Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e DISCH_TAC;; | |
b();; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; | |
e(SIMP_TAC[]);; | |
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; | |
e DISCH_TAC;; | |
e(ASM_REWRITE_TAC[]);; | |
e(CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]));; | |
e(SIMP_TAC[]);; | |
e(ONCE_REWRITE_TAC[EQ_SYM_EQ]);; | |
e DISCH_TAC;; | |
e(ASM_REWRITE_TAC[]);; | |
e(CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
g `2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`;; | |
e(CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN | |
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; | |
let trivial = top_thm();; | |
let trivial = prove | |
(`2 <= n /\ n <= 2 ==> f(2,2) + n < f(n,n) + 7`, | |
CONV_TAC(REWRITE_CONV[LE_ANTISYM]) THEN | |
SIMP_TAC[] THEN ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC ARITH_RULE);; | |
let trivial = prove | |
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, | |
REPEAT GEN_TAC THEN MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN | |
MP_TAC(SPECL [`x:real`; `--y`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; | |
let trivial = prove | |
(`!x y:real. &0 < x * y ==> (&0 < x <=> &0 < y)`, | |
MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THEN REPEAT GEN_TAC THEN | |
MP_TAC(SPECL [`--x`; `y:real`] REAL_LE_MUL) THEN REAL_ARITH_TAC);; | |
let SUM_OF_NUMBERS = prove | |
(`!n. nsum(1..n) (\i. i) = (n * (n + 1)) DIV 2`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |
let SUM_OF_SQUARES = prove | |
(`!n. nsum(1..n) (\i. i * i) = (n * (n + 1) * (2 * n + 1)) DIV 6`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |
let SUM_OF_CUBES = prove | |
(`!n. nsum(1..n) (\i. i*i*i) = (n * n * (n + 1) * (n + 1)) DIV 4`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);; | |