Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
needs "Library/analysis.ml";; | |
needs "Library/transc.ml";; | |
let cheb = define | |
`(!x. cheb 0 x = &1) /\ | |
(!x. cheb 1 x = x) /\ | |
(!n x. cheb (n + 2) x = &2 * x * cheb (n + 1) x - cheb n x)`;; | |
let CHEB_INDUCT = prove | |
(`!P. P 0 /\ P 1 /\ (!n. P n /\ P(n + 1) ==> P(n + 2)) ==> !n. P n`, | |
GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!n. P n /\ P(n + 1)` (fun th -> MESON_TAC[th]) THEN | |
INDUCT_TAC THEN ASM_SIMP_TAC[ADD1; GSYM ADD_ASSOC] THEN | |
ASM_SIMP_TAC[ARITH]);; | |
let CHEB_COS = prove | |
(`!n x. cheb n (cos x) = cos(&n * x)`, | |
MATCH_MP_TAC CHEB_INDUCT THEN | |
REWRITE_TAC[cheb; REAL_MUL_LZERO; REAL_MUL_LID; COS_0] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[GSYM REAL_OF_NUM_ADD; REAL_MUL_LID; REAL_ADD_RDISTRIB] THEN | |
REWRITE_TAC[COS_ADD; COS_DOUBLE; SIN_DOUBLE] THEN | |
MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN CONV_TAC REAL_RING);; | |
let CHEB_RIPPLE = prove | |
(`!x. abs(x) <= &1 ==> abs(cheb n x) <= &1`, | |
REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN | |
MESON_TAC[CHEB_COS; ACS_COS; COS_BOUNDS]);; | |
let NUM_ADD2_CONV = | |
let add_tm = `(+):num->num->num` | |
and two_tm = `2` in | |
fun tm -> | |
let m = mk_numeral(dest_numeral tm -/ Int 2) in | |
let tm' = mk_comb(mk_comb(add_tm,m),two_tm) in | |
SYM(NUM_ADD_CONV tm');; | |
let CHEB_CONV = | |
let [pth0;pth1;pth2] = CONJUNCTS cheb in | |
let rec conv tm = | |
(GEN_REWRITE_CONV I [pth0; pth1] ORELSEC | |
(LAND_CONV NUM_ADD2_CONV THENC | |
GEN_REWRITE_CONV I [pth2] THENC | |
COMB2_CONV | |
(funpow 3 RAND_CONV ((LAND_CONV NUM_ADD_CONV) THENC conv)) | |
conv THENC | |
REAL_POLY_CONV)) tm in | |
conv;; | |
CHEB_CONV `cheb 8 x`;; | |
let CHEB_2N1 = prove | |
(`!n x. ((x - &1) * (cheb (2 * n + 1) x - &1) = | |
(cheb (n + 1) x - cheb n x) pow 2) /\ | |
(&2 * (x pow 2 - &1) * (cheb (2 * n + 2) x - &1) = | |
(cheb (n + 2) x - cheb n x) pow 2)`, | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN | |
MATCH_MP_TAC CHEB_INDUCT THEN | |
REWRITE_TAC[ARITH; cheb; CHEB_CONV `cheb 2 x`; CHEB_CONV `cheb 3 x`] THEN | |
REPEAT(CHANGED_TAC | |
(REWRITE_TAC[GSYM ADD_ASSOC; LEFT_ADD_DISTRIB; ARITH] THEN | |
REWRITE_TAC[ARITH_RULE `n + 5 = (n + 3) + 2`; | |
ARITH_RULE `n + 4 = (n + 2) + 2`; | |
ARITH_RULE `n + 3 = (n + 1) + 2`; | |
cheb])) THEN | |
CONV_TAC REAL_RING);; | |
let IVT_LEMMA1 = prove | |
(`!f. (!x. f contl x) | |
==> !x y. f(x) <= &0 /\ &0 <= f(y) ==> ?x. f(x) = &0`, | |
ASM_MESON_TAC[IVT; IVT2; REAL_LE_TOTAL]);; | |
let IVT_LEMMA2 = prove | |
(`!f. (!x. f contl x) /\ (?x. f(x) <= x) /\ (?y. y <= f(y)) ==> ?x. f(x) = x`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `\x. f x - x` IVT_LEMMA1) THEN | |
ASM_SIMP_TAC[CONT_SUB; CONT_X] THEN | |
SIMP_TAC[REAL_LE_SUB_LADD; REAL_LE_SUB_RADD; REAL_SUB_0; REAL_ADD_LID] THEN | |
ASM_MESON_TAC[]);; | |
let SARKOVSKII_TRIVIAL = prove | |
(`!f:real->real. (!x. f contl x) /\ (?x. f(f(f(x))) = x) ==> ?x. f(x) = x`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC IVT_LEMMA2 THEN ASM_REWRITE_TAC[] THEN | |
CONJ_TAC THEN MATCH_MP_TAC | |
(MESON[] `P x \/ P (f x) \/ P (f(f x)) ==> ?x:real. P x`) THEN | |
FIRST_ASSUM(UNDISCH_TAC o check is_eq o concl) THEN REAL_ARITH_TAC);; | |