proof
intro_TAC ∀θ, θWorks;
consider k such that k = FUN θ [kExists] by fol;
θ = makeFunction (AB) k MFUNk] by fol θWorks - FunFunctionSpaceImplyFunction;
α = makeFunction A (FST o k) M ∧ β = makeFunction B (SND o k) M [] by fol Projection1Function Projection2Function θFUNk θWorks UseFunctionComposition;
∀x. x ∈ M ⇒ f x = (FST o k) x ∧ g x = (SND o k) x [fg_k] by fol ISPECL [α; f; A; (FST o k); M] makeFunctionyieldsFUN ISPECL [β; g; B; (SND o k); M] makeFunctionyieldsFUN - fgExist;
∀x. x ∈ M ⇒ k x = ((FST o k) x, (SND o k) x) [] by fol PAIR o_THM;
∀x. x ∈ M ⇒ k x = (f x, g x) [] by fol - fg_k PAIR_EQ;
fol hExists θFUNk γExists - makeFunctionEq;
qed;
fol γFunSpace γWorks - EXISTS_UNIQUE_THM;
qed;
`;;