Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let fib = define | |
`fib n = if n = 0 \/ n = 1 then 1 else fib(n - 1) + fib(n - 2)`;; | |
let fib2 = define | |
`(fib2 0 = 1) /\ | |
(fib2 1 = 1) /\ | |
(fib2 (n + 2) = fib2(n) + fib2(n + 1))`;; | |
let halve = define `halve (2 * n) = n`;; | |
let unknown = define `unknown n = unknown(n + 1)`;; | |
define | |
`!n. collatz(n) = if n <= 1 then n | |
else if EVEN(n) then collatz(n DIV 2) | |
else collatz(3 * n + 1)`;; | |
let fusc_def = define | |
`(fusc (2 * n) = if n = 0 then 0 else fusc(n)) /\ | |
(fusc (2 * n + 1) = if n = 0 then 1 else fusc(n) + fusc(n + 1))`;; | |
let fusc = prove | |
(`fusc 0 = 0 /\ | |
fusc 1 = 1 /\ | |
fusc (2 * n) = fusc(n) /\ | |
fusc (2 * n + 1) = fusc(n) + fusc(n + 1)`, | |
REWRITE_TAC[fusc_def] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
MP_TAC(INST [`0`,`n:num`] fusc_def) THEN ARITH_TAC);; | |
let binom = define | |
`(!n. binom(n,0) = 1) /\ | |
(!k. binom(0,SUC(k)) = 0) /\ | |
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;; | |
let BINOM_LT = prove | |
(`!n k. n < k ==> (binom(n,k) = 0)`, | |
INDUCT_TAC THEN INDUCT_TAC THEN REWRITE_TAC[binom; ARITH; LT_SUC; LT] THEN | |
ASM_SIMP_TAC[ARITH_RULE `n < k ==> n < SUC(k)`; ARITH]);; | |
let BINOM_REFL = prove | |
(`!n. binom(n,n) = 1`, | |
INDUCT_TAC THEN ASM_SIMP_TAC[binom; BINOM_LT; LT; ARITH]);; | |
let BINOM_FACT = prove | |
(`!n k. FACT n * FACT k * binom(n+k,k) = FACT(n + k)`, | |
INDUCT_TAC THEN REWRITE_TAC[FACT; ADD_CLAUSES; MULT_CLAUSES; BINOM_REFL] THEN | |
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT; MULT_CLAUSES; binom] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `SUC k`) THEN POP_ASSUM MP_TAC THEN | |
REWRITE_TAC[ADD_CLAUSES; FACT; binom] THEN CONV_TAC NUM_RING);; | |
let BINOMIAL_THEOREM = prove | |
(`!n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[EXP] THEN | |
REWRITE_TAC[NSUM_SING_NUMSEG; binom; SUB_REFL; EXP; MULT_CLAUSES] THEN | |
SIMP_TAC[NSUM_CLAUSES_LEFT; ADD1; ARITH_RULE `0 <= n + 1`; NSUM_OFFSET] THEN | |
ASM_REWRITE_TAC[EXP; binom; GSYM ADD1; GSYM NSUM_LMUL] THEN | |
REWRITE_TAC[RIGHT_ADD_DISTRIB; NSUM_ADD_NUMSEG; MULT_CLAUSES; SUB_0] THEN | |
MATCH_MP_TAC(ARITH_RULE `a = e /\ b = c + d ==> a + b = c + d + e`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[MULT_AC; SUB_SUC]; REWRITE_TAC[GSYM EXP]] THEN | |
SIMP_TAC[ADD1; SYM(REWRITE_CONV[NSUM_OFFSET]`nsum(m+1..n+1) (\i. f i)`)] THEN | |
REWRITE_TAC[NSUM_CLAUSES_NUMSEG; GSYM ADD1; LE_SUC; LE_0] THEN | |
SIMP_TAC[NSUM_CLAUSES_LEFT; LE_0] THEN | |
SIMP_TAC[BINOM_LT; LT; MULT_CLAUSES; ADD_CLAUSES; SUB_0; EXP; binom] THEN | |
SIMP_TAC[ARITH; ARITH_RULE `k <= n ==> SUC n - k = SUC(n - k)`; EXP] THEN | |
REWRITE_TAC[MULT_AC]);; | |