Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright, Bill Richter 2013 *) | |
(* Distributed under the same license as HOL Light *) | |
(* *) | |
(* Definitions of FunctionSpace and FunctionComposition. A proof that the *) | |
(* Cartesian product satisfies the universal property that given functions *) | |
(* α ∈ M → A and β ∈ M → B, there is a unique γ ∈ M → A ∏ B whose *) | |
(* projections to A and B are f and g. *) | |
needs "RichterHilbertAxiomGeometry/readable.ml";; | |
ParseAsInfix("∉",(11, "right"));; | |
ParseAsInfix("∏",(20, "right"));; | |
ParseAsInfix("∘",(20, "right"));; | |
ParseAsInfix("→",(13,"right"));; | |
(* | |
∉ |- ∀a l. a ∉ l ⇔ ¬(a ∈ l) | |
CartesianProduct | |
|- ∀X Y. X ∏ Y = {x,y | x ∈ X ∧ y ∈ Y} | |
FUNCTION |- ∀α. FUNCTION α ⇔ | |
(∃f s t. α = t,f,s ∧ | |
(∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x. x ∉ s ⇒ f x = (@y. T))) | |
SOURCE |- ∀α. SOURCE α = SND (SND α) | |
FUN |- ∀α. FUN α = FST (SND α) | |
TARGET |- ∀α. TARGET α = FST α | |
FunctionSpace | |
|- ∀s t. s → t = {α | FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α} | |
makeFunction | |
|- ∀t f s. makeFunction t f s = t,(λx. if x ∈ s then f x else @y. T),s | |
Projection1Function | |
|- ∀X Y. Pi1 X Y = makeFunction X FST (X ∏ Y) | |
Projection2Function | |
|- ∀X Y. Pi2 X Y = makeFunction Y SND (X ∏ Y) | |
FunctionComposition | |
|- ∀α β. α ∘ β = makeFunction (TARGET α) (FUN α o FUN β) (SOURCE β) | |
IN_CartesianProduct | |
|- ∀X Y x y. x,y ∈ X ∏ Y ⇔ x ∈ X ∧ y ∈ Y | |
CartesianFstSnd | |
|- ∀pair. pair ∈ X ∏ Y ⇒ FST pair ∈ X ∧ SND pair ∈ Y | |
FUNCTION_EQ | |
|- ∀α β. FUNCTION α ∧ FUNCTION β ∧ SOURCE α = SOURCE β ∧ FUN α = FUN β ∧ | |
TARGET α = TARGET β ⇒ α = β | |
IN_FunctionSpace | |
|- ∀s t α. α ∈ s → t ⇔ | |
FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α | |
makeFunction_EQ | |
|- ∀f g s t. (∀x. x ∈ s ⇒ f x = g x) | |
⇒ makeFunction t f s = makeFunction t g s | |
makeFunctionyieldsFUN | |
|- ∀α g t f s. α = makeFunction t f s ∧ g = FUN α | |
⇒ ∀x. x ∈ s ⇒ f x = g x | |
makeFunctionEq | |
|- ∀α β f g s t. | |
α = makeFunction t f s ∧ β = makeFunction t g s ∧ | |
(∀x. x ∈ s ⇒ f x = g x) ⇒ α = β | |
FunctionSpaceOnSource | |
|- ∀α f s t. α ∈ s → t ∧ f = FUN α ⇒ (∀x. x ∈ s ⇒ f x ∈ t) | |
FunctionSpaceOnOffSource | |
|- ∀α f s t. α ∈ s → t ∧ f = FUN α | |
⇒ (∀x. x ∈ s ⇒ f x ∈ t) ∧ (∀x. x ∉ s ⇒ f x = (@y. T)) | |
ImpliesTruncatedFunctionSpace | |
|- ∀α s t f. | |
α = makeFunction t f s ∧ (∀x. x ∈ s ⇒ f x ∈ t) | |
⇒ α ∈ s → t | |
FunFunctionSpaceImplyFunction | |
|- ∀α s t f. α ∈ s → t ∧ f = FUN α ⇒ α = makeFunction t f s | |
UseFunctionComposition | |
|- ∀α β u f t g s. | |
α = makeFunction u f t ∧ β = makeFunction t g s ∧ β ∈ s → t | |
⇒ α ∘ β = makeFunction u (f o g) s | |
PairProjectionFunctions | |
|- ∀X Y. Pi1 X Y ∈ X ∏ Y → X ∧ Pi2 X Y ∈ X ∏ Y → Y | |
UniversalPropertyProduct | |
|- ∀M A B α β. α ∈ M → A ∧ β ∈ M → B | |
⇒ (∃!γ. γ ∈ M → A ∏ B ∧ | |
Pi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β) | |
*) | |
let NOTIN = NewDefinition `; | |
∀a l. a ∉ l ⇔ ¬(a ∈ l)`;; | |
let CartesianProduct = NewDefinition `; | |
∀X Y. X ∏ Y = {x,y | x ∈ X ∧ y ∈ Y}`;; | |
let FUNCTION = NewDefinition `; | |
FUNCTION α ⇔ ∃f s t. α = (t, f, s) ∧ | |
(∀x. x IN s ⇒ f x IN t) ∧ ∀x. x ∉ s ⇒ f x = @y. T`;; | |
let SOURCE = NewDefinition `; | |
SOURCE α = SND (SND α)`;; | |
let FUN = NewDefinition `; | |
FUN α = FST (SND α)`;; | |
let TARGET = NewDefinition `; | |
TARGET α = FST α`;; | |
let FunctionSpace = NewDefinition `; | |
∀s t. s → t = {α | FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α}`;; | |
let makeFunction = NewDefinition `; | |
∀t f s. makeFunction t f s = (t, (λx. if x ∈ s then f x else @y. T), s)`;; | |
let Projection1Function = NewDefinition `; | |
Pi1 X Y = makeFunction X FST (X ∏ Y)`;; | |
let Projection2Function = NewDefinition `; | |
Pi2 X Y = makeFunction Y SND (X ∏ Y)`;; | |
let FunctionComposition = NewDefinition `; | |
∀α β. α ∘ β = makeFunction (TARGET α) (FUN α o FUN β) (SOURCE β)`;; | |
let IN_CartesianProduct = theorem `; | |
∀X Y x y. x,y ∈ X ∏ Y ⇔ x ∈ X ∧ y ∈ Y | |
proof | |
rewrite IN_ELIM_THM CartesianProduct; fol PAIR_EQ; qed; | |
`;; | |
let IN_CartesianProduct = theorem `; | |
∀X Y x y. x,y ∈ X ∏ Y ⇔ x ∈ X ∧ y ∈ Y | |
proof | |
rewrite IN_ELIM_THM CartesianProduct; fol PAIR_EQ; qed; | |
`;; | |
let CartesianFstSnd = theorem `; | |
∀pair. pair ∈ X ∏ Y ⇒ FST pair ∈ X ∧ SND pair ∈ Y | |
by rewrite FORALL_PAIR_THM PAIR_EQ IN_CartesianProduct`;; | |
let FUNCTION_EQ = theorem `; | |
∀α β. FUNCTION α ∧ FUNCTION β ∧ SOURCE α = SOURCE β ∧ | |
FUN α = FUN β ∧ TARGET α = TARGET β | |
⇒ α = β | |
by simplify FORALL_PAIR_THM FUNCTION SOURCE TARGET FUN PAIR_EQ`;; | |
let IN_FunctionSpace = theorem `; | |
∀s t α. α ∈ s → t | |
⇔ FUNCTION α ∧ s = SOURCE α ∧ t = TARGET α | |
by rewrite IN_ELIM_THM FunctionSpace`;; | |
let makeFunction_EQ = theorem `; | |
∀f g s t. (∀x. x ∈ s ⇒ f x = g x) | |
⇒ makeFunction t f s = makeFunction t g s | |
by simplify makeFunction ∉ FUN_EQ_THM`;; | |
let makeFunctionyieldsFUN = theorem `; | |
∀α g t f s. α = makeFunction t f s ∧ g = FUN α | |
⇒ ∀x. x ∈ s ⇒ f x = g x | |
by simplify makeFunction FORALL_PAIR_THM FUN PAIR_EQ`;; | |
let makeFunctionEq = theorem `; | |
∀α β f g s t. α = makeFunction t f s ∧ β = makeFunction t g s ∧ | |
(∀x. x ∈ s ⇒ f x = g x) ⇒ α = β | |
by simplify FORALL_PAIR_THM makeFunction PAIR_EQ`;; | |
let FunctionSpaceOnSource = theorem `; | |
∀α f s t. α ∈ s → t ∧ f = FUN α | |
⇒ ∀x. x ∈ s ⇒ f x ∈ t | |
proof | |
rewrite FORALL_PAIR_THM IN_FunctionSpace FUNCTION SOURCE TARGET PAIR_EQ FUN; | |
fol; qed; | |
`;; | |
let FunctionSpaceOnOffSource = theorem `; | |
∀α f s t. α ∈ s → t ∧ f = FUN α | |
⇒ (∀x. x ∈ s ⇒ f x ∈ t) ∧ ∀x. x ∉ s ⇒ f x = @y. T | |
proof | |
rewrite FORALL_PAIR_THM IN_FunctionSpace FUNCTION SOURCE TARGET PAIR_EQ FUN; | |
fol; qed; | |
`;; | |
let ImpliesTruncatedFunctionSpace = theorem `; | |
∀α s t f. α = makeFunction t f s ∧ (∀x. x ∈ s ⇒ f x ∈ t) | |
⇒ α ∈ s → t | |
proof | |
rewrite FORALL_PAIR_THM IN_FunctionSpace makeFunction FUNCTION SOURCE TARGET NOTIN PAIR_EQ; | |
fol; | |
qed; | |
`;; | |
let FunFunctionSpaceImplyFunction = theorem `; | |
∀α s t f. α ∈ s → t ∧ f = FUN α ⇒ α = makeFunction t f s | |
proof | |
rewrite FORALL_PAIR_THM IN_FunctionSpace makeFunction FUNCTION SOURCE TARGET FUN NOTIN PAIR_EQ; | |
fol FUN_EQ_THM; | |
qed; | |
`;; | |
let UseFunctionComposition = theorem `; | |
∀α β u f t g s. α = makeFunction u f t ∧ | |
β = makeFunction t g s ∧ β ∈ s → t | |
⇒ α _o_ β = makeFunction u (f o g) s | |
proof | |
rewrite FORALL_PAIR_THM makeFunction FunctionComposition SOURCE TARGET FUN BETA_THM o_THM IN_FunctionSpace FUNCTION SOURCE TARGET NOTIN PAIR_EQ; | |
intro_TAC ∀[u'] [f'] [t'] [t1] [g1] [s1] [u] [f] [t] [g] [s], | |
Hα Hβ Hβ_st Hs Ht; | |
(∀x. x ∈ s ⇒ g x ∈ t) [g_st] by fol Hβ_st Hβ; | |
simplify Hα GSYM Hs Hβ g_st; | |
qed; | |
`;; | |
let PairProjectionFunctions = theorem `; | |
∀X Y. Pi1 X Y ∈ X ∏ Y → X ∧ Pi2 X Y ∈ X ∏ Y → Y | |
proof | |
intro_TAC ∀X Y; | |
∀pair. pair ∈ X ∏ Y ⇒ FST pair ∈ X ∧ SND pair ∈ Y [] by fol CartesianFstSnd; | |
fol Projection1Function Projection2Function - ImpliesTruncatedFunctionSpace; | |
qed; | |
`;; | |
let UniversalPropertyProduct = theorem `; | |
∀M A B α β. α ∈ M → A ∧ β ∈ M → B | |
⇒ ∃!γ. γ ∈ M → A ∏ B ∧ Pi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β | |
proof | |
intro_TAC ∀M A B α β, H1; | |
consider f g such that f = FUN α ∧ g = FUN β [fgExist] by fol; | |
consider h such that h = λx. (f x,g x) [hExists] by fol; | |
∀x. x ∈ M ⇒ h x ∈ A ∏ B [hProd] by fol hExists IN_CartesianProduct H1 fgExist FunctionSpaceOnSource; | |
consider γ such that γ = makeFunction (A ∏ B) h M [γExists] by fol; | |
γ ∈ M → A ∏ B [γFunSpace] by fol - hProd ImpliesTruncatedFunctionSpace; | |
∀x. x ∈ M ⇒ (FST o h) x = f x ∧ (SND o h) x = g x [h_fg] by simplify hExists PAIR o_THM; | |
Pi1 A B ∘ γ = makeFunction A (FST o h) M ∧ | |
Pi2 A B ∘ γ = makeFunction B (SND o h) M [] by fol Projection1Function Projection2Function γExists γFunSpace UseFunctionComposition; | |
Pi1 A B ∘ γ = α ∧ Pi2 A B ∘ γ = β [γWorks] by fol - h_fg makeFunction_EQ H1 fgExist FunFunctionSpaceImplyFunction; | |
∀θ. θ ∈ M → A ∏ B ∧ Pi1 A B ∘ θ = α ∧ Pi2 A B ∘ θ = β ⇒ θ = γ [] | |
proof | |
intro_TAC ∀θ, θWorks; | |
consider k such that k = FUN θ [kExists] by fol; | |
θ = makeFunction (A ∏ B) k M [θFUNk] by fol θWorks - FunFunctionSpaceImplyFunction; | |
α = makeFunction A (FST o k) M ∧ β = makeFunction B (SND o k) M [] by fol Projection1Function Projection2Function θFUNk θWorks UseFunctionComposition; | |
∀x. x ∈ M ⇒ f x = (FST o k) x ∧ g x = (SND o k) x [fg_k] by fol ISPECL [α; f; A; (FST o k); M] makeFunctionyieldsFUN ISPECL [β; g; B; (SND o k); M] makeFunctionyieldsFUN - fgExist; | |
∀x. x ∈ M ⇒ k x = ((FST o k) x, (SND o k) x) [] by fol PAIR o_THM; | |
∀x. x ∈ M ⇒ k x = (f x, g x) [] by fol - fg_k PAIR_EQ; | |
fol hExists θFUNk γExists - makeFunctionEq; | |
qed; | |
fol γFunSpace γWorks - EXISTS_UNIQUE_THM; | |
qed; | |
`;; | |