Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(*---------------------------------------------------------------------------*) | |
(* | |
File: mk_leadsto.ml | |
Description: This file defines LEADSTO and the theorems and corrollaries | |
described in [CM88]. | |
Author: (c) Copyright 1990-2008 by Flemming Andersen | |
Date: July 24. 1990 | |
Updated: November 11, 1991 (including LUB) | |
Updated: October 3, 1992 (including state space restriction) | |
Last Update: December 30, 2007 | |
*) | |
(*---------------------------------------------------------------------------*) | |
(* | |
We want to define a function LeadstoRel, which satisfies the three | |
properties of the given axiomatic definition of LEADSTO: | |
p ensures q in Pr | |
------------------- (1) | |
p leadsto q in Pr | |
p leadsto q in Pr, q leadsto r in Pr | |
-------------------------------------- (2) | |
p leadsto r in Pr | |
!i. (p i) leadsto q in Pr | |
------------------------- (3) | |
(?i. p i) leadsto q in Pr | |
*) | |
let LUB = new_definition | |
`LUB (P:('a->bool)->bool) = \s:'a. ?p. (P p) /\ p s`;; | |
let IN = new_infix_definition | |
("In", "<=>", | |
`In (p:'a->bool) (P:('a->bool)->bool) = P p`, TL_FIX);; | |
let LeadstoRel = new_definition | |
(`LeadstoRel R Pr = | |
!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (R p r Pr /\ R r q Pr) ==> R p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p. (p In P) ==> R p q Pr) ==> R p q Pr)`);; | |
(* | |
Now we may define LEADSTO: | |
*) | |
let LEADSTO = new_infix_definition | |
("LEADSTO", "<=>", | |
(`LEADSTO (p:'a->bool) q Pr = (!R. (LeadstoRel R Pr) ==> (R p q Pr))`), | |
TL_FIX);; | |
(* | |
Prove that the given axioms 1, 2, 3 are really theorems for the family | |
*) | |
(* Prove: | |
!P Q Pr. (P ENSURES Q)Pr ==> (P LEADSTO Q)Pr | |
*) | |
let LEADSTO_thm0 = prove_thm | |
("LEADSTO_thm0", | |
(`!(p:'a->bool) q Pr. (p ENSURES q) Pr ==> (p LEADSTO q)Pr`), | |
REWRITE_TAC [LEADSTO; LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
(* Prove: | |
!P Q R Pr. | |
(P LEADSTO Q)Pr /\ (Q LEADSTO R)Pr ==> (P LEADSTO R)Pr | |
*) | |
let LEADSTO_thm1 = prove_thm | |
("LEADSTO_thm1", | |
(`!(p:'a->bool) r q Pr. | |
(p LEADSTO r)Pr /\ (r LEADSTO q)Pr ==> (p LEADSTO q) Pr`), | |
REWRITE_TAC [LEADSTO; LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
(* Prove: | |
!P Q R Pr. | |
(P ENSURES Q)Pr /\ (Q LEADSTO R)Pr ==> (P LEADSTO R)Pr | |
*) | |
let LEADSTO_thm2 = prove_thm | |
("LEADSTO_thm2", | |
(`!(p:'a->bool) r q Pr. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr ==> (p LEADSTO q) Pr`), | |
REWRITE_TAC [LEADSTO; LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
(* Prove: | |
!P Q R Pr. | |
(P ENSURES Q)Pr /\ (Q ENSURES R)Pr ==> (P LEADSTO R)Pr | |
*) | |
let LEADSTO_thm2a = prove_thm | |
("LEADSTO_thm2a", | |
(`!(p:'a->bool) r q Pr. | |
(p ENSURES r)Pr /\ (r ENSURES q)Pr ==> (p LEADSTO q) Pr`), | |
REWRITE_TAC [LEADSTO; LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
(* Prove: | |
!P q Pr. (!i. (P i) LEADSTO q)Pr ==> ((( ?* ) P) LEADSTO q)Pr | |
*) | |
let LEADSTO_thm3_lemma01 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. | |
p In P ==> | |
(!R. | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. | |
(p = LUB P) /\ (!p'. p' In P ==> R p' q Pr) ==> R p q Pr)) ==> | |
R p q Pr)) | |
==> | |
(!p:'a->bool. | |
p In P ==> | |
((!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. | |
(p = LUB P) /\ (!p'. p' In P ==> R p' q Pr) ==> R p q Pr)) ==> | |
R p q Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm3 = prove_thm | |
("LEADSTO_thm3", | |
(`!p (P:('a->bool)->bool) q Pr. | |
((p = LUB P) /\ (!p. (p In P) ==> (p LEADSTO q)Pr)) ==> (p LEADSTO q)Pr`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO;LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (GEN_ALL (REWRITE_RULE[ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> R p' q Pr) ==> R p q Pr)`)] | |
(SPEC_ALL (UNDISCH (SPEC_ALL LEADSTO_thm3_lemma01))))) THEN | |
RES_TAC);; | |
let LEADSTO_thm3a = prove_thm | |
("LEADSTO_thm3a", | |
(`!(P:('a->bool)->bool) q Pr. | |
(!p. (p In P) ==> (p LEADSTO q)Pr) ==> ((LUB P) LEADSTO q)Pr`), | |
REPEAT GEN_TAC THEN | |
ACCEPT_TAC (SPEC_ALL | |
(REWRITE_RULE [] (SPECL | |
[(`LUB (P:('a->bool)->bool)`); (`P:('a->bool)->bool`)] LEADSTO_thm3))));; | |
let LEADSTO_thm3c_lemma01 = TAC_PROOF | |
(([], | |
(`!p:'a->bool. p In (\p. ?i. p = P (i:num)) = (?i. p = P i)`)), | |
REWRITE_TAC [IN] THEN | |
BETA_TAC THEN | |
REWRITE_TAC []);; | |
let LEADSTO_thm3c_lemma02 = TAC_PROOF | |
(([], | |
(`!(P:num->'a->bool) q i. | |
((?i'. P i = P i') ==> q) = (!i'. (P i = P i') ==> q)`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_CASES_TAC (`?i'. (P:num->'a->bool) i = P i'`) THEN | |
RES_TAC | |
; | |
ACCEPT_TAC (REWRITE_RULE [SYM (ASSUME (`(P:num->'a->bool) i = P i'`))] | |
(SPEC_ALL (ASSUME (`!i'. ((P:num->'a->bool) i = P i') ==> q`)))) | |
]);; | |
let LEADSTO_thm3c_lemma03 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. (?i. p = P i) ==> (p LEADSTO q)Pr) = | |
(!i:num. ((P i) LEADSTO q)Pr)`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`i:num`) (REWRITE_RULE | |
[LEADSTO_thm3c_lemma02] (SPEC (`(P:num->'a->bool)i`) (ASSUME | |
(`!p:'a->bool. (?i:num. p = P i) ==> (p LEADSTO q)Pr`)))))) | |
; | |
ASM_REWRITE_TAC [] | |
]);; | |
let LEADSTO_thm3c_lemma04 = TAC_PROOF | |
(([], | |
(`!s. ((?*) (P:num->'a->bool))s <=> (LUB(\p. ?i. p = P i))s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [EXISTS_def; LUB] THEN | |
BETA_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`(P:num->'a->bool)x`) THEN | |
ASM_REWRITE_TAC [] THEN | |
EXISTS_TAC (`x:num`) THEN | |
REFL_TAC | |
; | |
EXISTS_TAC (`i:num`) THEN | |
ACCEPT_TAC (ONCE_REWRITE_RULE [ASSUME (`p = (P:num->'a->bool)i`)] | |
(ASSUME (`(p:'a->bool) s`))) | |
]);; | |
let LEADSTO_thm3c = prove_thm | |
("LEADSTO_thm3c", | |
(`!(P:num->'a->bool) q Pr. | |
(!i. ((P i) LEADSTO q)Pr) ==> (((?*) P) LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm3c_lemma03] | |
(REWRITE_RULE [LEADSTO_thm3c_lemma01] (ISPEC | |
(`\p. ?i. (p = (P:num->'a->bool)i)`) LEADSTO_thm3a))) THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [REWRITE_RULE [ETA_AX] (MK_ABS LEADSTO_thm3c_lemma04)]);; | |
(* Prove: | |
!p1 p2 q Pr. | |
(p1 LEADSTO q)Pr /\ (p2 LEADSTO q)Pr ==> ((p1 \/* p2) LEADSTO q)Pr | |
*) | |
(* | |
To prove this we need some general lemmas about expressing two known | |
relations as one relation: | |
*) | |
(* | |
|- !p1 p2 s. (p1 \/* p2)s = LUB(\p. (p = p1) \/ (p = p2))s | |
*) | |
let LEADSTO_thm4_lemma1a = TAC_PROOF | |
(([], | |
(`!(p1:'a->bool) p2 s. | |
(p1 \/* p2) s = (LUB (\p. (p = p1) \/ (p = p2))) s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LUB; OR_def ] THEN | |
BETA_TAC THEN | |
EQ_TAC THENL | |
[ | |
STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`p1:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
; | |
EXISTS_TAC (`p2:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
] | |
; | |
STRIP_TAC THENL | |
[ | |
REWRITE_TAC [REWRITE_RULE [ASSUME (`(p:'a->bool) = p1`)] (ASSUME | |
(`(p:'a->bool) s`))] | |
; | |
REWRITE_TAC [REWRITE_RULE [ASSUME (`(p:'a->bool) = p2`)] (ASSUME | |
(`(p:'a->bool) s`))] | |
] | |
]);; | |
(* | |
|- !p1 p2. p1 \/* p2 = LUB(\p. (p = p1) \/ (p = p2)) | |
*) | |
let LEADSTO_thm4_lemma1 = | |
(GEN_ALL (REWRITE_RULE [ETA_AX] | |
(MK_ABS (GEN (`s:'a`) | |
(SPEC_ALL LEADSTO_thm4_lemma1a)))));; | |
(* | |
|- !R p1 p2 q Pr. | |
R p1 q Pr ==> R p2 q Pr ==> (!p. (\p. (p = p1) \/ (p = p2))p ==> R p q Pr) | |
*) | |
let LEADSTO_thm4_lemma2 = TAC_PROOF | |
(([], | |
(`!R (p1:'a->bool) p2 (q:'a->bool) (Pr:('a->'a)list). | |
R p1 q Pr ==> R p2 q Pr ==> | |
(!p. (\p. (p = p1) \/ (p = p2))p ==> R p q Pr)`)), | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC []);; | |
(* | |
|- !R p1 p2 q Pr. R p1 q Pr ==> R p2 q Pr ==> | |
(!p q P. (p = LUB P) /\ (!p. P p ==> R p q Pr) ==> R p q Pr) | |
==> R(p1 \/* p2) q Pr | |
*) | |
let LEADSTO_thm4_lemma3 = TAC_PROOF | |
(([], | |
(`!R (p1:'a->bool) p2 (q:'a->bool) (Pr:('a->'a)list). | |
R p1 q Pr ==> R p2 q Pr ==> | |
(!p q P. (p = LUB P) /\ (!p. P p ==> R p q Pr) ==> R p q Pr) ==> | |
R (p1 \/* p2) q Pr`)), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[SYM (SPEC_ALL LEADSTO_thm4_lemma1); | |
UNDISCH_ALL (SPEC_ALL LEADSTO_thm4_lemma2)] | |
(SPECL | |
[(`(p1:'a->bool) \/* p2`); (`q:'a->bool`); | |
(`\p:'a->bool. (p = p1) \/ (p = p2)`)] | |
(ASSUME (`!p (q:'a->bool) (P:('a->bool)->bool). (p = LUB P) /\ | |
(!p. P p ==> R p q Pr) ==> R p q (Pr:('a->'a)list)`)))));; | |
(* | |
Now Prove that the finite disjunction is satisfied | |
*) | |
(* | |
|- !p1 p2 q Pr. | |
(p1 LEADSTO q)Pr /\ (p2 LEADSTO q)Pr ==> ((p1 \/* p2) LEADSTO q)Pr | |
*) | |
let LEADSTO_thm4 = prove_thm | |
("LEADSTO_thm4", | |
(`!(p1:'a->bool) p2 q Pr. | |
(p1 LEADSTO q)Pr /\ (p2 LEADSTO q)Pr ==> | |
((p1 \/* p2) LEADSTO q)Pr`), | |
REWRITE_TAC [LEADSTO;LeadstoRel] THEN | |
(* BETA_TAC THEN *) | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASSUME_TAC (GEN(`p:'a->bool`)(GEN(`q:'a->bool`)(REWRITE_RULE [IN] | |
(CONJUNCT2 (CONJUNCT2 (SPEC_ALL | |
(ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> R p' q Pr) ==> | |
R p q Pr)`)))))))) THEN | |
ACCEPT_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO_thm4_lemma3)));; | |
(* | |
Prove: | |
((p ENSURES q)Pr \/ | |
(?r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = (( ?* ) P)) /\ (!i. ((P i) LEADSTO q)Pr))) = | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm5_lemma1 = TAC_PROOF | |
(([], | |
`!(p:'a->bool) s. (p s = (\s. ?p'. (if (p = p') then T else F) /\ p' s)s)`), | |
REPEAT GEN_TAC THEN | |
BETA_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`p:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
; | |
UNDISCH_TAC (`(if ((p:'a->bool) = p') then T else F)`) THEN | |
REPEAT COND_CASES_TAC THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
|- !p. p = (\s. ?p'. ((p = p') => T | F) /\ p' s) | |
*) | |
let LEADSTO_thm5_lemma2 = (GEN_ALL | |
(REWRITE_RULE [ETA_AX] | |
(MK_ABS (SPEC (`p:'a->bool`) LEADSTO_thm5_lemma1))));; | |
let LEADSTO_thm5_lemma3 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) p'. (if (p = p') then T else F) = (p = p')`)), | |
REPEAT GEN_TAC THEN REPEAT COND_CASES_TAC THEN REWRITE_TAC []);; | |
(* | |
|- !p q Pr. | |
(p ENSURES q)Pr \/ | |
(?r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) | |
= | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm5 = prove_thm | |
("LEADSTO_thm5", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q) Pr \/ | |
(?r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P:('a->bool)->bool. (p = LUB P) /\ (!p. (p In P) ==> (p LEADSTO q)Pr))) | |
= | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO_thm0)) | |
; | |
IMP_RES_TAC LEADSTO_thm1 | |
; | |
IMP_RES_TAC LEADSTO_thm3 | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Prove: | |
((p ENSURES q)Pr \/ | |
(?r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) | |
= | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm6 = prove_thm | |
("LEADSTO_thm6", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q) Pr \/ | |
(?r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr))) | |
= | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO_thm0)) | |
; | |
IMP_RES_TAC LEADSTO_thm2 | |
; | |
IMP_RES_TAC LEADSTO_thm3 | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Prove: | |
((p ENSURES q)Pr \/ | |
(?r. (p ENSURES r)Pr /\ (r ENSURES q)Pr) \/ | |
(?P. (p = (( ?* ) P)) /\ (!i. ((P i) LEADSTO q)Pr))) = | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm7 = prove_thm | |
("LEADSTO_thm7", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q) Pr \/ | |
(?r. (p ENSURES r)Pr /\ (r ENSURES q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr))) = | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO_thm0)) | |
; | |
IMP_RES_TAC LEADSTO_thm2a | |
; | |
IMP_RES_TAC LEADSTO_thm3 | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Prove: | |
((p ENSURES q)Pr \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) = | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm8 = prove_thm | |
("LEADSTO_thm8", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q) Pr \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr))) | |
= | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO_thm0)) | |
; | |
IMP_RES_TAC LEADSTO_thm3 THEN | |
ASM_REWRITE_TAC [] | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Prove: | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) = (p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm9 = prove_thm | |
("LEADSTO_thm9", | |
(`!(p:'a->bool) q Pr. | |
(?P. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr)) = (p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm3 THEN | |
ASM_REWRITE_TAC [] | |
; | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* Prove: | |
!P Q Pr. (P LEADSTO Q) [] = false | |
*) | |
(* | |
Theorem LEADSTO_thm10 does Not hold for the generalised disjunctive | |
rule, since: | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> F) ==> F)) | |
is only satisfied when P is non-empty | |
let LEADSTO_thm10 = prove_thm | |
("LEADSTO_thm10", | |
(`!(p:'a->bool) q. (p LEADSTO q) [] = F`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO;LeadstoRel] THEN | |
CONV_TAC NOT_FORALL_CONV THEN | |
EXISTS_TAC (`\(p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). F`) THEN | |
BETA_TAC THEN | |
REWRITE_TAC [ENSURES_thm0] THEN | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [DE_MORGAN_THM] THEN | |
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL IMP_DISJ_THM))] THEN | |
REWRITE_TAC [In,LUB] THEN | |
STRIP_TAC THEN | |
CONV_TAC NOT_FORALL_CONV THEN | |
REWRITE_TAC [] THEN | |
... | |
*) | |
(* | |
Prove: | |
(?r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) = (p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm11 = prove_thm | |
("LEADSTO_thm11", | |
(`!(p:'a->bool) q st Pr. | |
(?r. (p ENSURES r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr)) = | |
(p LEADSTO q)(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO_thm2 | |
; | |
EXISTS_TAC (`p:'a->bool`) THEN | |
ASM_REWRITE_TAC [ENSURES_thm1] | |
]);; | |
(* Prove: | |
!P Pr. (P LEADSTO P) (CONS st Pr) | |
*) | |
let LEADSTO_thm12 = prove_thm | |
("LEADSTO_thm12", | |
(`!(p:'a->bool) st Pr. (p LEADSTO p) (CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
ONCE_REWRITE_TAC [SYM (SPEC_ALL LEADSTO_thm5)] THEN | |
DISJ1_TAC THEN | |
REWRITE_TAC [ENSURES_thm1]);; | |
(* | |
Prove: | |
(?r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr) = (p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm13 = prove_thm | |
("LEADSTO_thm13", | |
(`!(p:'a->bool) q st Pr. | |
(?r. (p LEADSTO r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr)) | |
= (p LEADSTO q)(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO_thm1 | |
; | |
EXISTS_TAC (`p:'a->bool`) THEN | |
ASM_REWRITE_TAC [LEADSTO_thm12] | |
]);; | |
(* | |
Prove: | |
(?r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr) = | |
(?r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) | |
*) | |
let LEADSTO_thm14 = prove_thm | |
("LEADSTO_thm14", | |
(`!(p:'a->bool) q st Pr. | |
(?r. (p LEADSTO r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr)) | |
= | |
(?r. (p ENSURES r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr))`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm11; LEADSTO_thm13]);; | |
(* | |
Prove: | |
|- !p q Pr. | |
(p ENSURES q)Pr \/ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) | |
= | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm15 = prove_thm | |
("LEADSTO_thm15", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q) Pr \/ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr))) = | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO_thm0 | |
; | |
ACCEPT_TAC (MP (SPEC_ALL LEADSTO_thm2) (SPEC_ALL | |
(ASSUME (`!r:'a->bool. (p ENSURES r)Pr /\ (r LEADSTO q)Pr`)))) | |
; | |
IMP_RES_TAC LEADSTO_thm3 | |
; | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Prove: | |
|- !p q Pr. | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr)) | |
= | |
(p LEADSTO q)Pr | |
*) | |
let LEADSTO_thm16 = prove_thm | |
("LEADSTO_thm16", | |
(`!(p:'a->bool) q Pr. | |
((!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> (p LEADSTO q)Pr))) = | |
(p LEADSTO q)Pr`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (MP (SPEC_ALL LEADSTO_thm2) (SPEC_ALL | |
(ASSUME (`!r:'a->bool. (p ENSURES r)Pr /\ (r LEADSTO q)Pr`)))) | |
; | |
IMP_RES_TAC LEADSTO_thm3 | |
; | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
DISCH_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))) | |
] | |
]);; | |
(* | |
Finally prove one of the used LEADSTO induction principles in CM88: | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) | |
/\ | |
(!r. | |
(p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) | |
/\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> (p LEADSTO q)Pr ==> X p q Pr | |
*) | |
let STRUCT_lemma0 = TAC_PROOF | |
(([], | |
(` (!p:'a->bool. p In P ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)) | |
= | |
((!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr))`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let STRUCT_lemma00 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!r. | |
((p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr)) /\ | |
(r LEADSTO q)Pr /\ | |
((r LEADSTO q)Pr ==> X r q Pr) ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!P. | |
(p = LUB P) /\ | |
(!p'. | |
p' In P ==> (p' LEADSTO q)Pr /\ ((p' LEADSTO q)Pr ==> X p' q Pr)) | |
==> (p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm1 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC STRUCT_lemma0 THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
; | |
IMP_RES_TAC STRUCT_lemma0 THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
; | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL STRUCT_lemma0)] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr`)) | |
(ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr ==> X p q Pr`)))) THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`((LUB P) LEADSTO (q:'a->bool))Pr`)] | |
(SPEC (`LUB (P:('a->bool)->bool)`) (GEN_ALL (REWRITE_RULE | |
[ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr /\ | |
((p LEADSTO q)Pr ==> X p q Pr)`)] | |
(SPEC_ALL (CONJUNCT2 (CONJUNCT2 (SPEC_ALL (ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!r. | |
((p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr)) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!P. (p = LUB P) /\ | |
(!p'. p' In P ==> | |
(p' LEADSTO q)Pr /\ ((p' LEADSTO q)Pr ==> X p' q Pr)) ==> | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr))`)))))))))) | |
]);; | |
(* | |
The induction theorem: | |
*) | |
let LEADSTO_thm17 = prove_thm | |
("LEADSTO_thm17", | |
(`!X (p:'a->bool) q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> (((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr))) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT GEN_TAC THEN | |
REPEAT DISCH_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL STRUCT_lemma00)] (BETA_RULE (SPEC | |
(`\(p:'a->bool) q Pr. | |
(p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`)))))) THEN | |
RES_TAC);; | |
(* | |
A derived theorem for an induction tactic | |
*) | |
let LEADSTO_thm18 = prove_thm | |
("LEADSTO_thm18", | |
(`!X. | |
((!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!(p:'a->bool) P q Pr. (!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> (!p q Pr. (p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL STRUCT_lemma00)] | |
(BETA_RULE (SPEC | |
(`\ (p:'a->bool) q Pr. (p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`)))))) THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q Pr. | |
(p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) P (q:'a->bool) Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] (ASSUME | |
(`(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ ((p LEADSTO r)Pr ==> X p r Pr) /\ | |
(r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p'. p' In P ==> (p' LEADSTO q)Pr) /\ | |
(!p'. p' In P ==> (p' LEADSTO q)Pr ==> X p' q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> (p LEADSTO q)Pr /\ ((p LEADSTO q)Pr ==> X p q Pr)`))));; | |
(* | |
Now prove another LEADSTO induction principle: | |
*) | |
let STRUCT_lemma1 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. p In P ==> (p LEADSTO q)Pr /\ X p q Pr) | |
= | |
((!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr))`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let STRUCT_lemma01 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> (p LEADSTO q)Pr /\ X p q Pr) /\ | |
(!r. ((p LEADSTO r)Pr /\ X p r Pr) /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> (p LEADSTO q)Pr /\ X p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> (p' LEADSTO q)Pr /\ X p' q Pr) | |
==> (p LEADSTO q)Pr /\ X p q Pr)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ X p r Pr /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr))`)), | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL STRUCT_lemma1)] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr`)) | |
(ASSUME (`!p. p In P | |
==> (X:('a->bool)->('a->bool)->('a->'a)list->bool) p q Pr`)))) THEN | |
RES_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p. (p = LUB P) ==> (X:('a->bool)->('a->bool)->('a->'a)list->bool)p q Pr`)))) | |
; | |
IMP_RES_TAC LEADSTO_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm1 | |
; | |
IMP_RES_TAC LEADSTO_thm1 THEN | |
RES_TAC | |
; | |
IMP_RES_TAC STRUCT_lemma1 THEN | |
IMP_RES_TAC LEADSTO_thm3 | |
; | |
IMP_RES_TAC STRUCT_lemma1 THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
The induction theorem: | |
*) | |
let LEADSTO_thm19 = prove_thm | |
("LEADSTO_thm19", | |
(`!X (p:'a->bool) q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ (X p r Pr) /\ (r LEADSTO q)Pr /\ (X r q Pr) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [STRUCT_lemma01] (BETA_RULE | |
(SPEC (`\(p:'a->bool) q Pr. (p LEADSTO q)Pr /\ (X p q Pr)`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`)))))) THEN | |
RES_TAC);; | |
(* | |
The derived theorem for the induction tactic | |
*) | |
let LEADSTO_thm20 = prove_thm | |
("LEADSTO_thm20", | |
(`!X. | |
((!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (p LEADSTO r)Pr /\ X p r Pr /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> ((p LEADSTO q)Pr ==> X p q Pr)) /\ | |
(!(p:'a->bool) P q Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> (!p q Pr. (p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q Pr. | |
(p LEADSTO r)Pr /\ X p r Pr /\ (r LEADSTO q)Pr /\ X r q Pr ==> | |
(p LEADSTO q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) P q Pr. | |
(!p:'a->bool. | |
p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] | |
(REWRITE_RULE [STRUCT_lemma01](BETA_RULE (SPEC | |
(`\(p:'a->bool) q Pr. (p LEADSTO q)Pr /\ (X p q Pr)`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))))))));; | |
(* | |
Now prove a third LEADSTO induction principle: | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) | |
/\ | |
(!r. (X p r Pr) /\ (X r q Pr) ==> X p q Pr) | |
/\ | |
(!P. (!i. X(P i)q Pr) ==> X(( ?* ) P)q Pr)) | |
==> (p LEADSTO q)Pr ==> X p q Pr | |
*) | |
let LEADSTO_thm21 = prove_thm | |
("LEADSTO_thm21", | |
(`!X (p:'a->bool) q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (X p r Pr) /\ (X r q Pr) ==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p. p In P ==> X p q Pr) ==> X p q Pr)) | |
==> ((p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (BETA_RULE (SPEC | |
(`\(p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). X p q Pr:bool`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))))) THEN | |
RES_TAC);; | |
(* | |
The theorem derived for an induction tactic | |
*) | |
let LEADSTO_thm22 = prove_thm | |
("LEADSTO_thm22", | |
(`!X. | |
((!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (X p r Pr) /\ (X r q Pr) ==> (X p q Pr)) /\ | |
(!p P q Pr. (p = LUB P) /\ (!p. p In P ==> X p q Pr) ==> X p q Pr)) | |
==> (!p q Pr. (p LEADSTO q)Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) (r:'a->bool) q (Pr:('a->'a)list). | |
X p r Pr /\ X r q Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) P (q:'a->bool) (Pr:('a->'a)list). | |
(p = LUB P) /\ (!p. p In P ==> X p q Pr) ==> X p q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] | |
(REWRITE_RULE [SYM (SPEC_ALL CONJ_ASSOC)] (BETA_RULE (SPEC | |
(`\(p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). X p q Pr:bool`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))))))));; | |
(* | |
yet another LEADSTO induction principle: | |
*) | |
let LEADSTO_thm23_lemma00 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
((!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr)) = | |
(!p:'a->bool. p In P ==> (p LEADSTO q)Pr /\ X p q Pr)`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm23_lemma01 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> (p LEADSTO q)Pr /\ X p q Pr) /\ | |
(!r. | |
((p LEADSTO r)Pr /\ X p r Pr) /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> (p LEADSTO q)Pr /\ X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p'. p' In P ==> (p' LEADSTO q)Pr /\ X p' q Pr) | |
==> (p LEADSTO q)Pr /\ X p q Pr)) | |
= | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr))`)), | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm23_lemma00] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr`)) | |
(ASSUME (`!p. p In P | |
==> (X:('a->bool)->('a->bool)->('a->'a)list->bool) p q Pr`)))) THEN | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm1 | |
; | |
RES_TAC | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm23_lemma00)] | |
(ASSUME (`!p':'a->bool. p' In P ==> (p' LEADSTO q)Pr /\ X p' q Pr`))) THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
ASM_REWRITE_TAC [] | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm23_lemma00)] | |
(ASSUME (`!p':'a->bool. p' In P ==> (p' LEADSTO q)Pr /\ X p' q Pr`))) THEN | |
RES_TAC | |
]);; | |
let LEADSTO_thm23 = prove_thm | |
("LEADSTO_thm23", | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr)) | |
==> (!p q. (p LEADSTO q) Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm23_lemma01] (BETA_RULE (SPEC | |
(`\(p:'a->bool) q Pr. (p LEADSTO q)Pr /\ (X p q Pr)`) | |
(REWRITE_RULE [LEADSTO;LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q) Pr`)))))) THEN | |
RES_TAC);; | |
let LEADSTO_thm24_lemma01 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr)) | |
= | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr ==> | |
X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) ==> | |
X(LUB P)q Pr))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THENL | |
[ | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p. (p = LUB P) ==> (X:('a->bool)->('a->bool)->('a->'a)list->bool) p q Pr`)))) | |
; | |
ASM_REWRITE_TAC [] | |
]);; | |
let LEADSTO_thm24 = prove_thm | |
("LEADSTO_thm24", | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X (LUB P) q Pr)) | |
==> (!p q. (p LEADSTO q) Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (UNDISCH (SPEC_ALL (UNDISCH (REWRITE_RULE [LEADSTO_thm24_lemma01] | |
(SPEC_ALL LEADSTO_thm23))))));; | |
(* Prove: | |
!P Q st Pr. (!s. P s ==> Q s) ==> (P LEADSTO Q) (CONS st Pr) | |
*) | |
let LEADSTO_thm25 = prove_thm | |
("LEADSTO_thm25", | |
(`!(p:'a->bool) q st Pr. (!s. p s ==> q s) ==> (p LEADSTO q) (CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
STRIP_ASSUME_TAC | |
(MP (SPECL [(`p:'a->bool`); (`q:'a->bool`); (`CONS (st:'a->'a) Pr`)] LEADSTO_thm0) | |
(MP (SPECL [(`p:'a->bool`); (`q:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
ENSURES_cor1) (ASSUME (`!s:'a. p s ==> q s`)))));; | |
(* Prove: | |
|- !p q q' st Pr. | |
(p LEADSTO q)(CONS st Pr) ==> (p LEADSTO (q \/* q'))(CONS st Pr) | |
*) | |
let LEADSTO_thm26 = prove_thm | |
("LEADSTO_thm26", | |
(`!(p:'a->bool) q q' st Pr. | |
(p LEADSTO q)(CONS st Pr) ==> (p LEADSTO (q \/* q'))(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
DISCH_TAC THEN | |
ASSUME_TAC (SPECL [(`q:'a->bool`); (`q':'a->bool`)] IMPLY_WEAK_lemma_b) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`q:'a->bool`); (`(q:'a->bool) \/* q'`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm25)) THEN | |
IMP_RES_TAC (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); (`(q:'a->bool) \/* q'`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm1));; | |
(* Prove: | |
|- !p q p' q' st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) ==> | |
((p \/* p') LEADSTO (q \/* q'))(CONS st Pr) | |
*) | |
let LEADSTO_thm27 = prove_thm | |
("LEADSTO_thm27", | |
(`!(p:'a->bool) q p' q' st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) | |
==> ((p \/* p') LEADSTO (q \/* q'))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO_thm26)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p':'a->bool`); (`q':'a->bool`); (`q:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm26)) THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [OR_COMM_lemma] | |
(ASSUME (`((p':'a->bool) LEADSTO (q' \/* q))(CONS st Pr)`))) THEN | |
IMP_RES_TAC (SPECL | |
[(`p:'a->bool`); (`p':'a->bool`); (`(q:'a->bool) \/* q'`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm4));; | |
(* Prove: | |
|- !p q b r st Pr. | |
(p LEADSTO (q \/* b))(CONS st Pr) /\ (b LEADSTO r)(CONS st Pr) ==> | |
(p LEADSTO (q \/* r))(CONS st Pr) | |
*) | |
let LEADSTO_thm28 = prove_thm | |
("LEADSTO_thm28", | |
(`!(p:'a->bool) q b r st Pr. | |
(p LEADSTO (q \/* b))(CONS st Pr) /\ (b LEADSTO r)(CONS st Pr) | |
==> (p LEADSTO (q \/* r))(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
ASSUME_TAC (SPEC_ALL (SPEC (`q:'a->bool`) LEADSTO_thm12)) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`b:'a->bool`); (`r:'a->bool`); (`q:'a->bool`); (`q:'a->bool`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm27) (CONJ | |
(ASSUME (`((b:'a->bool) LEADSTO r)(CONS st Pr)`)) | |
(ASSUME (`((q:'a->bool) LEADSTO q)(CONS st Pr)`)))) THEN | |
ACCEPT_TAC (MP (SPECL [(`p:'a->bool`); (`(q:'a->bool) \/* b`); | |
(`(q:'a->bool) \/* r`); (`CONS (st:'a->'a) Pr`)] LEADSTO_thm1) | |
(CONJ (ASSUME (`((p:'a->bool) LEADSTO (q \/* b))(CONS st Pr)`)) | |
(ONCE_REWRITE_RULE [OR_COMM_lemma] | |
(ASSUME (`(((b:'a->bool) \/* q) LEADSTO (r \/* q))(CONS st Pr)`))))));; | |
(* Prove: | |
!p q r b Pr. | |
(p LEADSTO q)Pr /\ (r UNLESS b)Pr | |
==> ((p /\* r) LEADSTO ((q /\* r) \/* b))Pr | |
*) | |
let LEADSTO_thm29_lemma00 = | |
(SPEC (`CONS (st:'a->'a) Pr`) (GEN (`Pr:('a->'a)list`) (BETA_RULE (SPEC_ALL (SPEC | |
(`\(p:'a->bool) q Pr. | |
(r UNLESS b) Pr ==> ((p /\* r) LEADSTO ((q /\* r) \/* b)) Pr`) | |
LEADSTO_thm17)))));; | |
let LEADSTO_thm29_lemma05_1 = TAC_PROOF | |
(([], | |
(`(!p'':'a->bool. p'' In P ==> (p'' LEADSTO q')(CONS st Pr)) ==> | |
(!p''. p'' In P ==> | |
(p'' LEADSTO q')(CONS st Pr) ==> (r UNLESS b)(CONS st Pr) ==> | |
((p'' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) ==> | |
(!p''. p'' In P ==> (r UNLESS b)(CONS st Pr) ==> | |
((p'' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm29_lemma05_2 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r q st Pr. | |
(!p. p In P ==> ((p /\* r) LEADSTO q)(CONS st Pr)) ==> | |
(!p. p In P ==> (p LEADSTO q)(CONS st Pr)) ==> | |
(((LUB P) /\* r) LEADSTO q)(CONS st Pr)`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
ASSUME_TAC (SPECL | |
[(`LUB (P:('a->bool)->bool)`); (`r:'a->bool`)] SYM_AND_IMPLY_WEAK_lemma) THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL (SPECL | |
[(`(LUB P) /\* (r:'a->bool)`); (`(LUB P):'a->bool`)] ENSURES_cor1))) THEN | |
IMP_RES_TAC LEADSTO_thm0 THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
let LEADSTO_thm29_lemma05_3 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) P r. | |
p In (\p''. ?p'. p' In P /\ (p'' = p' /\* r)) | |
= | |
(?p'. p' In P /\ (p = p' /\* r))`)), | |
REWRITE_TAC [IN] THEN | |
BETA_TAC THEN | |
REWRITE_TAC []);; | |
let LEADSTO_thm29_lemma05_4 = TAC_PROOF | |
(([], | |
(`!s:'a. | |
((LUB P) /\* r)s = | |
(LUB(\p. ?p'. p' In P /\ (p = p' /\* r)))s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LUB; AND_def ] THEN | |
BETA_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`\s:'a. p s /\ r s`) THEN | |
BETA_TAC THEN | |
ASM_REWRITE_TAC [] THEN | |
EXISTS_TAC (`p:'a->bool`) THEN | |
ASM_REWRITE_TAC [IN] | |
; | |
EXISTS_TAC (`p':'a->bool`) THEN | |
REWRITE_TAC [REWRITE_RULE [IN] (ASSUME (`(p':'a->bool) In P`))] THEN | |
STRIP_ASSUME_TAC (BETA_RULE (SUBS [ASSUME (`p = (\s:'a. p' s /\ r s)`)] | |
(ASSUME (`(p:'a->bool) s`)))) | |
; | |
STRIP_ASSUME_TAC (BETA_RULE (SUBS [ASSUME (`p = (\s:'a. p' s /\ r s)`)] | |
(ASSUME (`(p:'a->bool) s`)))) | |
]);; | |
let LEADSTO_thm29_lemma05_5 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r q' b st Pr. | |
(!p''. p'' In P ==> ((p'' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) | |
==> | |
(!p. (?p'. p' In P /\ (p = p' /\* r)) ==> | |
(p LEADSTO ((q' /\* r) \/* b))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC []);; | |
let LEADSTO_thm29_lemma05_6 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r q' b st Pr. | |
(!p''. | |
p'' In P ==> | |
((p'' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) | |
==> ((((LUB P) /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm29_lemma05_3] (SPECL | |
[(`\p:'a->bool. ?p'. p' In P /\ (p = (p' /\* r))`); | |
(`(q' /\* r) \/* (b:'a->bool)`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm3a)) THEN | |
ASSUME_TAC (REWRITE_RULE [UNDISCH (SPEC_ALL LEADSTO_thm29_lemma05_5)] | |
(ASSUME (`(!p:'a->bool. (?p'. p' In P /\ (p = p' /\* r)) ==> | |
(p LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) ==> | |
((LUB(\p. ?p'. p' In P /\ (p = p' /\* r))) LEADSTO ((q' /\* r) \/* b)) | |
(CONS st Pr)`))) THEN | |
ASM_REWRITE_TAC [REWRITE_RULE [ETA_AX] (MK_ABS LEADSTO_thm29_lemma05_4)]);; | |
let LEADSTO_thm29_lemma05 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q' r b st Pr. | |
((p' ENSURES q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
((p' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) /\ | |
(!r'. | |
(p' LEADSTO r')(CONS st Pr) /\ | |
((p' LEADSTO r')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
((p' /\* r) LEADSTO ((r' /\* r) \/* b))(CONS st Pr)) /\ | |
(r' LEADSTO q')(CONS st Pr) /\ | |
((r' LEADSTO q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
((r' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) ==> | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
((p' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) /\ | |
(!P. | |
(!p''. p'' In P ==> (p'' LEADSTO q')(CONS st Pr)) /\ | |
(!p''. | |
p'' In P ==> | |
(p'' LEADSTO q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
((p'' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)) ==> | |
((LUB P) LEADSTO q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) ==> | |
(((LUB P) /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr))`)), | |
REPEAT GEN_TAC THEN | |
REPEAT CONJ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC ENSURES_thm4 THEN | |
ASSUME_TAC (SPECL | |
[(`p':'a->bool`); (`q':'a->bool`); (`b:'a->bool`); (`r:'a->bool`)] | |
IMPLY_WEAK_lemma6) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`(r:'a->bool) /\* p'`); | |
(`((r:'a->bool) /\* q') \/* ((p' /\* b) \/* (b /\* q'))`); | |
(`((q':'a->bool) /\* r) \/* b`); (`(CONS st Pr):('a->'a)list`)] ENSURES_thm2) | |
(CONJ (REWRITE_RULE [OR_ASSOC_lemma] | |
(ASSUME (`(((r:'a->bool) /\* p') ENSURES | |
(((r /\* q') \/* (p' /\* b)) \/* (b /\* q')))(CONS st Pr)`))) | |
(ASSUME (`!s:'a. ((r /\* q') \/* ((p' /\* b) \/* (b /\* q')))s ==> | |
((q' /\* r) \/* b)s`)))) THEN | |
ONCE_REWRITE_TAC [AND_COMM_lemma] THEN | |
ONCE_REWRITE_TAC [AND_COMM_OR_lemma] THEN | |
IMP_RES_TAC (SPECL [(`(r:'a->bool) /\* p'`); (`((q':'a->bool) /\* r) \/* b`); | |
(`(CONS st Pr):('a->'a)list`)] LEADSTO_thm0) | |
; | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (MP (MP (ASSUME (`((p':'a->bool) LEADSTO r')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) | |
==> ((p' /\* r) LEADSTO ((r' /\* r) \/* b))(CONS st Pr)`)) | |
(ASSUME (`((p':'a->bool) LEADSTO r')(CONS st Pr)`))) | |
(ASSUME (`((r:'a->bool) UNLESS b)(CONS st Pr)`))) THEN | |
ASSUME_TAC (MP (MP (ASSUME (`((r':'a->bool) LEADSTO q')(CONS st Pr) ==> | |
(r UNLESS b)(CONS st Pr) | |
==> ((r' /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)`)) | |
(ASSUME (`((r':'a->bool) LEADSTO q')(CONS st Pr)`))) | |
(ASSUME (`((r:'a->bool) UNLESS b)(CONS st Pr)`))) THEN | |
ACCEPT_TAC (REWRITE_RULE [OR_ASSOC_lemma; OR_OR_lemma] | |
(ONCE_REWRITE_RULE [OR_COMM_lemma] (MP (SPECL | |
[(`(p':'a->bool) /\* r`); (`b:'a->bool`); (`(r':'a->bool) /\* r`); | |
(`((q':'a->bool) /\* r) \/* b`); (`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm28) | |
(CONJ (ONCE_REWRITE_RULE [OR_COMM_lemma] | |
(ASSUME | |
(`(((p':'a->bool) /\* r) LEADSTO ((r' /\* r) \/* b))(CONS st Pr)`))) | |
(ASSUME | |
(`(((r':'a->bool) /\* r) LEADSTO ((q' /\* r) \/* b))(CONS st Pr)`)))))) | |
; | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [ASSUME (`((r:'a->bool) UNLESS b)(CONS st Pr)`)] | |
(UNDISCH_ALL LEADSTO_thm29_lemma05_1)) THEN | |
IMP_RES_TAC LEADSTO_thm29_lemma05_6 | |
]);; | |
let LEADSTO_thm29_lemma06 = | |
GEN_ALL (MP (SPEC_ALL LEADSTO_thm29_lemma00) | |
(GEN (`p':'a->bool`) (GEN (`q':'a->bool`) (SPEC_ALL LEADSTO_thm29_lemma05))));; | |
let LEADSTO_thm29 = prove_thm | |
("LEADSTO_thm29", | |
(`!(p:'a->bool) q r b st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (r UNLESS b)(CONS st Pr) | |
==> ((p /\* r) LEADSTO ((q /\* r) \/* b))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC [UNDISCH_ALL (SPEC_ALL LEADSTO_thm29_lemma06)]);; | |
(* Prove: | |
!p st Pr. (p LEADSTO False)(CONS st Pr) ==> (!s. Not p s) | |
*) | |
let LEADSTO_thm30_lemma00 = BETA_RULE | |
(SPEC (`CONS (st:'a->'a) Pr`) (GEN (`Pr:('a->'a)list`) (BETA_RULE (SPEC_ALL (SPEC | |
(`\(p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). (q = False) ==> (!s. Not p s)`) | |
LEADSTO_thm21)))));; | |
let LEADSTO_thm30_lemma01 = TAC_PROOF | |
(([], | |
(`!(r:'a->bool). (!s. Not r s) ==> (!s. r s = False s)`)), | |
REWRITE_TAC [NOT_def1; FALSE_def] THEN | |
BETA_TAC THEN | |
REWRITE_TAC []);; | |
(* | |
|- (!s. Not r s) ==> (r = False) | |
*) | |
let LEADSTO_thm30_lemma02 = (DISCH_ALL (REWRITE_RULE [ETA_AX] (MK_ABS (UNDISCH | |
(SPEC_ALL LEADSTO_thm30_lemma01)))));; | |
let LEADSTO_thm30_lemma03 = TAC_PROOF | |
(([], | |
(`!p:'a->bool. | |
(p' = (\s:'a->'a. ?p. P p /\ p s)) ==> (!s. p' s = ?p. P p /\ p s)`)), | |
GEN_TAC THEN | |
DISCH_TAC THEN | |
GEN_TAC THEN | |
ONCE_ASM_REWRITE_TAC [] THEN | |
BETA_TAC THEN | |
REFL_TAC);; | |
let LEADSTO_thm30_lemma04 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) (q':'a->bool). | |
((p' ENSURES q')(CONS st Pr) ==> (q' = False) ==> (!s. Not p' s)) /\ | |
(!r:'a->bool. | |
((r = False) ==> (!s. Not p' s)) /\ | |
((q' = False) ==> (!s. Not r s)) ==> | |
(q' = False) ==> (!s. Not p' s)) /\ | |
(!P:('a->bool)->bool. | |
(p' = LUB P) /\ | |
(!p''. p'' In P ==> (q' = False) ==> (!s. Not p'' s)) ==> | |
(q' = False) ==> (!s. Not p' s))`)), | |
REPEAT GEN_TAC THEN | |
REPEAT CONJ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [ASSUME (`(q':'a->bool) = False`)] | |
(ASSUME (`((p':'a->bool) ENSURES q')(CONS st Pr)`))) THEN | |
IMP_RES_TAC ENSURES_thm3 THEN | |
ASM_REWRITE_TAC [] | |
; | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
IMP_RES_TAC LEADSTO_thm30_lemma02 THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
; | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LUB; IN; NOT_def1; FALSE_def] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [ASSUME (`(q':'a->bool) = \s. F`)] (ASSUME | |
(`!p'':'a->bool. P p'' | |
==> ((q':'a->bool) = \s. F) ==> (!s. ~p'' s)`))) THEN | |
IMP_RES_TAC LEADSTO_thm30_lemma03 THEN | |
UNDISCH_TAC(`(p':'a->bool)s`) THEN | |
ASM_REWRITE_TAC [] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC | |
]);; | |
(* | |
|- !p q st Pr. (p LEADSTO q)(CONS st Pr) ==> (q = False) ==> (!s. Not p s) | |
*) | |
let LEADSTO_thm30_lemma05 = | |
GEN_ALL (MP (SPEC_ALL LEADSTO_thm30_lemma00) LEADSTO_thm30_lemma04);; | |
let LEADSTO_thm30_lemma06 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) st Pr. | |
(p LEADSTO False)(CONS st Pr) | |
==> (?q. (q = False) /\ (p LEADSTO q)(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
EXISTS_TAC (`False:'a->bool`) THEN | |
ASM_REWRITE_TAC []);; | |
(* Now Prove: | |
|- !p st Pr. (p LEADSTO False)(CONS st Pr) ==> (!s. Not p s) | |
*) | |
let LEADSTO_thm30 = prove_thm | |
("LEADSTO_thm30", | |
(`!(p:'a->bool) st Pr. (p LEADSTO False)(CONS st Pr) ==> (!s. Not p s)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm30_lemma06 THEN | |
REWRITE_TAC [UNDISCH_ALL (SPEC_ALL LEADSTO_thm30_lemma05)]);; | |
(* Prove: | |
|- !p b q Pr. | |
((p /\* b) LEADSTO q)Pr /\ ((p /\* (Not b)) LEADSTO q)Pr ==> (p LEADSTO q)Pr | |
*) | |
let LEADSTO_cor1 = prove_thm | |
("LEADSTO_cor1", | |
(`!(p:'a->bool) b q Pr. | |
((p /\* b) LEADSTO q) Pr /\ ((p /\* (Not b)) LEADSTO q) Pr | |
==> (p LEADSTO q) Pr`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC (SPECL [(`(p:'a->bool) /\* b`); (`(p:'a->bool) /\* (Not b)`); | |
(`q:'a->bool`); (`Pr:('a->'a)list`)] LEADSTO_thm4) THEN | |
ACCEPT_TAC (REWRITE_RULE [SYM (SPEC_ALL AND_OR_DISTR_lemma); | |
P_OR_NOT_P_lemma; AND_True_lemma] | |
(ASSUME (`((((p:'a->bool) /\* b) \/* (p /\* (Not b))) LEADSTO q)Pr`))));; | |
(* Prove: | |
|- !p q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ r STABLE (CONS st Pr) ==> | |
((p /\* r) LEADSTO (q /\* r))(CONS st Pr) | |
*) | |
let LEADSTO_cor2 = prove_thm | |
("LEADSTO_cor2", | |
(`!(p:'a->bool) q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ r STABLE (CONS st Pr) | |
==> ((p /\* r) LEADSTO (q /\* r))(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [STABLE] THEN | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm29 THEN | |
ACCEPT_TAC (REWRITE_RULE [OR_False_lemma] (ASSUME | |
(`(((p:'a->bool) /\* r) LEADSTO ((q /\* r) \/* False))(CONS st Pr)`))));; | |
(* Prove: | |
|- !p q st Pr. | |
(p LEADSTO q)(CONS st Pr) = ((p /\* (Not q)) LEADSTO q)(CONS st Pr) | |
*) | |
let LEADSTO_cor3 = prove_thm | |
("LEADSTO_cor3", | |
(`!(p:'a->bool) q st Pr. | |
(p LEADSTO q)(CONS st Pr) = ((p /\* (Not q)) LEADSTO q)(CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASSUME_TAC (REWRITE_RULE [NOT_NOT_lemma] | |
(SPECL [(`Not (q:'a->bool)`); (`CONS (st:'a->'a) Pr`)] UNLESS_thm2)) THEN | |
IMP_RES_TAC LEADSTO_thm29 THEN | |
ASSUME_TAC (REWRITE_RULE [P_AND_NOT_P_lemma] | |
(ASSUME (`(((p:'a->bool) /\* (Not q)) LEADSTO | |
((q /\* (Not q)) \/* q))(CONS st Pr)`))) THEN | |
ACCEPT_TAC (REWRITE_RULE [OR_False_lemma] | |
(ONCE_REWRITE_RULE [OR_COMM_lemma] (ASSUME | |
(`(((p:'a->bool) /\* (Not q)) LEADSTO (False \/* q))(CONS st Pr)`)))) | |
; | |
ASSUME_TAC (MP | |
(SPECL [(`(p:'a->bool) /\* q`); (`q:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm25) | |
(SPECL [(`p:'a->bool`); (`q:'a->bool`)] AND_IMPLY_WEAK_lemma)) THEN | |
IMP_RES_TAC LEADSTO_cor1 | |
]);; | |
(* Prove: | |
|- !p b q st Pr. | |
((p /\* b) LEADSTO q)(CONS st Pr) /\ | |
((p /\* (Not b)) LEADSTO ((p /\* b) \/* q))(CONS st Pr) ==> | |
(p LEADSTO q)(CONS st Pr) | |
*) | |
let LEADSTO_cor4 = prove_thm | |
("LEADSTO_cor4", | |
(`!(p:'a->bool) b q st Pr. | |
((p /\* b) LEADSTO q)(CONS st Pr) /\ | |
((p /\* (Not b)) LEADSTO ((p /\* b) \/* q))(CONS st Pr) | |
==> (p LEADSTO q)(CONS st Pr)`), | |
ONCE_REWRITE_TAC [OR_COMM_lemma] THEN | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm28 THEN | |
ASSUME_TAC (REWRITE_RULE [OR_OR_lemma] (ASSUME | |
(`(((p:'a->bool) /\* (Not b)) LEADSTO (q \/* q))(CONS st Pr)`))) THEN | |
IMP_RES_TAC LEADSTO_cor1);; | |
(* Prove: | |
|- !p q r st Pr. | |
((p /\* q) LEADSTO r)(CONS st Pr) ==> (p LEADSTO ((Not q) \/* r))(CONS st Pr) | |
*) | |
let LEADSTO_cor5 = prove_thm | |
("LEADSTO_cor5", | |
(`!(p:'a->bool) q r st Pr. | |
((p /\* q) LEADSTO r)(CONS st Pr) | |
==> (p LEADSTO ((Not q) \/* r))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC [LEADSTO_cor3] THEN | |
REWRITE_TAC [NOT_OR_AND_NOT_lemma; NOT_NOT_lemma] THEN | |
ASSUME_TAC (REWRITE_RULE [NOT_NOT_lemma] | |
(SPECL [(`Not (r:'a->bool)`); (`CONS (st:'a->'a) Pr`)] UNLESS_thm2)) THEN | |
IMP_RES_TAC LEADSTO_thm29 THEN | |
ASSUME_TAC (REWRITE_RULE [AND_ASSOC_lemma; P_AND_NOT_P_lemma] (ASSUME | |
(`((((p:'a->bool) /\* q) /\* (Not r)) LEADSTO ((r /\* (Not r)) \/* r)) | |
(CONS st Pr)`))) THEN | |
ASSUME_TAC (REWRITE_RULE [OR_False_lemma] (ONCE_REWRITE_RULE | |
[OR_COMM_lemma] (ASSUME (`(((p:'a->bool) /\* (q /\* (Not r))) LEADSTO | |
(False \/* r))(CONS st Pr)`)))) THEN | |
ASSUME_TAC (MP | |
(SPEC_ALL (SPECL [(`r:'a->bool`); (`(Not (q:'a->bool)) \/* r`)] LEADSTO_thm25)) | |
(SPECL [(`r:'a->bool`); (`Not (q:'a->bool)`)] SYM_OR_IMPLY_WEAK_lemma)) THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
(* Prove: | |
|- !p q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (r UNLESS (q /\* r))(CONS st Pr) ==> | |
((p /\* r) LEADSTO (q /\* r))(CONS st Pr) | |
*) | |
let LEADSTO_cor6 = prove_thm | |
("LEADSTO_cor6", | |
(`!(p:'a->bool) q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (r UNLESS (q /\* r))(CONS st Pr) | |
==> ((p /\* r) LEADSTO (q /\* r))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm29 THEN | |
ACCEPT_TAC (REWRITE_RULE [OR_OR_lemma] (ASSUME | |
(`(((p:'a->bool) /\* r) LEADSTO ((q /\* r) \/* (q /\* r)))(CONS st Pr)`))));; | |
(* Prove: | |
|- !p q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (r /\* (Not q)) STABLE (CONS st Pr) ==> | |
(!s. (p /\* r)s ==> q s) | |
*) | |
let LEADSTO_cor7 = prove_thm | |
("LEADSTO_cor7", | |
(`!(p:'a->bool) q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (r /\* (Not q)) STABLE (CONS st Pr) | |
==> (!s. (p /\* r)s ==> q s)`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_cor2 THEN | |
ASSUME_TAC (REWRITE_RULE | |
[(SYM (SPEC_ALL AND_ASSOC_lemma)); P_AND_NOT_P_lemma] | |
(ONCE_REWRITE_RULE [AND_AND_COMM_lemma] (ASSUME | |
(`(((p:'a->bool) /\* (r /\* (Not q))) LEADSTO | |
(q /\* (r /\* (Not q))))(CONS st Pr)`)))) THEN | |
ASSUME_TAC (REWRITE_RULE [AND_False_lemma] | |
(ONCE_REWRITE_RULE [AND_COMM_lemma] (ASSUME | |
(`((((p:'a->bool) /\* (Not q)) /\* r) LEADSTO (False /\* r)) | |
(CONS st Pr)`)))) THEN | |
IMP_RES_TAC LEADSTO_thm30 THEN | |
GEN_TAC THEN | |
MP_TAC (SPEC_ALL (ASSUME (`!s:'a. Not (r /\* (p /\* (Not q)))s`))) THEN | |
REWRITE_TAC [NOT_def1; AND_def] THEN | |
BETA_TAC THEN | |
REWRITE_TAC [DE_MORGAN_THM] THEN | |
REPEAT STRIP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC []);; | |
(* | |
Prove: | |
|- !p r q st Pr. | |
(p LEADSTO r)(CONS st Pr) ==> ((p /\* q) LEADSTO r)(CONS st Pr) | |
*) | |
let LEADSTO_cor8 = prove_thm | |
("LEADSTO_cor8", | |
(`!(p:'a->bool) r q st Pr. (p LEADSTO r)(CONS st Pr) | |
==> ((p /\* q) LEADSTO r)(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (SPECL | |
[`p:'a->bool`; `q:'a->bool`] SYM_AND_IMPLY_WEAK_lemma) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[`(p:'a->bool) /\* q`; `p:'a->bool`; `st:'a->'a`; `Pr:('a->'a)list`] | |
LEADSTO_thm25)) THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
(* | |
Prove: | |
|- !p q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (!s. q s ==> r s) ==> | |
(p LEADSTO r)(CONS st Pr) | |
*) | |
let LEADSTO_cor9 = prove_thm | |
("LEADSTO_cor9", | |
(`!(p:'a->bool) q r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (!s. q s ==> r s) | |
==> (p LEADSTO r)(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm25 THEN | |
ASSUME_TAC (SPEC_ALL (ASSUME | |
(`!st Pr. ((q:'a->bool) LEADSTO r)(CONS st Pr)`))) THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
(* Prove: | |
|- !P q Pr. (!i. ((P i) LEADSTO q)Pr) ==> (!i. (( \<=/* P i) LEADSTO q)Pr) | |
*) | |
let LEADSTO_cor10 = prove_thm | |
("LEADSTO_cor10", | |
(`!(P:num->'a->bool) q Pr. | |
(!i. ((P i) LEADSTO q)Pr) ==> (!i. (( \<=/* P i) LEADSTO q)Pr)`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
ASM_REWRITE_TAC [OR_LE_N_def] | |
; | |
REWRITE_TAC [OR_LE_N_def] THEN | |
ACCEPT_TAC (MP | |
(SPECL [(` \<=/* (P:num->'a->bool) i`); (`(P:num->'a->bool) (SUC i)`); | |
(`q:'a->bool`); (`Pr:('a->'a)list`)] LEADSTO_thm4) (CONJ | |
(ASSUME (`(( \<=/* (P:num->'a->bool) i) LEADSTO q)Pr`)) | |
(SPEC (`SUC i`) (ASSUME (`!i. (((P:num->'a->bool) i) LEADSTO q)Pr`))))) | |
]);; | |
(* Prove: | |
!p st Pr. (False LEADSTO p) (CONS st Pr) | |
*) | |
let LEADSTO_cor11 = prove_thm | |
("LEADSTO_cor11", | |
(`!(p:'a->bool) st Pr. (False LEADSTO p) (CONS st Pr)`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO;LeadstoRel] THEN | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ENSURES_cor6] (CONJUNCT1 | |
(SPECL [(`False:'a->bool`); (`p:'a->bool`)] | |
(ASSUME (`!(p:'a->bool) q. | |
((p ENSURES q)(CONS st Pr) ==> R p q(CONS st Pr)) /\ | |
(!r. R p r(CONS st Pr) /\ R r q(CONS st Pr) ==> R p q(CONS st Pr)) /\ | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> R p' q(CONS st Pr)) ==> | |
R p q(CONS st Pr))`))))));; | |
(* Prove: | |
|- !P q st Pr. (!i. ((P i) LEADSTO q)(CONS st Pr)) ==> | |
(!i. (( \</* P i) LEADSTO q)(CONS st Pr)) | |
*) | |
let LEADSTO_cor12 = prove_thm | |
("LEADSTO_cor12", | |
(`!(P:num->'a->bool) q st Pr. | |
(!i. ((P i) LEADSTO q)(CONS st Pr)) | |
==> (!i. (( \</* P i) LEADSTO q)(CONS st Pr))`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
INDUCT_TAC THEN | |
ASM_REWRITE_TAC [OR_LT_N_def; LEADSTO_cor11] THEN | |
ACCEPT_TAC (MP | |
(SPECL [(` \</* (P:num->'a->bool) i`); (`(P:num->'a->bool) i`); | |
(`q:'a->bool`); (`CONS (st:'a->'a) Pr`)] LEADSTO_thm4) (CONJ | |
(ASSUME (`(( \</* (P:num->'a->bool) i) LEADSTO q)(CONS st Pr)`)) | |
(SPEC (`i:num`) | |
(ASSUME (`!i. (((P:num->'a->bool) i) LEADSTO q)(CONS st Pr)`))))));; | |
(* | |
We now want to introduce some tactics for allowing structural induction | |
of leadsto relations, but we have problems with the induction principle | |
for the completion theorem: | |
!P Q R P' Q' Pr. | |
(P LEADSTO Q)Pr /\ (P' LEADSTO Q')Pr /\ (Q UNLESS R)Pr /\ (Q' UNLESS R)Pr | |
==> ((P /\* P') LEADSTO ((Q /\* Q') \/* R))Pr | |
since this theorems demands another induction principle not directly | |
derivable from the given definition of leadsto. | |
We circumvent the problem by proving that leadsto may be defined by another | |
functional. | |
This time we use the results of Tarski directly. | |
*) | |
(* *) | |
(* | |
Suppose we wanted to change the transitive inductitive axiom into | |
p ensures r, r leadsto q | |
--------------------------- (2) | |
p leadsto q | |
instead of the previous given. | |
Let us investigate the following definition a litte: | |
Now the functional becomes | |
*) | |
(* | |
|- !R Pr. | |
LEADSTO2Fn R Pr = | |
(\p q. | |
(p ENSURES q) Pr \/ | |
(?r. (p ENSURES r) Pr /\ R r q Pr) \/ | |
(?P. (p = LUB P) /\ (!p'. p' In P ==> R p' q Pr))) | |
*) | |
let LEADSTO2Fn = new_definition | |
(`LEADSTO2Fn R = \(p:'a->bool) q Pr. | |
(p ENSURES q) Pr \/ | |
(?r. (p ENSURES r) Pr /\ R r q Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> R p q Pr))`);; | |
(* | |
|- !p q Pr. | |
LEADSTO2 p q Pr = | |
(!R Pr. (!p' q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr) ==> R p q Pr) | |
*) | |
let LEADSTO2 = new_definition | |
(`LEADSTO2 (p:'a->bool) q Pr = | |
!R. (!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) ==> R p q Pr`);; | |
(* | |
|- !R p q Pr. | |
(!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) ==> | |
(!p q. | |
(\p q Pr. !R. | |
(!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) ==> R p q Pr) p q Pr | |
==> | |
R p q Pr) | |
*) | |
let LEADSTO2Imply_1 = TAC_PROOF | |
(([], | |
(`!R (p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). | |
(!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) ==> | |
(!p q. (\p q Pr. !R. (!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) | |
==> R p q Pr) p q Pr | |
==> R p q Pr)`)), | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
(* | |
|- !R1 R2 Pr. | |
(!p q. R1 p q Pr ==> R2 p q Pr) ==> | |
(!p q. LEADSTO2Fn R1 p q Pr ==> LEADSTO2Fn R2 p q Pr) | |
*) | |
let IsMonoLEADSTO2 = TAC_PROOF | |
(([], | |
(`!R1 R2 (Pr:('a->'a)list). | |
(!p q. R1 p q Pr ==> R2 p q Pr) | |
==> (!p q. LEADSTO2Fn R1 p q Pr ==> LEADSTO2Fn R2 p q Pr)`)), | |
REWRITE_TAC [LEADSTO2Fn] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
RES_TAC THEN | |
DISJ2_TAC THEN | |
DISJ1_TAC THEN | |
EXISTS_TAC (`r:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
; | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`P:('a->bool)->bool`) THEN | |
ASM_REWRITE_TAC [] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC | |
]);; | |
(* | |
LEADSTO2th = | |
|- LEADSTO2 = | |
(\p q Pr. | |
!R. (!p' q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr) ==> R p q Pr) | |
*) | |
let LEADSTO2th = (REWRITE_RULE [ETA_AX] (MK_ABS (GEN (`p:'a->bool`) (MK_ABS | |
(GEN (`q:'a->bool`) (MK_ABS (GEN (`Pr:('a->'a)list`) (SPEC_ALL LEADSTO2))))))));; | |
(* | |
|- !p q Pr. LEADSTO2Fn LEADSTO2 p q Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO2Imply1 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q Pr. | |
LEADSTO2Fn LEADSTO2 p q Pr ==> LEADSTO2 p q Pr`)), | |
REPEAT GEN_TAC THEN | |
ASSUME_TAC (GENL | |
[(`R1:('a->bool)->('a->bool)->(('a->'a)list)->bool`); | |
(`R2:('a->bool)->('a->bool)->(('a->'a)list)->bool`)] | |
(SPEC_ALL IsMonoLEADSTO2)) THEN | |
REWRITE_TAC [LEADSTO2th] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (MP (SPEC_ALL (MP (BETA_RULE (SPEC_ALL (SPECL | |
[(`\(p:'a->bool) q Pr. !R. (!p' q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr) | |
==> R p q Pr`); | |
(`R:('a->bool)->('a->bool)->(('a->'a)list)->bool`)] IsMonoLEADSTO2))) | |
(BETA_RULE (MP (SPEC_ALL LEADSTO2Imply_1) | |
(ASSUME (`!(p':'a->bool) q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr`)))))) | |
(ASSUME (`LEADSTO2Fn (\(p:'a->bool) q Pr. | |
!R. (!p' q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr) | |
==> R p q Pr) p q Pr`))) THEN | |
RES_TAC);; | |
(* | |
|- !p q Pr. LEADSTO2 p q Pr ==> LEADSTO2Fn LEADSTO2 p q Pr | |
*) | |
let LEADSTO2Imply2 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q Pr. LEADSTO2 p q Pr ==> LEADSTO2Fn LEADSTO2 p q Pr`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [ETA_AX] (MP (BETA_RULE (SPECL | |
[(`\p q Pr. LEADSTO2Fn LEADSTO2 (p:'a->bool) q Pr`); | |
(`LEADSTO2:('a->bool)->('a->bool)->(('a->'a)list)->bool`); | |
(`Pr:('a->'a)list`)] IsMonoLEADSTO2)) | |
(GENL [(`p:'a->bool`); (`q:'a->bool`)] (SPEC_ALL LEADSTO2Imply1)))) THEN | |
ACCEPT_TAC (UNDISCH (GEN_ALL (SPEC | |
(`LEADSTO2Fn (LEADSTO2:('a->bool)->('a->bool)->(('a->'a)list)->bool)`) (BETA_RULE | |
(REWRITE_RULE [LEADSTO2] (ASSUME (`LEADSTO2 (p:'a->bool) q Pr`))))))));; | |
(* | |
|- !p q Pr. LEADSTO2 p q Pr = LEADSTO2Fn LEADSTO2 p q Pr | |
*) | |
let LEADSTO2EQs = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q Pr. LEADSTO2 p q Pr = LEADSTO2Fn LEADSTO2 p q Pr`)), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO2Imply2) | |
; | |
ACCEPT_TAC (SPEC_ALL LEADSTO2Imply1) | |
]);; | |
(* | |
|- LEADSTO2 = LEADSTO2Fn LEADSTO2 | |
*) | |
let LEADSTO2EQ = | |
(REWRITE_RULE [ETA_AX] | |
(MK_ABS (GEN (`p:'a->bool`) | |
(MK_ABS (GEN (`q:'a->bool`) (MK_ABS (GEN (`Pr:('a->'a)list`) | |
(SPEC_ALL LEADSTO2EQs))))))));; | |
(* | |
|- !R. (R = LEADSTO2Fn R) ==> (!p q Pr. LEADSTO2Fn R p q Pr ==> R p q Pr) | |
*) | |
let LEADSTO2Thm1_1 = TAC_PROOF | |
(([], | |
(`!R. (R = LEADSTO2Fn R) | |
==> (!(p:'a->bool) q Pr. LEADSTO2Fn R p q Pr ==> R p q Pr)`)), | |
REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC | |
[ASSUME | |
(`R = LEADSTO2Fn (R:('a->bool)->('a->bool)->(('a->'a)list)->bool)`)] THEN | |
REWRITE_TAC [ASSUME (`LEADSTO2Fn R (p:'a->bool) q Pr`)]);; | |
(* | |
|- !R. (R = LEADSTO2Fn R) ==> (!p q Pr. LEADSTO2 p q Pr ==> R p q Pr) | |
*) | |
let LEADSTO2MinFixThm = TAC_PROOF | |
(([], | |
(`!R. (R = LEADSTO2Fn R) | |
==> (!(p:'a->bool) q Pr. LEADSTO2 p q Pr ==> R p q Pr)`)), | |
REWRITE_TAC [LEADSTO2] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (SPEC_ALL (ASSUME | |
(`!R. (!(p':'a->bool) q'. LEADSTO2Fn R p' q' Pr ==> R p' q' Pr) | |
==> R p q Pr`))) THEN | |
ASSUME_TAC (GENL [(`p:'a->bool`); (`q:'a->bool`)] (SPEC_ALL | |
(UNDISCH (SPEC_ALL LEADSTO2Thm1_1)))) THEN | |
RES_TAC);; | |
(* | |
|- !R. | |
(!p q Pr. LEADSTO2Fn R p q Pr ==> R p q Pr) ==> | |
(!p q Pr. LEADSTO2 p q Pr ==> R p q Pr) | |
*) | |
let LEADSTO2InductThm = TAC_PROOF | |
(([], | |
(`!R. (!(p:'a->bool) q Pr. LEADSTO2Fn R p q Pr ==> R p q Pr) | |
==> (!p q Pr. LEADSTO2 p q Pr ==> R p q Pr)`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO2] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (GENL [(`p:'a->bool`); (`q:'a->bool`)] (SPEC_ALL (ASSUME | |
(`!(p:'a->bool) q Pr. LEADSTO2Fn R p q Pr ==> R p q Pr`)))) THEN | |
RES_TAC);; | |
(* | |
|- !R Pr. | |
LEADSTO2Fam R Pr = | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R (LUB P) q Pr) | |
*) | |
let LEADSTO2Fam = new_definition | |
(`LEADSTO2Fam R Pr = | |
!(p:'a->bool) (q:'a->bool). | |
((p ENSURES q) Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r) Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R (LUB P) q Pr)`);; | |
(* | |
|- !R Pr. (!p q. LEADSTO2Fn R p q Pr ==> R p q Pr) = LEADSTO2Fam R Pr | |
*) | |
let LEADSTO2Fn_EQ_LEADSTO2Fam = TAC_PROOF | |
(([], | |
(`!R Pr. | |
(!(p:'a->bool) q. LEADSTO2Fn R p q Pr ==> R p q Pr) = LEADSTO2Fam R Pr`)), | |
REWRITE_TAC [LEADSTO2Fam; LEADSTO2Fn] THEN | |
BETA_TAC THEN | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THENL | |
[ | |
REWRITE_TAC [REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p. (p = LUB (P:('a->bool)->bool)) ==> | |
(R:('a->bool)->('a->bool)->(('a->'a)list)->bool) p q Pr`)))] | |
; | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
Prove that the wanted axioms 1; 2, 3 are really theorems for the found | |
fixed point | |
*) | |
(* | |
|- !p q Pr. (p ENSURES q)Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO2_thm0 = prove_thm | |
("LEADSTO2_thm0", | |
(`!(p:'a->bool) q Pr. (p ENSURES q) Pr ==> LEADSTO2 p q Pr`), | |
REWRITE_TAC [LEADSTO2; LEADSTO2Fn] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
(* | |
|- !p r q Pr. (p ENSURES r)Pr /\ LEADSTO2 r q Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO2_thm1 = prove_thm | |
("LEADSTO2_thm1", | |
(`!(p:'a->bool) r q Pr. | |
(p ENSURES r) Pr /\ (LEADSTO2 r q Pr) ==> (LEADSTO2 p q Pr)`), | |
REWRITE_TAC [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
(* Prove: | |
|- !P q Pr. (!p. p In P ==> LEADSTO2 p q Pr) ==> LEADSTO2(LUB P)q Pr | |
*) | |
let LEADSTO2_thm3_lemma1 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. p In P ==> | |
(!R. | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p'. p' In P ==> R p' q Pr) ==> R (LUB P) q Pr)) ==> | |
R p q Pr)) ==> | |
(!p. p In P ==> | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p'. p' In P ==> R p' q Pr) ==> R (LUB P) q Pr)) ==> | |
R p q Pr)`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO2_thm3 = prove_thm | |
("LEADSTO2_thm3", | |
(`!(P:('a->bool)->bool) q Pr. | |
(!p. p In P ==> LEADSTO2 p q Pr) ==> LEADSTO2 (LUB P) q Pr`), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (GEN_ALL (REWRITE_RULE[ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p'. p' In P ==> R p' q Pr) ==> R (LUB P) q Pr)`)] | |
(SPEC_ALL (UNDISCH (SPEC_ALL LEADSTO2_thm3_lemma1))))) THEN | |
RES_TAC);; | |
let LEADSTO2_thm3a = prove_thm | |
("LEADSTO2_thm3a", | |
(`!(P:('a->bool)->bool) q Pr. | |
(p = LUB P) /\ (!p. p In P ==> LEADSTO2 p q Pr) | |
==> LEADSTO2 p q Pr`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO2_thm3 THEN | |
ASM_REWRITE_TAC []);; | |
(* | |
!p1 p2 q Pr. (LEADSTO2 p1 q Pr) /\ (LEADSTO2 p2 q Pr) | |
==> (LEADSTO2 (p1 \/* p2) q Pr) | |
*) | |
(* | |
To prove this we need some general lemmas about expressing two known | |
relations as one relation: | |
*) | |
(* | |
|- !p1 p2 s. (p1 \/* p2)s = LUB(\p. (p = p1) \/ (p = p2))s | |
*) | |
let LEADSTO2_thm4_lemma1a = TAC_PROOF | |
(([], | |
(`!(p1:'a->bool) p2 s. (p1 \/* p2) s = (LUB (\p. (p = p1) \/ (p = p2))) s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LUB; OR_def] THEN | |
BETA_TAC THEN | |
EQ_TAC THENL | |
[ | |
STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`p1:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
; | |
EXISTS_TAC (`p2:'a->bool`) THEN | |
ASM_REWRITE_TAC [] | |
] | |
; | |
STRIP_TAC THENL | |
[ | |
REWRITE_TAC [REWRITE_RULE [ASSUME (`(p:'a->bool) = p1`)] (ASSUME | |
(`(p:'a->bool) s`))] | |
; | |
REWRITE_TAC [REWRITE_RULE [ASSUME (`(p:'a->bool) = p2`)] (ASSUME | |
(`(p:'a->bool) s`))] | |
] | |
]);; | |
(* | |
|- !p1 p2. p1 \/* p2 = LUB(\p. (p = p1) \/ (p = p2)) | |
*) | |
let LEADSTO2_thm4_lemma1 = (GEN_ALL (REWRITE_RULE [ETA_AX] (MK_ABS (GEN (`s:'a`) | |
(SPEC_ALL LEADSTO2_thm4_lemma1a)))));; | |
(* | |
|- !R Pr. | |
(!p' q'. | |
(p' ENSURES q')Pr \/ | |
(?r. (p' ENSURES r)Pr /\ R r q' Pr) \/ | |
(?P. (p' = LUB P) /\ (!p. p In P ==> R p q' Pr)) ==> | |
R p' q' Pr) ==> | |
(!p q P. (p = LUB P) /\ (!p. p In P ==> R p q Pr) ==> R p q Pr) | |
*) | |
let LEADSTO2_thm4_lemma2 = TAC_PROOF | |
(([], | |
(`!(R:('a->bool)->('a->bool)->(('a->'a)list)->bool) Pr. | |
(!p' q'. | |
(p' ENSURES q') Pr \/ (?r. (p' ENSURES r) Pr /\ R r q' Pr) \/ | |
(?P. (p' = LUB P) /\ (!p. p In P ==> R p q' Pr)) ==> R p' q' Pr) | |
==> (!p q P. ((p = LUB P) /\ (!p. p In P ==> R p q Pr)) ==> R p q Pr)`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
(* | |
|- !R p1 p2 q Pr Pr. R p1 q Pr ==> R p2 q Pr ==> | |
(!p. (\p. (p = p1) \/ (p = p2))p ==> R p q Pr) | |
*) | |
let LEADSTO2_thm4_lemma3 = TAC_PROOF | |
(([], | |
(`!R (p1:'a->bool) p2 (q:'a->bool) (Pr:('a->'a)list) (Pr:('a->'a)list). | |
R p1 q Pr ==> R p2 q Pr ==> | |
(!p. (\p. (p = p1) \/ (p = p2))p ==> R p q Pr)`)), | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
ASM_REWRITE_TAC [] | |
; | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
|- !R p1 p2 q Pr. R p1 q Pr ==> R p2 q Pr ==> | |
(!p q P. (p = LUB P) /\ (!p. p In P ==> R p q Pr) ==> R p q Pr) ==> | |
R(p1 \/* p2)q Pr | |
*) | |
let LEADSTO2_thm4_lemma4 = TAC_PROOF | |
(([], | |
(`!R (p1:'a->bool) (p2:'a->bool) (q:'a->bool) (Pr:('a->'a)list). | |
R p1 q Pr ==> R p2 q Pr ==> | |
(!p q P. (p = LUB P) /\ (!p. p In P ==> R p q Pr) ==> R p q Pr) ==> | |
R (p1 \/* p2) q Pr`)), | |
REWRITE_TAC [IN] THEN | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[SYM (SPEC_ALL LEADSTO2_thm4_lemma1); | |
UNDISCH_ALL (SPEC_ALL LEADSTO2_thm4_lemma3)] | |
(SPECL | |
[(`(p1:'a->bool) \/* p2`); (`q:'a->bool`); (`\p:'a->bool. (p = p1) \/ (p = p2)`)] | |
(ASSUME (`!p (q:'a->bool) (P:('a->bool)->bool). (p = LUB P) /\ | |
(!p. P p ==> R p q Pr) ==> R p q (Pr:('a->'a)list)`)))));; | |
(* | |
Now Prove that the finite disjunction is satisfied | |
*) | |
(* | |
|- !p1 p2 q Pr. | |
LEADSTO2 p1 q Pr /\ LEADSTO2 p2 q Pr ==> LEADSTO2(p1 \/* p2)q Pr | |
*) | |
let LEADSTO2_thm4 = prove_thm | |
("LEADSTO2_thm4", | |
(`!(p1:'a->bool) p2 q Pr. | |
(LEADSTO2 p1 q Pr) /\ (LEADSTO2 p2 q Pr) ==> LEADSTO2 (p1 \/* p2) q Pr`), | |
REWRITE_TAC [LEADSTO2; LEADSTO2Fn] THEN | |
BETA_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL LEADSTO2_thm4_lemma2)) THEN | |
ACCEPT_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO2_thm4_lemma4)));; | |
(* Prove: | |
This is more difficult and we need to use structural induction | |
*) | |
(* | |
Prove the induction theorem: | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (!p. p In P ==> X p q Pr) ==> X(LUB P)q Pr)) | |
==> | |
LEADSTO2 p q Pr ==> X p q Pr | |
*) | |
let LEADSTO2_thm8 = prove_thm | |
("LEADSTO2_thm8", | |
(`!X (p:'a->bool) q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ X r q Pr ==> (X p q Pr)) /\ | |
(!P. (!p. p In P ==> X p q Pr) ==> (X (LUB P) q Pr))) | |
==> ((LEADSTO2 p q Pr) ==> X p q Pr)`), | |
REPEAT GEN_TAC THEN | |
REPEAT DISCH_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL CONJ_ASSOC)] (BETA_RULE | |
(SPEC (`\(p:'a->bool) (q:'a->bool) (Pr:('a->'a)list). X p q Pr:bool`) | |
(REWRITE_RULE [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] | |
(ASSUME (`LEADSTO2 (p:'a->bool) q Pr`)))))) THEN | |
RES_TAC);; | |
(* | |
We now use LEADSTO2_thm8 to prove a slightly modified writing of the wanted | |
theorem: | |
!p q Pr. (LEADSTO2 p q Pr) ==> (!r. LEADSTO2 q r Pr ==> LEADSTO2 p r Pr) | |
*) | |
(* | |
We get by specialization: | |
|- (!p' q'. | |
((p' ENSURES q')Pr ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr)) /\ | |
(!r. | |
(p' ENSURES r)Pr /\ (!r'. LEADSTO2 q' r' Pr ==> LEADSTO2 r r' Pr) | |
==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr)) /\ | |
(!P. | |
(!p''. p'' In P ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p'' r Pr)) | |
==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2(LUB P)r Pr))) | |
==> | |
LEADSTO2 p q Pr ==> (!r. LEADSTO2 q r Pr ==> LEADSTO2 p r Pr) | |
*) | |
let LEADSTO2_thm2a = (BETA_RULE (SPECL | |
[(`\p q Pr. !r:'a->bool. LEADSTO2 q r Pr ==> LEADSTO2 p r Pr`); | |
(`p:'a->bool`); (`q:'a->bool`); (`Pr:('a->'a)list`)] LEADSTO2_thm8));; | |
(* | |
We prove the implications of Rel_thm2a: | |
*) | |
(* | |
|- !p' q'. (p' ENSURES q')Pr ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr) | |
*) | |
let LEADSTO2_thm2b = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q'. | |
((p' ENSURES q')Pr ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr))`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO2_thm1);; | |
(* | |
|- !p' q' r. | |
(p' ENSURES r)Pr /\ (!r'. LEADSTO2 q' r' Pr ==> LEADSTO2 r r' Pr) ==> | |
(!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr) | |
*) | |
let LEADSTO2_thm2c = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q'. | |
(!r. | |
(p' ENSURES r)Pr /\ (!r'. LEADSTO2 q' r' Pr ==> LEADSTO2 r r' Pr) ==> | |
(!r. LEADSTO2 q' r Pr ==> LEADSTO2 p' r Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
IMP_RES_TAC LEADSTO2_thm1);; | |
(* | |
|- !p' q' P. | |
(!p''. p'' In P ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p'' r Pr)) ==> | |
(!r. LEADSTO2 q' r Pr ==> LEADSTO2(LUB P)r Pr) | |
*) | |
let LEADSTO2_thm2d_lemma1 = TAC_PROOF | |
(([], | |
(`!(q':'a->bool) r Pr. | |
LEADSTO2 q' r Pr ==> | |
(!p'':'a->bool. p'' In P ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p'' r Pr)) | |
==> (!p'':'a->bool. p'' In P ==> LEADSTO2 p'' r Pr)`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO2_thm2d = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) q'. | |
(!P:('a->bool)->bool. | |
(!p''. p'' In P ==> (!r. LEADSTO2 q' r Pr ==> LEADSTO2 p'' r Pr)) ==> | |
(!r. LEADSTO2 q' r Pr ==> LEADSTO2(LUB P)r Pr))`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO2_thm2d_lemma1 THEN | |
IMP_RES_TAC LEADSTO2_thm3);; | |
(* | |
Hence by rewriting we get: | |
|- LEADSTO2 p q Pr ==> (!r. LEADSTO2 q r Pr ==> LEADSTO2 p r Pr) | |
*) | |
let LEADSTO2_thm2e = | |
(REWRITE_RULE [LEADSTO2_thm2b; LEADSTO2_thm2c; LEADSTO2_thm2d] LEADSTO2_thm2a);; | |
(* Now we may Prove: | |
|- !p r q Pr. LEADSTO2 p r Pr /\ LEADSTO2 r q Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO2_thm2 = prove_thm | |
("LEADSTO2_thm2", | |
(`!(p:'a->bool) r q Pr. | |
(LEADSTO2 p r Pr) /\ (LEADSTO2 r q Pr) ==> (LEADSTO2 p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO2_thm2e);; | |
(* | |
|- !p q Pr. | |
(p ENSURES q)Pr \/ | |
(?r. LEADSTO2 p r Pr /\ LEADSTO2 r q Pr) \/ | |
(?P. (p = LUB P) /\ (!p. p In P ==> LEADSTO2 p q Pr)) | |
= | |
LEADSTO2 p q Pr | |
*) | |
let LEADSTO2_thm5 = prove_thm | |
("LEADSTO2_thm5", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q)Pr \/ | |
(?r. (LEADSTO2 p r Pr) /\ (LEADSTO2 r q Pr)) \/ | |
(?P. (p = (LUB P)) /\ (!p. p In P ==> LEADSTO2 p q Pr))) | |
= | |
(LEADSTO2 p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO2_thm0)) | |
; | |
IMP_RES_TAC LEADSTO2_thm2 | |
; | |
IMP_RES_TAC LEADSTO2_thm3 THEN | |
ASM_REWRITE_TAC [] | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (ONCE_REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] (ASSUME | |
(`LEADSTO2 (p:'a->bool) q Pr`))) | |
] | |
]);; | |
(* | |
|- !p q Pr. | |
(p ENSURES q)Pr \/ | |
(?r. (p ENSURES r)Pr /\ LEADSTO2 r q Pr) \/ | |
(?P. (p = ?* P) /\ (!i. LEADSTO2(P i)q Pr)) | |
= | |
LEADSTO2 p q Pr | |
*) | |
let LEADSTO2_thm6 = prove_thm | |
("LEADSTO2_thm6", | |
(`!(p:'a->bool) q Pr. | |
((p ENSURES q)Pr \/ | |
(?r. (p ENSURES r)Pr /\ (LEADSTO2 r q Pr)) \/ | |
(?P. (p = (LUB P)) /\ (!p. p In P ==> LEADSTO2 p q Pr))) | |
= | |
(LEADSTO2 p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
EQ_TAC THENL | |
[ | |
REPEAT STRIP_TAC THENL | |
[ | |
ACCEPT_TAC (UNDISCH (SPEC_ALL LEADSTO2_thm0)) | |
; | |
IMP_RES_TAC LEADSTO2_thm1 | |
; | |
IMP_RES_TAC LEADSTO2_thm3 THEN | |
ASM_REWRITE_TAC [] | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
DISJ2_TAC THEN | |
DISJ2_TAC THEN | |
EXISTS_TAC (`\(p':'a->bool). if (p = p') then T else F`) THEN | |
REWRITE_TAC [LUB; IN] THEN | |
BETA_TAC THEN | |
CONJ_TAC THENL | |
[ | |
ACCEPT_TAC (SPEC_ALL LEADSTO_thm5_lemma2) | |
; | |
REWRITE_TAC [LEADSTO_thm5_lemma3] THEN | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (ONCE_REWRITE_RULE [ASSUME (`(p:'a->bool) = p'`)] (ASSUME | |
(`LEADSTO2 (p:'a->bool) q Pr`))) | |
] | |
]);; | |
(* | |
Now we are able to prove another induction principle | |
*) | |
(* | |
We need a lemma | |
*) | |
let LEADSTO2_thm7_lemma01 = TAC_PROOF | |
(([], | |
(`(!p':'a->bool. | |
p' In P ==> LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q Pr)) | |
= | |
((!p'. p' In P ==> LEADSTO2 p' q Pr) /\ | |
(!p'. p' In P ==> LEADSTO2 p' q Pr ==> X p' q Pr))`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO2_thm7_lemma = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ | |
LEADSTO2 r q Pr /\ | |
(LEADSTO2 r q Pr ==> X r q Pr) ==> | |
LEADSTO2 p q Pr ==> | |
X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> LEADSTO2 p q Pr) /\ | |
(!p. p In P ==> LEADSTO2 p q Pr ==> X p q Pr) ==> | |
LEADSTO2(LUB P)q Pr ==> | |
X(LUB P)q Pr)) | |
= | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> | |
LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q Pr)) /\ | |
(!r. | |
(p ENSURES r)Pr /\ | |
LEADSTO2 r q Pr /\ | |
(LEADSTO2 r q Pr ==> X r q Pr) ==> | |
LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q Pr)) /\ | |
(!P. | |
(!p'. | |
p' In P ==> | |
LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q Pr)) ==> | |
LEADSTO2(LUB P)q Pr /\ (LEADSTO2(LUB P)q Pr ==> X(LUB P)q Pr)))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO2_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO2_thm1 | |
; | |
RES_TAC | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [LEADSTO2_thm7_lemma01] (ASSUME | |
(`!p':'a->bool. p' In P | |
==> LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q Pr)`))) THEN | |
IMP_RES_TAC LEADSTO2_thm3 | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [LEADSTO2_thm7_lemma01] (ASSUME | |
(`!p':'a->bool. p' In P | |
==> LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q Pr)`))) THEN | |
RES_TAC | |
; | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (REWRITE_RULE [SYM LEADSTO2_thm7_lemma01] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> LEADSTO2 p q Pr`)) | |
(ASSUME (`!p:'a->bool. p In P ==> LEADSTO2 p q Pr ==> X p q Pr`)))) THEN | |
RES_TAC | |
]);; | |
(* | |
The induction theorem: | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ (LEADSTO2 r q Pr ==> X r q Pr) | |
==> LEADSTO2 p q Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> LEADSTO2 p q Pr) /\ | |
(!p. p In P ==> LEADSTO2 p q Pr ==> X p q Pr) | |
==> LEADSTO2(LUB P)q Pr ==> X(LUB P)q Pr)) | |
==> | |
LEADSTO2 p q Pr ==> X p q Pr | |
*) | |
let LEADSTO2_thm7 = prove_thm | |
("LEADSTO2_thm7", | |
(`!X (p:'a->bool) q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ (LEADSTO2 r q Pr) /\ | |
((LEADSTO2 r q Pr) ==> X r q Pr) | |
==> ((LEADSTO2 p q Pr) ==> X p q Pr)) /\ | |
(!P. (!p. p In P ==> LEADSTO2 p q Pr) /\ | |
(!p. p In P ==> LEADSTO2 p q Pr ==> X p q Pr) | |
==> ((LEADSTO2 (LUB P) q Pr) ==> X (LUB P) q Pr))) | |
==> ((LEADSTO2 p q Pr) ==> X p q Pr)`), | |
REPEAT GEN_TAC THEN | |
REPEAT DISCH_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO2_thm7_lemma)] | |
(BETA_RULE (SPEC | |
(`\(p:'a->bool) q Pr. (LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q Pr))`) | |
(REWRITE_RULE [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] | |
(ASSUME (`LEADSTO2 (p:'a->bool) q Pr`)))))) THEN | |
RES_TAC);; | |
(* | |
Finally we want to prove that LEADSTO is equal to LEADSTO2: | |
*) | |
(* | |
We do the proving as two implication proofs: | |
*) | |
(* | |
|- !R Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R(LUB P)q Pr)) | |
==> | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R(LUB P)q Pr)) | |
*) | |
let LEADSTO_EQ_LEADSTO2a = TAC_PROOF | |
(([], | |
(`!R (Pr:('a->'a)list). | |
(!p q. ((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R (LUB P) q Pr)) | |
==> | |
(!p q. ((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p. p In P ==> R p q Pr) ==> R (LUB P) q Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
(* | |
|- !p q Pr. LEADSTO2 p q Pr ==> (p LEADSTO q)Pr | |
*) | |
let LEADSTO_EQ_LEADSTO2b_lemma = TAC_PROOF | |
(([], | |
(`(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (p = LUB P) /\ (!p'. p' In P ==> R p' q Pr) ==> R p q Pr)) | |
==> | |
(!p q. | |
((p ENSURES q)Pr ==> R p q Pr) /\ | |
(!r. R p r Pr /\ R r q Pr ==> R p q Pr) /\ | |
(!P. (!p'. p' In P ==> R p' q Pr) ==> R (LUB P) q Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p:'a->bool. (p = LUB P) ==> R p (q:'a->bool) (Pr:('a->'a)list)`)))));; | |
let LEADSTO_EQ_LEADSTO2b = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q Pr. LEADSTO2 p q Pr ==> (p LEADSTO q) Pr`)), | |
REWRITE_TAC [LEADSTO; LeadstoRel; | |
LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL LEADSTO_EQ_LEADSTO2b_lemma)) THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL LEADSTO_EQ_LEADSTO2a)) THEN | |
RES_TAC);; | |
(* | |
|- (!p' q'. | |
((p' ENSURES q')Pr ==> LEADSTO2 p' q' Pr) /\ | |
(!r. LEADSTO2 p' r Pr /\ LEADSTO2 r q' Pr ==> LEADSTO2 p' q' Pr) /\ | |
(!P. (p' = LUB P) /\ | |
(!p''. p'' In P ==> LEADSTO2 p'' q' Pr) ==> LEADSTO2 p' q' Pr)) | |
==> | |
(p LEADSTO q)Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO_EQ_LEADSTO2c = (SPECL | |
[(`LEADSTO2:('a->bool)->('a->bool)->(('a->'a)list)->bool`); | |
(`p:'a->bool`); (`q:'a->bool`); (`Pr:('a->'a)list`)] LEADSTO_thm21);; | |
(* | |
|- !p q Pr. (p LEADSTO q)Pr ==> LEADSTO2 p q Pr | |
*) | |
let LEADSTO_EQ_LEADSTO2d = | |
(GEN_ALL (REWRITE_RULE [LEADSTO2_thm0; LEADSTO2_thm2; LEADSTO2_thm3a] | |
LEADSTO_EQ_LEADSTO2c));; | |
(* | |
The equivalence proof: | |
|- !p q Pr. (p LEADSTO q)Pr = LEADSTO2 p q Pr | |
*) | |
let LEADSTO_EQ_LEADSTO2 = prove_thm | |
("LEADSTO_EQ_LEADSTO2", | |
(`!(p:'a->bool) q Pr. (p LEADSTO q)Pr = LEADSTO2 p q Pr`), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THENL | |
[ | |
REWRITE_TAC [LEADSTO_EQ_LEADSTO2d] | |
; | |
REWRITE_TAC [LEADSTO_EQ_LEADSTO2b] | |
]);; | |
(* | |
Hence now we may conclude all theorems proven valid for both relations | |
*) | |
(* | |
We get the last two induction principles for LEADSTO: | |
*) | |
(* | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (!p. p In P ==> X p q Pr) ==> X(LUB P)q Pr)) ==> | |
==> | |
(p LEADSTO q)Pr ==> X p q Pr | |
*) | |
let LEADSTO_thm31 = prove_thm | |
("LEADSTO_thm31", | |
(`!X (p:'a->bool) q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (!p. p In P ==> X p q Pr) ==> X (LUB P) q Pr)) | |
==> | |
(p LEADSTO q)Pr ==> X p q Pr`), | |
ACCEPT_TAC (REWRITE_RULE | |
[SYM (SPEC_ALL LEADSTO_EQ_LEADSTO2)] LEADSTO2_thm8));; | |
(* | |
The theorem may also be written: | |
*) | |
let LEADSTO_thm32 = prove_thm | |
("LEADSTO_thm32", | |
(`!X. | |
(!p q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (p ENSURES r)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P q Pr. (!p. p In P ==> X p q Pr) ==> X(LUB P)q Pr) | |
==> | |
!(p:'a->bool) q Pr. (p LEADSTO q)Pr ==> X p q Pr`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) (r:'a->bool) (q:'a->bool) Pr. | |
(p ENSURES r)Pr /\ X r q Pr ==> X p q Pr`); | |
ASSUME (`!(P:('a->bool)->bool) (q:'a->bool) (Pr:('a->'a)list). | |
(!p. p In P ==> X p q Pr) ==> X(LUB P)q Pr`)] | |
(SPEC_ALL LEADSTO_thm31)) THEN | |
RES_TAC);; | |
(* | |
|- !X p q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ | |
(r LEADSTO q)Pr /\ | |
((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)) | |
==> | |
(p LEADSTO q)Pr ==> X p q Pr | |
*) | |
let LEADSTO_thm33 = prove_thm | |
("LEADSTO_thm33", | |
(`!X (p:'a->bool) q Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ | |
((r LEADSTO q)Pr ==> X r q Pr) ==> | |
(p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X (LUB P) q Pr)) | |
==> | |
(p LEADSTO q)Pr ==> X p q Pr`), | |
ACCEPT_TAC (REWRITE_RULE | |
[SYM (SPEC_ALL LEADSTO_EQ_LEADSTO2)] LEADSTO2_thm7));; | |
(* | |
We may now derive the theorem: | |
*) | |
let LEADSTO_thm34 = prove_thm | |
("LEADSTO_thm34", | |
(`!X. | |
(!p q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ | |
((r LEADSTO q)Pr ==> X r q Pr) ==> | |
(p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P q Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X (LUB P) q Pr) | |
==> | |
!(p:'a->bool) q Pr. (p LEADSTO q)Pr ==> X p q Pr`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q Pr. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ | |
((r LEADSTO q)Pr ==> X r q Pr) ==> (p LEADSTO q)Pr ==> X p q Pr`); | |
ASSUME (`!(P:('a->bool)->bool) q Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr`)] | |
(SPEC_ALL LEADSTO_thm33)) THEN | |
RES_TAC);; | |
(* | |
And the theorem: | |
|- !X Pr. | |
(!p q. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P q. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X(LUB P)q Pr) | |
==> | |
(!p q. (p LEADSTO q)Pr ==> X p q Pr) | |
which may be used for deriving a tactic supporting given programs. | |
*) | |
let LEADSTO_thm34a_lemma1 = TAC_PROOF | |
(([], | |
(`!P q Pr. (!p:'a->bool. p In P ==> (p LEADSTO q)Pr) ==> | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> (!p. p In P ==> X p q Pr)`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm34a_lemma2 = TAC_PROOF | |
(([], | |
(`!P q Pr. (!p:'a->bool. p In P ==> (p LEADSTO q)Pr) ==> | |
(!p. p In P ==> X p q Pr) ==> | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr)`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm34a_lemma3 = TAC_PROOF | |
(([], | |
(`((!(p:'a->bool) q. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P q. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) ==> | |
X(LUB P)q Pr)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) | |
==> ((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr))`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO_thm34a_lemma1)) THEN | |
RES_TAC | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm2 THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`((p:'a->bool) ENSURES r)Pr`); | |
ASSUME (`((r:'a->bool) LEADSTO q)Pr`); | |
ASSUME (`(X:('a->bool)->('a->bool)->('a->'a)list->bool) r q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] | |
(SPEC_ALL (CONJUNCT1 (CONJUNCT2 (SPEC_ALL (ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)`))))))) | |
; | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
ASSUME_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO_thm34a_lemma2)) THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr`); | |
ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr ==> X p q Pr`); | |
ASSUME (`((LUB (P:('a->bool)->bool)) LEADSTO q)Pr`)] | |
(SPEC_ALL (CONJUNCT2 (CONJUNCT2 (SPEC_ALL (ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ ((r LEADSTO q)Pr ==> X r q Pr) | |
==> (p LEADSTO q)Pr ==> X p q Pr) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr ==> X p q Pr) ==> | |
((LUB P) LEADSTO q)Pr ==> X(LUB P)q Pr)`))))))) | |
]);; | |
(* | |
The theorem for the tactic | |
*) | |
let LEADSTO_thm34a = prove_thm | |
("LEADSTO_thm34a", | |
(`!X Pr. | |
(!p q. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P q. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X (LUB P) q Pr) | |
==> | |
!(p:'a->bool) q. (p LEADSTO q)Pr ==> X p q Pr`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
REPEAT GEN_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q Pr ==> X p q Pr`); | |
ASSUME (`!P (q:'a->bool). | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) ==> | |
X(LUB P)q Pr`)] | |
(REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm34a_lemma3)] | |
(SPEC_ALL LEADSTO_thm33))));; | |
let LEADSTO_thm34b = prove_thm | |
("LEADSTO_thm34b", | |
(`!X:('a->bool)->('a->bool)->('a->'a)list->bool. | |
(!p q st Pr. (p ENSURES q)(CONS st Pr) ==> X p q (CONS st Pr)) /\ | |
(!p r q st Pr. | |
(p ENSURES r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr) /\ | |
X r q (CONS st Pr) | |
==> X p q (CONS st Pr)) /\ | |
(!P q st Pr. | |
(!p. p In P ==> (p LEADSTO q)(CONS st Pr)) /\ | |
(!p. p In P ==> X p q (CONS st Pr)) | |
==> X (LUB P) q (CONS st Pr)) | |
==> | |
!p q st Pr. (p LEADSTO q)(CONS st Pr) ==> X p q (CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [ASSUME (`((p:'a->bool) LEADSTO q)(CONS st Pr)`)] | |
(SPEC_ALL (REWRITE_RULE | |
[ASSUME | |
(`!(p:'a->bool) q st Pr. (p ENSURES q)(CONS st Pr) ==> X p q(CONS st Pr)`); | |
ASSUME (`!(p:'a->bool) r q st Pr. | |
(p ENSURES r)(CONS st Pr) /\ (r LEADSTO q)(CONS st Pr) /\ | |
X r q(CONS st Pr) ==> X p q(CONS st Pr)`); | |
ASSUME (`!P (q:'a->bool) st Pr. | |
(!p. p In P ==> (p LEADSTO q)(CONS st Pr)) /\ | |
(!p. p In P ==> X p q(CONS st Pr)) ==> X(LUB P)q(CONS st Pr)`)] | |
(SPECL [(`X:('a->bool)->('a->bool)->('a->'a)list->bool`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm34a)))));; | |
(* | |
Now we may introduce some tactics for supporting structural induction | |
of leadsto relations: | |
*) | |
(* use"leadsto_induct0.sml";; *) | |
(* | |
|- !X st Pr. | |
(!p q. (p ENSURES q)(CONS st Pr) ==> X p q(CONS st Pr)) /\ | |
(!p r q. (p ENSURES r)(CONS st Pr) /\ | |
(r LEADSTO q)(CONS st Pr) /\ X r q(CONS st Pr) | |
==> X p q(CONS st Pr)) /\ | |
(!P q. (!p. p In P ==> (p LEADSTO q)(CONS st Pr)) /\ | |
(!p. p In P ==> X p q(CONS st Pr)) | |
==> X (LUB P) q (CONS st Pr)) | |
==> (!p q. (p LEADSTO q)(CONS st Pr) ==> X p q(CONS st Pr)) | |
*) | |
let LEADSTO_thm34a_lemma00 = TAC_PROOF | |
(([], | |
`!(p:'a->bool) q Pr X. | |
(!p q. (p ENSURES q) Pr ==> X p q Pr) /\ | |
(!p r q. | |
(p ENSURES r) Pr /\ (r LEADSTO q) Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P q. | |
(!p. p In P ==> (p LEADSTO q) Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X (LUB P) q Pr) | |
==> ((p LEADSTO q) Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC (SPEC_ALL LEADSTO_thm34a));; | |
let LEADSTO_thm34a_lemma01 = GENL | |
[`p:'a->bool`;`q:'a->bool`;`st:'a->'a`;`Pr:('a->'a)list`; | |
`X:('a->bool)->('a->bool)->('a->'a)list->bool`] | |
(SPECL [`p:'a->bool`;`q:'a->bool`;`(CONS st Pr):('a->'a)list`; | |
`X:('a->bool)->('a->bool)->('a->'a)list->bool`] LEADSTO_thm34a_lemma00);; | |
(* | |
Prove: | |
|- !p q st Pr. | |
(p ENSURES q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) /\ | |
(q UNLESS r)(CONS st Pr) /\ (q' UNLESS r)(CONS st Pr) | |
==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr) | |
*) | |
let LEADSTO_thm35_lemma00 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q r st Pr. | |
(p ENSURES q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) /\ | |
(q UNLESS r)(CONS st Pr) /\ (q' UNLESS r)(CONS st Pr) | |
==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr)`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (MP (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); | |
(`(CONS st Pr):('a->'a)list`)] ENSURES_cor2) | |
(ASSUME (`((p:'a->bool) ENSURES q)(CONS st Pr)`))) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); (`r:'a->bool`); | |
(`(CONS st Pr):('a->'a)list`)] | |
UNLESS_thm8) | |
(CONJ (MP (SPECL [(`p:'a->bool`); (`q:'a->bool`); | |
(`(CONS st Pr):('a->'a)list`)] | |
ENSURES_cor2) | |
(ASSUME (`((p:'a->bool) ENSURES q)(CONS st Pr)`))) | |
(ASSUME (`((q:'a->bool) UNLESS r)(CONS st Pr)`)))) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`p':'a->bool`); (`q':'a->bool`); | |
(`(p:'a->bool) \/* q`); (`r:'a->bool`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm29) (CONJ | |
(ASSUME (`((p':'a->bool) LEADSTO q')(CONS st Pr)`)) | |
(ASSUME (`(((p:'a->bool) \/* q) UNLESS r)(CONS st Pr)`)))) THEN | |
ASSUME_TAC (MP (SPECL [(`p:'a->bool`); (`(p:'a->bool) \/* q`); | |
(`p':'a->bool`)] IMPLY_WEAK_AND_lemma) | |
(SPECL [(`p:'a->bool`); | |
(`q:'a->bool`)] OR_IMPLY_WEAK_lemma)) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`(p:'a->bool) /\* p'`); (`(p':'a->bool) /\* (p \/* q)`); | |
(`st:'a->'a`); | |
(`Pr:('a->'a)list`)] LEADSTO_thm25) (ONCE_REWRITE_RULE | |
[(SPECL [(`(p:'a->bool) \/* q`); | |
(`p':'a->bool`)] AND_COMM_lemma)] | |
(ASSUME (`!s:'a. (p /\* p')s ==> | |
((p \/* q) /\* p')s`)))) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`(p:'a->bool) /\* p'`); (`(p':'a->bool) /\* (p \/* q)`); | |
(`((q':'a->bool) /\* (p \/* q)) \/* r`); | |
(`CONS (st:'a->'a) Pr`)] LEADSTO_thm1) | |
(CONJ | |
(ASSUME (`(((p:'a->bool) /\* p') LEADSTO | |
(p' /\* (p \/* q)))(CONS st Pr)`)) | |
(ASSUME (`((p' /\* (p \/* q)) LEADSTO | |
((q' /\* (p \/* q)) \/* r)) | |
(CONS (st:'a->'a) Pr)`)))) THEN | |
ASSUME_TAC (MP (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); | |
(`q':'a->bool`); (`r:'a->bool`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm29) | |
(CONJ (MP (SPECL [(`p:'a->bool`); (`q:'a->bool`); | |
(`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm0) | |
(ASSUME (`((p:'a->bool) ENSURES q)(CONS st Pr)`))) | |
(ASSUME (`((q':'a->bool) UNLESS r)(CONS st Pr)`)))) THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [SPECL | |
[(`((q':'a->bool) /\* q) \/* r`); | |
(`p:'a->bool`); (`q':'a->bool`)] | |
OR_AND_COMM_lemma] (ONCE_REWRITE_RULE [SPECL | |
[(`(q':'a->bool) /\* p`); (`((q':'a->bool) /\* q) \/* r`)] | |
OR_COMM_lemma] (REWRITE_RULE [OR_ASSOC_lemma] | |
(REWRITE_RULE [AND_OR_DISTR_lemma] (ASSUME | |
(`(((p:'a->bool) /\* p') LEADSTO | |
((q' /\* (p \/* q)) \/* r))(CONS st Pr)`)))))) THEN | |
ACCEPT_TAC (ONCE_REWRITE_RULE [OR_COMM_lemma] (REWRITE_RULE [OR_OR_lemma] | |
(REWRITE_RULE [OR_ASSOC_lemma] (ONCE_REWRITE_RULE[OR_AND_COMM_lemma] | |
(REWRITE_RULE [OR_OR_lemma] (REWRITE_RULE [SYM (SPEC_ALL OR_ASSOC_lemma)] | |
(ONCE_REWRITE_RULE [OR_COMM_lemma] (REWRITE_RULE [OR_ASSOC_lemma] | |
(ONCE_REWRITE_RULE [OR_OR_COMM_lemma] (MP (SPECL | |
[(`(p:'a->bool) /\* p'`); (`((q':'a->bool) /\* q) \/* r`); | |
(`(p:'a->bool) /\* q'`); (`((q:'a->bool) /\* q') \/* r`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm28) (CONJ | |
(ASSUME (`((p /\* p') LEADSTO | |
(((q' /\* q) \/* r) \/* (p /\* q'))) | |
(CONS (st:'a->'a) Pr)`)) | |
(ASSUME (`((p /\* q') LEADSTO ((q /\* q') \/* r)) | |
(CONS (st:'a->'a) Pr)`))))))))))))));; | |
let LEADSTO_thm35_lemma01_1 = TAC_PROOF | |
(([], | |
(`!(q:'a->bool) (q':'a->bool) r'' p r s. | |
((((q /\* q') \/* r'') \/* (p /\* r)) \/* ((q' /\* q) \/* r''))s = | |
(((q /\* q') \/* r'') \/* (p /\* r))s`)), | |
REWRITE_TAC [OR_def; AND_def] THEN | |
BETA_TAC THEN | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);; | |
let LEADSTO_thm35_lemma01_2 = | |
GEN_ALL (REWRITE_RULE [ETA_AX] (MK_ABS (GEN (`s:'a`) (SPEC_ALL | |
LEADSTO_thm35_lemma01_1))));; | |
let LEADSTO_thm35_lemma01_3 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. p In P ==> | |
(!p'' q r r'. | |
(r LEADSTO q)(CONS st Pr) ==> | |
(p'' ENSURES r)(CONS st Pr) ==> | |
(q' UNLESS r')(CONS st Pr) ==> | |
(q UNLESS r')(CONS st Pr) ==> | |
(!p' q' r''. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r'')(CONS st Pr) ==> | |
(q' UNLESS r'')(CONS st Pr) ==> | |
((r /\* p') LEADSTO ((q /\* q') \/* r''))(CONS st Pr)) ==> | |
((p'' /\* p) LEADSTO ((q /\* q') \/* r'))(CONS st Pr))) | |
==> | |
(!p'' q r r'. | |
(r LEADSTO q)(CONS st Pr) ==> | |
(p'' ENSURES r)(CONS st Pr) ==> | |
(q' UNLESS r')(CONS st Pr) ==> | |
(q UNLESS r')(CONS st Pr) ==> | |
(!p' q' r''. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r'')(CONS st Pr) ==> | |
(q' UNLESS r'')(CONS st Pr) ==> | |
((r /\* p') LEADSTO ((q /\* q') \/* r''))(CONS st Pr)) ==> | |
(!p. p In P ==> | |
((p'' /\* p) LEADSTO ((q /\* q') \/* r'))(CONS st Pr)))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm35_lemma01_4 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r q st Pr. | |
(!p. p In P ==> ((p /\* r) LEADSTO q)(CONS st Pr)) ==> | |
(!p. p In P ==> (p LEADSTO q)(CONS st Pr)) ==> | |
(((LUB P) /\* r) LEADSTO q)(CONS st Pr)`)), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm3a THEN | |
ASSUME_TAC (SPECL | |
[(`LUB (P:('a->bool)->bool)`); (`r:'a->bool`)] SYM_AND_IMPLY_WEAK_lemma) THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL (SPECL | |
[(`(LUB P) /\* (r:'a->bool)`); (`(LUB P):'a->bool`)] ENSURES_cor1))) THEN | |
IMP_RES_TAC LEADSTO_thm0 THEN | |
IMP_RES_TAC LEADSTO_thm1);; | |
let LEADSTO_thm35_lemma01_5 = TAC_PROOF | |
(([], | |
(`!(p':'a->bool) P p (p'':'a->bool). | |
p' In (\p''. ?p'''. p''' In P /\ (p'' = p /\* p''')) | |
= | |
(?p'''. p''' In P /\ (p' = p /\* p'''))`)), | |
REWRITE_TAC [IN] THEN | |
BETA_TAC THEN | |
REWRITE_TAC []);; | |
let LEADSTO_thm35_lemma01_6 = TAC_PROOF | |
(([], | |
(`!s:'a. | |
(p /\* (LUB P))s = | |
(LUB(\p''. ?p'. p' In P /\ (p'' = p /\* p')))s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [LUB; AND_def] THEN | |
BETA_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THENL | |
[ | |
EXISTS_TAC (`\s:'a. p s /\ p' s`) THEN | |
BETA_TAC THEN | |
ASM_REWRITE_TAC [] THEN | |
EXISTS_TAC (`p':'a->bool`) THEN | |
ASM_REWRITE_TAC [IN] | |
; | |
STRIP_ASSUME_TAC (BETA_RULE (SUBS | |
[ASSUME (`p' = (\s:'a. p s /\ p'' s)`)] | |
(ASSUME (`(p':'a->bool) s`)))) | |
; | |
EXISTS_TAC (`p'':'a->bool`) THEN | |
REWRITE_TAC [REWRITE_RULE [IN] (ASSUME (`(p'':'a->bool) In P`))] THEN | |
STRIP_ASSUME_TAC (BETA_RULE (SUBS | |
[ASSUME (`p' = (\s:'a. p s /\ p'' s)`)] | |
(ASSUME (`(p':'a->bool) s`)))) | |
]);; | |
let LEADSTO_thm35_lemma01_7 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r' q q' st Pr. | |
(!p'. p' In P ==> ((p /\* p') LEADSTO ((q /\* q') \/* r'))(CONS st Pr)) | |
==> | |
(!p'. (?p'''. p''' In P /\ (p' = p /\* p''')) ==> | |
(p' LEADSTO ((q /\* q') \/* r'))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC []);; | |
let LEADSTO_thm35_lemma01_8 = TAC_PROOF | |
(([], | |
(`!(P:('a->bool)->bool) r' q q' st Pr. | |
(!p'. | |
p' In P ==> ((p /\* p') LEADSTO ((q /\* q') \/* r'))(CONS st Pr)) | |
==> (((p /\* (LUB P)) LEADSTO ((q /\* q') \/* r'))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm35_lemma01_5] (SPECL | |
[(`\p'':'a->bool. ?p'. p' In P /\ (p'' = (p /\* p'))`); | |
(`(q /\* q') \/* (r':'a->bool)`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm3a)) THEN | |
ASSUME_TAC (REWRITE_RULE [(UNDISCH (SPEC_ALL LEADSTO_thm35_lemma01_7))] | |
(ASSUME (`(!p':'a->bool. | |
(?p'''. p''' In P /\ (p' = p /\* p''')) ==> | |
(p' LEADSTO ((q /\* q') \/* r'))(CONS st Pr)) ==> | |
((LUB(\p''. ?p'. p' In P /\ (p'' = p /\* p'))) LEADSTO | |
((q /\* q') \/* r')) | |
(CONS st Pr)`))) THEN | |
ASM_REWRITE_TAC [REWRITE_RULE [ETA_AX] (MK_ABS LEADSTO_thm35_lemma01_6)]);; | |
let LEADSTO_thm35_lemma01_9 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. | |
p In P ==> | |
(!p' q' r. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r)(CONS st Pr) ==> | |
(q' UNLESS r)(CONS st Pr) ==> | |
((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr))) | |
==> | |
((!p' q' r. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r)(CONS st Pr) ==> | |
(q' UNLESS r)(CONS st Pr) ==> | |
(!p. p In P ==> | |
((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr))))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm35_lemma01_10 = TAC_PROOF | |
(([], | |
(`(!p:'a->bool. p In P ==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr)) | |
==> | |
(!p. p In P ==> ((p' /\* p) LEADSTO ((q /\* q') \/* r))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ONCE_REWRITE_TAC [SPECL [(`p':'a->bool`); (`p:'a->bool`)] AND_COMM_lemma] THEN | |
ONCE_REWRITE_TAC [AND_COMM_OR_lemma] THEN | |
ASM_REWRITE_TAC []);; | |
let LEADSTO_thm35_lemma01a = TAC_PROOF | |
(([], | |
(`(!(p:'a->bool) q r'' r'. | |
(r'' LEADSTO q)(CONS st Pr) ==> | |
(p ENSURES r'')(CONS st Pr) ==> | |
(q' UNLESS r')(CONS st Pr) ==> | |
(q UNLESS r')(CONS st Pr) ==> | |
(!p' q' r'. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r')(CONS st Pr) ==> | |
(q' UNLESS r')(CONS st Pr) ==> | |
((r'' /\* p') LEADSTO ((q /\* q') \/* r'))(CONS st Pr)) ==> | |
((p /\* r) LEADSTO ((q /\* q') \/* r'))(CONS st Pr)) | |
==> | |
(!(p:'a->bool) q r' r''. | |
(r' LEADSTO q)(CONS st Pr) ==> | |
(p ENSURES r')(CONS st Pr) ==> | |
(q' UNLESS r'')(CONS st Pr) ==> | |
(q UNLESS r'')(CONS st Pr) ==> | |
(!p' q' r''. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r'')(CONS st Pr) ==> | |
(q' UNLESS r'')(CONS st Pr) ==> | |
((r' /\* p') LEADSTO ((q /\* q') \/* r''))(CONS st Pr)) ==> | |
((p /\* r) LEADSTO ((q /\* q') \/* r''))(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC[] | |
);; | |
(* | |
Now we define a tactic that given one of the LEADSTO induction | |
theorems can be used as a tactic to prove properties that require | |
structural induction to prove the required propertie | |
*) | |
let LEADSTO_INDUCT0_TAC : tactic = | |
( | |
try | |
MATCH_MP_TAC LEADSTO_thm34b THEN REPEAT CONJ_TAC | |
with Failure _ -> failwith "LEADSTO_INDUCT0_TAC Failed" | |
);; | |
let LEADSTO_thm35_lemma01 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr. | |
(p LEADSTO q)(CONS st Pr) ==> | |
!p' q' r. (p' LEADSTO q')(CONS st Pr) | |
==> (q UNLESS r)(CONS st Pr) ==> (q' UNLESS r)(CONS st Pr) | |
==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr)`)), | |
LEADSTO_INDUCT0_TAC THENL | |
[ | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma00 | |
; | |
REPEAT STRIP_TAC THEN | |
UNDISCH_TAC (`!(p':'a->bool) q' r'. | |
(p' LEADSTO q')(CONS st Pr) ==> | |
(q UNLESS r')(CONS st Pr) ==> | |
(q' UNLESS r')(CONS st Pr) ==> | |
((r /\* p') LEADSTO ((q /\* q') \/* r'))(CONS st Pr)`) THEN | |
UNDISCH_TAC (`((q:'a->bool) UNLESS r')(CONS st Pr)`) THEN | |
UNDISCH_TAC (`((q':'a->bool) UNLESS r')(CONS st Pr)`) THEN | |
UNDISCH_TAC (`((p:'a->bool) ENSURES r)(CONS st Pr)`) THEN | |
UNDISCH_TAC (`((r:'a->bool) LEADSTO q)(CONS st Pr)`) THEN | |
SPEC_TAC ((`r':'a->bool`), (`r':'a->bool`)) THEN | |
SPEC_TAC ((`r:'a->bool`), (`r:'a->bool`)) THEN | |
SPEC_TAC ((`q:'a->bool`), (`q:'a->bool`)) THEN | |
SPEC_TAC ((`p:'a->bool`), (`p:'a->bool`)) THEN | |
UNDISCH_TAC (`((p':'a->bool) LEADSTO q')(CONS st Pr)`) THEN | |
SPEC_TAC ((`Pr:('a->'a)list`), (`Pr:('a->'a)list`)) THEN | |
SPEC_TAC ((`st:'a->'a`), (`st:'a->'a`)) THEN | |
SPEC_TAC ((`q':'a->bool`), (`q':'a->bool`)) THEN | |
SPEC_TAC ((`p':'a->bool`), (`p':'a->bool`)) THEN | |
LEADSTO_INDUCT0_TAC THENL | |
[ | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm2 THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma00 THEN | |
ONCE_REWRITE_TAC [AND_COMM_lemma] THEN | |
ACCEPT_TAC (ASSUME | |
(`(((p':'a->bool) /\* p) LEADSTO | |
((q' /\* q) \/* r'))(CONS st Pr)`)) | |
; | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm2 THEN | |
IMP_RES_TAC LEADSTO_thm0 THEN | |
ASSUME_TAC (UNDISCH (SPECL | |
[(`p:'a->bool`); (`r':'a->bool`); | |
(`CONS (st:'a->'a) Pr`)] ENSURES_cor2)) THEN | |
ASSUME_TAC (UNDISCH (SPECL | |
[(`p':'a->bool`); (`r:'a->bool`); | |
(`CONS (st:'a->'a) Pr`)] ENSURES_cor2)) THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`((p:'a->bool)UNLESS r')(CONS st Pr)`); | |
ASSUME (`((p':'a->bool)ENSURES r)(CONS st Pr)`)] | |
(SPECL | |
[(`p:'a->bool`); (`r':'a->bool`); | |
(`p':'a->bool`); (`r:'a->bool`); | |
(`CONS (st:'a->'a) Pr`)] ENSURES_thm4)) THEN | |
IMP_RES_TAC LEADSTO_thm0 THEN | |
RES_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL OR_ASSOC_lemma)] | |
(ONCE_REWRITE_RULE [OR_COMM_lemma] (REWRITE_RULE [ | |
(ASSUME | |
(`(((r':'a->bool) /\* r) LEADSTO ((q /\* q') \/* r'')) | |
(CONS st Pr)`)); | |
(ASSUME (`(((p:'a->bool) /\* p') LEADSTO | |
(((p /\* r) \/* (p' /\* r')) \/* (r' /\* r))) | |
(CONS st Pr)`))] (SPECL | |
[(`(p:'a->bool) /\* p'`); | |
(`((p:'a->bool) /\* r) \/* (p' /\* r')`); | |
(`(r':'a->bool) /\* r`); | |
(`((q:'a->bool) /\* q') \/* r''`); (`st:'a->'a`); | |
(`Pr:('a->'a)list`)] LEADSTO_thm28)))) THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm35_lemma01_2] (REWRITE_RULE | |
[(ONCE_REWRITE_RULE [SPECL [(`r':'a->bool`); | |
(`p':'a->bool`)] AND_COMM_lemma] | |
(ASSUME | |
(`(((r':'a->bool) /\* p') LEADSTO ((q /\* q') \/* r'')) | |
(CONS st Pr)`))); | |
(ASSUME (`(((p:'a->bool) /\* p') LEADSTO | |
((((q /\* q') \/* r'') \/* (p /\* r)) \/* (p' /\* r'))) | |
(CONS st Pr)`))] (SPECL | |
[(`(p:'a->bool) /\* p'`); | |
(`(((q:'a->bool) /\* q') \/* r'') \/* (p /\* r)`); | |
(`(p':'a->bool) /\* r'`); | |
(`((q':'a->bool) /\* q) \/* r''`); (`st:'a->'a`); | |
(`Pr:('a->'a)list`)] LEADSTO_thm28))) THEN | |
ASM_REWRITE_TAC [REWRITE_RULE [OR_OR_lemma] (REWRITE_RULE | |
[(ASSUME | |
(`(((p:'a->bool) /\* r) LEADSTO ((q /\* q') \/* r''))(CONS st Pr)`)); | |
(ASSUME (`(((p:'a->bool) /\* p') LEADSTO | |
(((q /\* q') \/* r'') \/* (p /\* r)))(CONS st Pr)`))] (SPECL | |
[(`(p:'a->bool) /\* p'`); (`((q:'a->bool) /\* q') \/* r''`); | |
(`(p:'a->bool) /\* r`); (`((q:'a->bool) /\* q') \/* r''`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm28))] | |
; | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm0 THEN | |
IMP_RES_TAC LEADSTO_thm2 THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01_3 THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01_8 | |
] | |
; | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01_9 THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01_10 THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01_8 THEN | |
ONCE_REWRITE_TAC [SPECL | |
[(`LUB (P:('a->bool)->bool)`); (`p':'a->bool`)] AND_COMM_lemma] THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
Now prove the completion theorem: | |
|- !p q p' q' r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) /\ | |
(q UNLESS r)(CONS st Pr) /\ (q' UNLESS r)(CONS st Pr) | |
==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr) | |
*) | |
let LEADSTO_thm35 = prove_thm | |
("LEADSTO_thm35", | |
(`!(p:'a->bool) q p' q' r st Pr. | |
(p LEADSTO q)(CONS st Pr) /\ (p' LEADSTO q')(CONS st Pr) /\ | |
(q UNLESS r)(CONS st Pr) /\ (q' UNLESS r)(CONS st Pr) | |
==> ((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm35_lemma01);; | |
(* | |
We now prove the theorem valid for proving bounds of progress. | |
*) | |
(* | |
We need to define the metric predicates EQmetric and LESSmetric | |
*) | |
(* | |
EQmetric is the state abstracted predicate expressing that the metric | |
function M must have the value m in the state s. | |
*) | |
let EQmetric = new_infix_definition | |
("EQmetric", "<=>", | |
(`EQmetric (M:'a->num) m = \s. M s = m`), TL_FIX);; | |
(* | |
LESSmetric is the state abstracted predicate expressing that the metric | |
function M must have a value less than m in the state s. | |
*) | |
let LESSmetric = new_infix_definition | |
("LESSmetric", "<=>", | |
(`LESSmetric (M:'a->num) m = \s. M s < m`), TL_FIX);; | |
(*---------------------------------------------------------------------------*) | |
(* | |
Lemmas | |
*) | |
(*---------------------------------------------------------------------------*) | |
let LEADSTO_thm36_lemma00 = BETA_RULE | |
(SPEC (`\n. (((p:'a->bool) /\* (M EQmetric n)) LEADSTO q)(CONS st Pr)`) | |
GEN_INDUCT_thm);; | |
let LEADSTO_thm36_lemma01 = TAC_PROOF | |
(([], | |
(`!(M:'a->num) m. (p /\* (M EQmetric m)) = ((\i. p /\* (M EQmetric i))m)`)), | |
BETA_TAC THEN | |
REWRITE_TAC []);; | |
let LEADSTO_thm36_lemma02 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr M m. | |
(!n. n < (SUC m) ==> ((p /\* (M EQmetric n)) LEADSTO q)(CONS st Pr)) ==> | |
(!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q)(CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
STRIP_ASSUME_TAC | |
(MP (SPEC (`n:num`) (ASSUME (`!n. n < (SUC m) ==> | |
(((p:'a->bool) /\* (M EQmetric n)) LEADSTO q)(CONS st Pr)`))) | |
(MP (SPECL [(`n:num`); (`m:num`)] LESS_SUC) (ASSUME (`n < m`)))));; | |
let LEADSTO_thm36_lemma03 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr M m. | |
(!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q) (CONS st Pr)) ==> | |
(( \</* (\i. p /\* (M EQmetric i))m) LEADSTO q) (CONS st Pr)`)), | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [OR_LT_N_def; LEADSTO_cor12; LEADSTO_cor11; NOT_LESS_0] | |
; | |
DISCH_TAC THEN | |
REWRITE_TAC [OR_LT_N_def] THEN | |
BETA_TAC THEN | |
ASSUME_TAC (UNDISCH_ALL (SPEC_ALL LEADSTO_thm36_lemma02)) THEN | |
ASSUME_TAC (MP | |
(ASSUME (`(!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q)(CONS st Pr)) | |
==> (( \</* (\i. p /\* (M EQmetric i))m) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`)) | |
(ASSUME (`!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`))) THEN | |
ASSUME_TAC (REWRITE_RULE [LESS_SUC_REFL] (SPEC (`m:num`) | |
(ASSUME (`!n. n < (SUC m) ==> ((p /\* (M EQmetric n)) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`)))) THEN | |
STRIP_ASSUME_TAC (MP (SPECL | |
[(` \</* (\i. (p:'a->bool) /\* (M EQmetric i))m`); | |
(`(p:'a->bool) /\* (M EQmetric m)`); (`q:'a->bool`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm4) (CONJ | |
(ASSUME (`(( \</* (\i. p /\* (M EQmetric i))m) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`)) | |
(ASSUME (`((p /\* (M EQmetric m)) LEADSTO q)(CONS (st:'a->'a) Pr)`)))) | |
]);; | |
let LEADSTO_thm36_lemma04 = TAC_PROOF | |
(([], | |
(`!M:'a->num. (!m s. (M LESSmetric m)s = ( \</* (\i. M EQmetric i) m) s)`)), | |
GEN_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [LESSmetric; EQmetric; OR_LT_N_def; FALSE_def; NOT_LESS_0] | |
; | |
GEN_TAC THEN | |
REWRITE_TAC [OR_LT_N_def; OR_def; LESSmetric; LESS_THM] THEN | |
BETA_TAC THEN | |
EQ_TAC THENL | |
[ | |
STRIP_TAC THENL | |
[ | |
DISJ2_TAC THEN | |
REWRITE_TAC [EQmetric] THEN | |
BETA_TAC THEN | |
ASM_REWRITE_TAC [] | |
; | |
DISJ1_TAC THEN | |
ASM_REWRITE_TAC [SYM (SPEC_ALL(BETA_RULE (REWRITE_RULE [LESSmetric] | |
(ASSUME (`!s:'a. (M LESSmetric m)s = \</* (\i. M EQmetric i)m s`)))))] | |
] | |
; | |
STRIP_TAC THENL | |
[ | |
DISJ2_TAC THEN | |
ASM_REWRITE_TAC [SPEC_ALL (BETA_RULE (REWRITE_RULE [LESSmetric] | |
(ASSUME (`!s:'a. (M LESSmetric m)s = \</* (\i. M EQmetric i)m s`))))] | |
; | |
DISJ1_TAC THEN | |
STRIP_ASSUME_TAC (BETA_RULE (REWRITE_RULE [EQmetric] | |
(ASSUME (`(M EQmetric m)(s:'a)`)))) | |
] | |
] | |
]);; | |
let LEADSTO_thm36_lemma05 = TAC_PROOF | |
(([], | |
(`!(M:'a->num) m. (M LESSmetric m) = ( \</* (\i. M EQmetric i) m)`)), | |
REWRITE_TAC [LESSmetric; EQmetric; | |
BETA_RULE ((REWRITE_RULE [LESSmetric; EQmetric]) (MK_ABS | |
(SPECL [(`M:'a->num`); (`m:num`)] LEADSTO_thm36_lemma04)))] THEN | |
REWRITE_TAC [ETA_AX]);; | |
let LEADSTO_thm36_lemma06 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) M q Pr. | |
(!m. ((p /\* (M EQmetric m)) LEADSTO ((p /\* (M LESSmetric m)) \/* q))Pr) | |
==> (!m. ((p /\* (M EQmetric m)) LEADSTO | |
((p /\* ( \</* (\i. M EQmetric i)m)) \/* q))Pr)`)), | |
REWRITE_TAC [LEADSTO_thm36_lemma05]);; | |
let LEADSTO_thm36_lemma07 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) M m. | |
( \</* (\i. p /\* (M EQmetric i))m) = (p /\* ( \</* (\i. M EQmetric i)m))`)), | |
GEN_TAC THEN GEN_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
REWRITE_TAC [OR_LT_N_def; AND_False_lemma] | |
; | |
REWRITE_TAC [OR_LT_N_def] THEN | |
BETA_TAC THEN | |
ASM_REWRITE_TAC [SYM (SPEC_ALL AND_OR_DISTR_lemma)]]);; | |
let LEADSTO_thm36_lemma08 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr M. | |
(!m. ((p /\* (M EQmetric m)) LEADSTO | |
((p /\* (M LESSmetric m)) \/* q)) (CONS st Pr)) ==> | |
(!m. (!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q)(CONS st Pr)) ==> | |
((p /\* (M EQmetric m)) LEADSTO q) (CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm36_lemma07] | |
(MP (SPEC_ALL LEADSTO_thm36_lemma03) | |
(ASSUME (`!n. n < m ==> ((p /\* (M EQmetric n)) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`)))) THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [OR_COMM_lemma] (SPEC_ALL (UNDISCH (SPECL | |
[(`p:'a->bool`); (`M:'a->num`); (`q:'a->bool`); (`CONS (st:'a->'a) Pr`)] | |
LEADSTO_thm36_lemma06)))) THEN | |
STRIP_ASSUME_TAC (REWRITE_RULE [OR_OR_lemma] | |
(MP (SPECL [(`(p:'a->bool) /\* (M EQmetric m)`); (`q:'a->bool`); | |
(`(p:'a->bool) /\* ( \</* (\i. M EQmetric i)m)`); | |
(`q:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm28) | |
(CONJ (ASSUME (`(((p:'a->bool) /\* (M EQmetric m)) LEADSTO | |
(q \/* (p /\* ( \</* (\i. M EQmetric i)m)))) (CONS st Pr)`)) | |
(ASSUME (`((p /\* ( \</* (\i. M EQmetric i)m)) LEADSTO q) | |
(CONS (st:'a->'a) Pr)`))))));; | |
let LEADSTO_thm36_lemma09 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr M. | |
(!m. ((p /\* (M EQmetric m)) LEADSTO | |
((p /\* (M LESSmetric m)) \/* q)) (CONS st Pr)) ==> | |
(!m. ((p /\* (M EQmetric m)) LEADSTO q) (CONS st Pr))`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (UNDISCH (SPEC_ALL LEADSTO_thm36_lemma08)) THEN | |
STRIP_ASSUME_TAC (SPEC (`m:num`) (UNDISCH_ALL LEADSTO_thm36_lemma00)));; | |
let LEADSTO_thm36_lemma10s = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) M s. | |
(p /\* ((?*) (\n. M EQmetric n)))s = ((?*) (\i. p /\* (M EQmetric i)))s`)), | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC [AND_def; EXISTS_def; EQmetric] THEN | |
BETA_TAC THEN | |
EQ_TAC THENL | |
[ | |
STRIP_TAC THEN | |
EXISTS_TAC (`x:num`) THEN | |
ASM_REWRITE_TAC [] | |
; | |
STRIP_TAC THEN | |
ASM_REWRITE_TAC [] THEN | |
EXISTS_TAC (`x:num`) THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
|- !p M. p /\* ( ?* ) ((EQmetric) M) = (?*i. p /\* (M EQmetric i)) | |
*) | |
let LEADSTO_thm36_lemma10 = | |
(GENL [`p:'a->bool`;`M:'a->num`] (ONCE_REWRITE_RULE [ETA_AX] | |
(MK_ABS (SPECL [`p:'a->bool`;`M:'a->num`] LEADSTO_thm36_lemma10s))));; | |
let LEADSTO_thm36_lemma11s = TAC_PROOF | |
(([], | |
(`!(M:'a->num) s. ((?*) (\n. M EQmetric n))s = True s`)), | |
REWRITE_TAC [EXISTS_def; EQmetric; TRUE_def] THEN | |
BETA_TAC THEN | |
REPEAT GEN_TAC THEN | |
EXISTS_TAC (`(M:'a->num) s`) THEN | |
REFL_TAC);; | |
(* | |
|- !M. ( ?* ) ((EQmetric) M) = True | |
*) | |
let LEADSTO_thm36_lemma11 = | |
(GENL [`M:'a->num`] (ONCE_REWRITE_RULE [ETA_AX] | |
(MK_ABS (SPECL [`M:'a->num`] LEADSTO_thm36_lemma11s))));; | |
let LEADSTO_thm36_lemma12 = TAC_PROOF | |
(([], | |
(`!(p:'a->bool) q st Pr M. | |
(!m. ((p /\* (M EQmetric m)) LEADSTO | |
((p /\* (M LESSmetric m)) \/* q))(CONS st Pr)) | |
==> ((p /\* ((?*) (\n. M EQmetric n))) LEADSTO q)(CONS st Pr)`)), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [LEADSTO_thm36_lemma01] (MP | |
(SPEC_ALL LEADSTO_thm36_lemma09) | |
(ASSUME (`!m. ((p /\* (M EQmetric m)) LEADSTO | |
((p /\* (M LESSmetric m)) \/* q)) (CONS (st:'a->'a) Pr)`)))) THEN | |
IMP_RES_TAC (SPECL [`\i:num. (p:'a->bool) /\* (M EQmetric i)`] | |
LEADSTO_thm3c) THEN | |
ASM_REWRITE_TAC [LEADSTO_thm36_lemma10]);; | |
let LEADSTO_thm36 = prove_thm | |
("LEADSTO_thm36", | |
(`!(p:'a->bool) q st Pr M. | |
(!m. ((p /\* (M EQmetric m)) LEADSTO ((p /\* (M LESSmetric m)) \/* q)) | |
(CONS st Pr)) | |
==> (p LEADSTO q)(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
IMP_RES_TAC LEADSTO_thm36_lemma12 THEN | |
ACCEPT_TAC (REWRITE_RULE [LEADSTO_thm36_lemma11; AND_True_lemma] | |
(ASSUME | |
(`(((p:'a->bool) /\* ((?*) (\n. M EQmetric n))) LEADSTO q)(CONS st Pr)`))));; | |
(* | |
We prove a new induction theorem: | |
*) | |
let LEADSTO_thm37_lemma00 = TAC_PROOF | |
(([], | |
(`((!p:'a->bool. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q)) = | |
(!p'. p' In P ==> (p' LEADSTO q)Pr /\ X p' q)`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm37_lemma01 = TAC_PROOF | |
(([], | |
(`(!p':'a->bool. p' In P ==> (p' LEADSTO q)Pr /\ X p' q) = | |
((!p'. p' In P ==> (p' LEADSTO q)Pr) /\ (!p'. p' In P ==> X p' q))`)), | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm37_lemma02 = TAC_PROOF | |
(([], | |
(`!(X:('a->bool)->('a->bool)->bool) Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> (p LEADSTO q)Pr /\ X p q) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ X p r /\ (r LEADSTO q)Pr /\ X r q ==> | |
(p LEADSTO q)Pr /\ X p q) /\ | |
(!P. | |
(p = LUB P) /\ (!p'. p' In P ==> (p' LEADSTO q)Pr /\ X p' q) ==> | |
(p LEADSTO q)Pr /\ X p q)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> X p q) /\ | |
(!r. | |
(p LEADSTO r)Pr /\ X p r /\ (r LEADSTO q)Pr /\ X r q ==> X p q) /\ | |
(!P. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) ==> | |
X(LUB P)q))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
RES_TAC | |
; | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm37_lemma00] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> (p LEADSTO q)Pr`)) | |
(ASSUME (`!p. p In P ==> (X:('a->bool)->('a->bool)->bool) p q`)))) THEN | |
RES_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p. (p = LUB P) ==> (X:('a->bool)->('a->bool)->bool) p q`)))) | |
; | |
IMP_RES_TAC LEADSTO_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm1 THEN | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm1 THEN | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO_thm37_lemma01 THEN | |
IMP_RES_TAC LEADSTO_thm3 | |
; | |
IMP_RES_TAC LEADSTO_thm37_lemma01 THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
let LEADSTO_thm37 = prove_thm | |
("LEADSTO_thm37", | |
(`!X p q Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q) /\ | |
(!r. (p LEADSTO r)Pr /\ X p r /\ (r LEADSTO q)Pr /\ X r q | |
==> X p q) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) | |
==> X (LUB P) q)) | |
==> ((p LEADSTO q)Pr ==> X p q)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm37_lemma02] | |
(REWRITE_RULE [SYM (SPEC_ALL CONJ_ASSOC)] (BETA_RULE (SPEC | |
(`\ (p:'a->bool) q Pr. (p LEADSTO q)Pr /\ (X p q)`) | |
(REWRITE_RULE [LEADSTO; LeadstoRel] | |
(ASSUME (`((p:'a->bool) LEADSTO q)Pr`))))))) THEN | |
RES_TAC);; | |
(* | |
The theorem useful for an induction tactic | |
*) | |
let LEADSTO_thm38 = prove_thm | |
("LEADSTO_thm38", | |
(`!X. | |
(!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q) /\ | |
(!p r q Pr. (p LEADSTO r)Pr /\ X p r /\ (r LEADSTO q)Pr /\ X r q | |
==> X p q) /\ | |
(!P q Pr. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) | |
==> X (LUB P) q) | |
==> (!p q Pr. (p LEADSTO q)Pr ==> X p q)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q`); | |
ASSUME (`!(p:'a->bool) r q Pr. | |
(p LEADSTO r)Pr /\ X p r /\ (r LEADSTO q)Pr /\ X r q | |
==> X p q`); | |
ASSUME (`!(P:('a->bool)->bool) q Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) | |
==> X (LUB P) q`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] (SPEC_ALL LEADSTO_thm37)));; | |
let LEADSTO_thm39_lemma00 = TAC_PROOF | |
(([], | |
(`!(X:('a->bool)->('a->bool)->bool) Pr. | |
((!p. p In P ==> LEADSTO2 p q Pr) /\ (!p. p In P ==> X p q)) = | |
(!p. p In P ==> LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm39_lemma01 = TAC_PROOF | |
(([], | |
(`!(X:('a->bool)->('a->bool)->bool) Pr. | |
(!p q. | |
((p ENSURES q)Pr ==> | |
LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q)) /\ | |
(!r. | |
(p ENSURES r)Pr /\ | |
LEADSTO2 r q Pr /\ | |
(LEADSTO2 r q Pr ==> X r q) ==> | |
LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q)) /\ | |
(!P. | |
(!p'. | |
p' In P ==> | |
LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q)) ==> | |
LEADSTO2(LUB P)q Pr /\ (LEADSTO2(LUB P)q Pr ==> X(LUB P)q))) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> X p q) /\ | |
(!r. (p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ X r q ==> X p q) /\ | |
(!P. | |
(!p. p In P ==> LEADSTO2 p q Pr) /\ (!p. p In P ==> X p q) ==> | |
X(LUB P)q))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[ | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO2_thm1 THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[ASSUME (`((p:'a->bool) ENSURES r)Pr`); | |
ASSUME (`LEADSTO2 (r:'a->bool) q Pr`); | |
ASSUME (`LEADSTO2 (p:'a->bool) q Pr`); | |
ASSUME (`(X:('a->bool)->('a->bool)->bool) r q`)] | |
(SPEC_ALL (CONJUNCT1 (CONJUNCT2 (SPEC_ALL | |
(ASSUME (`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q)) /\ | |
(!r. | |
(p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ | |
(LEADSTO2 r q Pr ==> X r q) ==> | |
LEADSTO2 p q Pr /\ (LEADSTO2 p q Pr ==> X p q)) /\ | |
(!P. | |
(!p'. p' In P ==> LEADSTO2 p' q Pr /\ (LEADSTO2 p' q Pr ==> X p' q)) | |
==> LEADSTO2(LUB P)q Pr /\ (LEADSTO2(LUB P)q Pr ==> X(LUB P)q))`))))))) | |
; | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm39_lemma00] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> LEADSTO2 p q Pr`)) | |
(ASSUME (`!p. p In P ==> (X:('a->bool)->('a->bool)->bool) p q`)))) THEN | |
IMP_RES_TAC LEADSTO2_thm3a THEN | |
ASSUME_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p:'a->bool. (p = LUB P) ==> LEADSTO2 p q Pr`)))) THEN | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO2_thm0 | |
; | |
RES_TAC | |
; | |
IMP_RES_TAC LEADSTO2_thm1 | |
; | |
RES_TAC | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm39_lemma00)] | |
(ASSUME (`!p':'a->bool. p' In P ==> (LEADSTO2 p' q)Pr /\ | |
(LEADSTO2 p' q Pr ==> X p' q)`))) THEN | |
IMP_RES_TAC LEADSTO2_thm3a THEN | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p:'a->bool. (p = LUB P) ==> LEADSTO2 p q Pr`)))) | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm39_lemma00)] | |
(ASSUME (`!p':'a->bool. p' In P ==> (LEADSTO2 p' q)Pr /\ | |
(LEADSTO2 p' q Pr ==> X p' q)`))) THEN | |
RES_TAC | |
]);; | |
let LEADSTO_thm39 = prove_thm | |
("LEADSTO_thm39", | |
(`!(X:('a->bool)->('a->bool)->bool) p q Pr. | |
(!p q. ((p ENSURES q)Pr ==> X p q) /\ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ (X r q) ==> X p q) /\ | |
(!P. (!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) | |
==> X (LUB P) q)) | |
==> ((p LEADSTO q)Pr ==> X p q)`), | |
REWRITE_TAC [LEADSTO_EQ_LEADSTO2] THEN | |
REPEAT GEN_TAC THEN | |
REPEAT DISCH_TAC THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm39_lemma01] (BETA_RULE | |
(SPEC (`\(p:'a->bool) q Pr. (LEADSTO2 p q Pr /\ | |
(LEADSTO2 p q Pr ==> X p q))`) | |
(REWRITE_RULE [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] | |
(ASSUME (`LEADSTO2 (p:'a->bool) q Pr`)))))) THEN | |
RES_TAC);; | |
(* | |
The theorem useful for an induction tactic | |
*) | |
let LEADSTO_thm40 = prove_thm | |
("LEADSTO_thm40", | |
(`!X. | |
(!p q Pr. (p ENSURES q)Pr ==> X p q) /\ | |
(!p r q Pr. | |
(p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q ==> X p q) /\ | |
(!P q Pr. | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q) | |
==> X (LUB P) q) | |
==> | |
(!(p:'a->bool) q Pr. (p LEADSTO q)Pr ==> X p q)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q`); | |
ASSUME (`!(p:'a->bool) r q Pr. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ | |
X r q ==> X p q`); | |
ASSUME (`!P (q:'a->bool) Pr. (!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> X p q) ==> X (LUB P) q`)] | |
(SPEC_ALL LEADSTO_thm39)) THEN | |
RES_TAC);; | |
(* | |
Finally let us present the most compact form of the two induction principles | |
used in [CM88] | |
*) | |
(* | |
The first induction principle (actually a weakening of LEADSTO_thm23): | |
*) | |
let LEADSTO_thm41 = prove_thm | |
("LEADSTO_thm41", | |
(`!X. | |
(!p q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!p P q Pr. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr) | |
==> (!(p:'a->bool) q Pr. (p LEADSTO q) Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (UNDISCH (SPEC_ALL (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q Pr. | |
(p LEADSTO r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) P q Pr. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] (SPEC_ALL LEADSTO_thm23)))));; | |
(* | |
Now prove the second induction principle: | |
*) | |
let LEADSTO_thm42_lemma00 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!p:'a->bool. p In P ==> LEADSTO2 p q Pr /\ X p q Pr) = | |
((!p. p In P ==> LEADSTO2 p q Pr) /\ (!p. p In P ==> X p q Pr))`)), | |
REPEAT GEN_TAC THEN | |
EQ_TAC THEN | |
REPEAT STRIP_TAC THEN | |
RES_TAC);; | |
let LEADSTO_thm42_lemma01 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (p = (LUB P)) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (p = (LUB P)) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr))`)), | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN RES_TAC);; | |
let LEADSTO_thm42_lemma02 = TAC_PROOF | |
(([], | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p. p In P ==> LEADSTO2 p q Pr) /\ | |
(!p. p In P ==> X p q Pr) ==> X p q Pr)) | |
= | |
(!p q. | |
((p ENSURES q)Pr ==> LEADSTO2 p q Pr /\ X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ X r q Pr | |
==> LEADSTO2 p q Pr /\ X p q Pr) /\ | |
(!P. (!p. p In P ==> LEADSTO2 p q Pr /\ X p q Pr) | |
==> LEADSTO2 (LUB P) q Pr /\ X (LUB P) q Pr))`)), | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THEN RES_TAC THENL | |
[ | |
IMP_RES_TAC LEADSTO2_thm0 | |
; | |
IMP_RES_TAC LEADSTO2_thm1 | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [LEADSTO_thm42_lemma00] (ASSUME | |
(`!p:'a->bool. p In P ==> LEADSTO2 p q Pr /\ X p q Pr`))) THEN | |
IMP_RES_TAC LEADSTO2_thm3 | |
; | |
STRIP_ASSUME_TAC (REWRITE_RULE [LEADSTO_thm42_lemma00] (ASSUME | |
(`!p:'a->bool. p In P ==> LEADSTO2 p q Pr /\ X p q Pr`))) THEN | |
RES_TAC THEN | |
ACCEPT_TAC (REWRITE_RULE [] (SPEC (`LUB (P:('a->bool)->bool)`) (ASSUME | |
(`!p. (p = LUB P) | |
==> (X:('a->bool)->('a->bool)->(('a->'a)list)->bool)p q Pr`)))) | |
; | |
ASSUME_TAC (REWRITE_RULE [SYM (SPEC_ALL LEADSTO_thm42_lemma00)] (CONJ | |
(ASSUME (`!p:'a->bool. p In P ==> LEADSTO2 p q Pr`)) | |
(ASSUME (`!p. p In P | |
==> (X:('a->bool)->('a->bool)->(('a->'a)list)->bool) p q Pr`)))) THEN | |
RES_TAC THEN | |
ASM_REWRITE_TAC [] | |
]);; | |
(* | |
The strongest version of the second induction theorem: | |
*) | |
let LEADSTO_thm42 = prove_thm | |
("LEADSTO_thm42", | |
(`!X Pr. | |
(!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!P. (p = (LUB P)) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr)) | |
==> (!(p:'a->bool) q. (p LEADSTO q) Pr ==> X p q Pr)`), | |
REWRITE_TAC [LEADSTO_thm42_lemma01] THEN | |
REWRITE_TAC [LEADSTO_EQ_LEADSTO2] THEN | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (BETA_RULE (SPEC | |
(`\(p:'a->bool) q Pr. (LEADSTO2 p q Pr) /\ (X p q Pr)`) | |
(REWRITE_RULE [LEADSTO2; LEADSTO2Fn_EQ_LEADSTO2Fam; LEADSTO2Fam] | |
(ASSUME (`LEADSTO2 (p:'a->bool) q Pr`))))) THEN | |
ASSUME_TAC (REWRITE_RULE [LEADSTO_thm42_lemma02] (ASSUME | |
(`!(p:'a->bool) q. | |
((p ENSURES q)Pr ==> X p q Pr) /\ | |
(!r. (p ENSURES r)Pr /\ LEADSTO2 r q Pr /\ X r q Pr ==> X p q Pr) /\ | |
(!P. (p = LUB P) /\ | |
(!p. p In P ==> LEADSTO2 p q Pr) /\ (!p. p In P ==> X p q Pr) ==> | |
X p q Pr)`))) THEN | |
RES_TAC);; | |
(* | |
The second induction principle (actually a weakening of LEADSTO_thm42a): | |
*) | |
let LEADSTO_thm43 = prove_thm | |
("LEADSTO_thm43", | |
(`!X. | |
(!p q Pr. (p ENSURES q)Pr ==> X p q Pr) /\ | |
(!p r q Pr. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ X p r Pr /\ X r q Pr | |
==> X p q Pr) /\ | |
(!p P q Pr. (p = (LUB P)) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ (!p. p In P ==> X p q Pr) | |
==> X p q Pr) | |
==> (!(p:'a->bool) q Pr. (p LEADSTO q) Pr ==> X p q Pr)`), | |
REPEAT STRIP_TAC THEN | |
ACCEPT_TAC (UNDISCH (SPEC_ALL (REWRITE_RULE | |
[ASSUME (`!(p:'a->bool) q Pr. (p ENSURES q)Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) r q Pr. (p ENSURES r)Pr /\ (r LEADSTO q)Pr /\ | |
X p r Pr /\ X r q Pr ==> X p q Pr`); | |
ASSUME (`!(p:'a->bool) P q Pr. (p = LUB P) /\ | |
(!p. p In P ==> (p LEADSTO q)Pr) /\ | |
(!p. p In P ==> X p q Pr) ==> X p q Pr`); | |
ASSUME (`((p:'a->bool) LEADSTO q)Pr`)] (SPEC_ALL LEADSTO_thm42)))));; | |
(* | |
The last corollaries using the completion theorem: | |
*) | |
let LEADSTO_cor13_lemma01 = TAC_PROOF | |
(([], | |
(`!(Q:num->('a->bool)) r s. | |
((((/<=\* Q i) \/* r) /\* ((Q(SUC i)) \/* r)) \/* r)s | |
= | |
((/<=\* Q (SUC i)) \/* r)s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [AND_LE_N_def; OR_def; AND_def] THEN | |
BETA_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC []);; | |
let LEADSTO_cor13 = prove_thm | |
("LEADSTO_cor13", | |
(`!(P:num->('a->bool)) Q r st Pr. | |
(!i. ((P i) LEADSTO ((Q i) \/* r)) (CONS st Pr)) /\ | |
(!i. ((Q i) UNLESS r) (CONS st Pr)) ==> | |
(!i. ((/<=\* P i) LEADSTO ((/<=\* Q i) \/* r)) (CONS st Pr))`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
ASM_REWRITE_TAC [AND_LE_N_def] | |
; | |
IMP_RES_TAC UNLESS_cor17 THEN | |
ASSUME_TAC (SPEC_ALL | |
(ASSUME (`!i. ((/<=\* (Q:num->'a->bool) i) UNLESS r)(CONS st Pr)`))) THEN | |
ASSUME_TAC (SPEC (`SUC i`) (ASSUME | |
(`!i. (((P:num->('a->bool)) i) LEADSTO ((Q i) \/* r))(CONS st Pr)`))) THEN | |
ASSUME_TAC (SPEC (`SUC i`) (ASSUME | |
(`!i. (((Q:num->('a->bool)) i) UNLESS r)(CONS st Pr)`))) THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`((/<=\* (Q:num->'a->bool) i) UNLESS r)(CONS st Pr)`); | |
UNLESS_thm1] (SPECL | |
[(`/<=\* (Q:num->('a->bool))i`); (`r:'a->bool`); (`r:'a->bool`); (`CONS(st:'a->'a)Pr`)] | |
UNLESS_thm8)) THEN | |
ASSUME_TAC (REWRITE_RULE | |
[ASSUME (`(((Q:num->'a->bool)(SUC i)) UNLESS r)(CONS st Pr)`); | |
UNLESS_thm1] (SPECL | |
[(`(Q:num->('a->bool))(SUC i)`); (`r:'a->bool`); (`r:'a->bool`); (`CONS(st:'a->'a)Pr`)] | |
UNLESS_thm8)) THEN | |
ACCEPT_TAC (REWRITE_RULE | |
[REWRITE_RULE [ETA_AX] | |
(MK_ABS (GEN (`s:'a`) (SPEC_ALL LEADSTO_cor13_lemma01))); | |
SYM (SPEC_ALL (CONJUNCT2 AND_LE_N_def))] (REWRITE_RULE | |
[ASSUME (`((/<=\* (P:num->'a->bool)i) LEADSTO ((/<=\* Q i) \/* r)) | |
(CONS st Pr)`); | |
ASSUME (`(((P:num->'a->bool)(SUC i)) LEADSTO ((Q(SUC i)) \/* r)) | |
(CONS st Pr)`); | |
ASSUME (`(((/<=\* (Q:num->'a->bool) i) \/* r) UNLESS r)(CONS st Pr)`); | |
ASSUME (`((((Q:num->'a->bool)(SUC i)) \/* r) UNLESS r)(CONS st Pr)`)] | |
(SPECL [(`/<=\* (P:num->'a->bool)i`); (`(/<=\* (Q:num->'a->bool)i) \/* r`); | |
(`(P:num->'a->bool)(SUC i)`); (`((Q:num->'a->bool)(SUC i)) \/* r`); | |
(`r:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm35))) | |
]);; | |
(* Prove: | |
!p q r b p' q' r' b' Pr. | |
(p LEADSTO (q \/* r)) Pr /\ (q UNLESS b) Pr /\ | |
(p' LEADSTO (q' \/* r')) Pr /\ (q' UNLESS b') Pr ==> | |
((p /\* p') LEADSTO ((q /\* q') \/* ((r \/* b) \/* (r' \/* b'))) Pr | |
Hint: | |
Show that: | |
b ==> (r \/* b) \/* (r' \/* b') | |
b' ==> (r \/* b) \/* (r' \/* b') | |
use these as assumptions for the unless properties in using the | |
weakening theorem we then have | |
q unless (r \/* b) \/* (r' \/* b') in st^Pr, | |
q' unless (R \/* B) \/* (R' \/* B') in st^Pr, | |
now show that: | |
r ==> (r \/* b) \/* (r' \/* b') | |
r' ==> (r \/* b) \/* (r' \/* b') | |
use these to derive the leadto properties: | |
r leadsto ((r \/* b) \/* (r' \/* b')) in st^Pr | |
r' leadsto ((r \/* b) \/* (r' \/* b')) in st^Pr | |
by using the cancellation theorem of leadsto we get | |
p leadsto q \/* ((r \/* b) \/* (r' \/* b')) in st^Pr | |
p' leadsto q' \/* ((r \/* b) \/* (r' \/* b')) in st^Pr | |
now we are ready to use the theorem of completion: | |
p leadsto q \/* ((r \/* b) \/* (r' \/* b')) in st^Pr, | |
q unless (r \/* b) \/* (r' \/* b') in st^Pr, | |
p' leadsto q \/* ((r \/* b) \/* (r' \/* b')) in st^Pr, | |
q' unless (r \/* b) \/* (r' \/* b') in st^Pr | |
---------------------------------------------------------------------- | |
(p /\* p') leadsto (q /\* q') \/* ((r \/* b) \/* (r' \/* b')) in st^Pr | |
*) | |
(* Prove: | |
!p q r p' q' Pr. | |
(p LEADSTO (q \/* r)) Pr /\ (q UNLESS r) Pr /\ | |
(p' LEADSTO (q' \/* r)) Pr /\ (q' UNLESS r) Pr ==> | |
((p /\* p') LEADSTO ((q /\* q') \/* r)) Pr | |
*) | |
let LEADSTO_cor14 = prove_thm | |
("LEADSTO_cor14", | |
(`!(p:'a->bool) q r p' q' st Pr. | |
(p LEADSTO (q \/* r))(CONS st Pr) /\ (q UNLESS r)(CONS st Pr) /\ | |
(p' LEADSTO (q' \/* r))(CONS st Pr) /\ (q' UNLESS r)(CONS st Pr) | |
==> | |
((p /\* p') LEADSTO ((q /\* q') \/* r))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
ASSUME_TAC (SPECL [(`r:'a->bool`); (`CONS (st:'a->'a) Pr`)] UNLESS_thm1) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((q:'a->bool) UNLESS r)(CONS st Pr)`); (`((r:'a->bool) UNLESS r)(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (REWRITE_RULE [OR_OR_lemma] (UNDISCH_ALL (SPECL | |
[(`q:'a->bool`); (`r:'a->bool`); (`r:'a->bool`); (`r:'a->bool`); (`CONS (st:'a->'a) Pr`)] | |
UNLESS_thm7))) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((q':'a->bool)UNLESS r)(CONS st Pr)`); (`((r:'a->bool) UNLESS r)(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (REWRITE_RULE [OR_OR_lemma] (UNDISCH_ALL (SPECL | |
[(`q':'a->bool`); (`r:'a->bool`); (`r:'a->bool`); (`r:'a->bool`); (`CONS (st:'a->'a) Pr`)] | |
UNLESS_thm7))) THEN | |
ASSUME_TAC (SPECL | |
[(`p:'a->bool`); (`(q:'a->bool) \/* r`); | |
(`p':'a->bool`); (`(q':'a->bool) \/* r`); (`r:'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm35) THEN | |
RES_TAC THEN | |
UNDISCH_TAC (`(((p:'a->bool) /\* p') LEADSTO | |
(((q \/* r) /\* (q' \/* r)) \/* r))(CONS st Pr)`) THEN | |
ONCE_REWRITE_TAC [SPECL | |
[(`(q:'a->bool) \/* r`); (`r:'a->bool`); (`q':'a->bool`)] AND_OR_COMM_lemma] THEN | |
ONCE_REWRITE_TAC [SPECL | |
[(`(r:'a->bool) \/* q'`); (`r:'a->bool`); (`q:'a->bool`)] OR_COMM_AND_lemma] THEN | |
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL OR_AND_DISTR_lemma))] THEN | |
ONCE_REWRITE_TAC [SPECL | |
[(`r:'a->bool`); (`(q:'a->bool) /\* q'`)] OR_COMM_lemma] THEN | |
REWRITE_TAC [OR_ASSOC_lemma; OR_OR_lemma]);; | |
(* | |
!p q r b p' q' r' b' Pr. | |
(p LEADSTO (q \/* r)) Pr /\ (q UNLESS b) Pr /\ | |
(p' LEADSTO (q' \/* r')) Pr /\ (q' UNLESS b') Pr ==> | |
((p /\* p') LEADSTO ((q /\* q') \/* ((r \/* b) \/* (r' \/* b')))) Pr | |
*) | |
let LEADSTO_cor15 = prove_thm | |
("LEADSTO_cor15", | |
(`!(p:'a->bool) q r b p' q' r' b' st Pr. | |
(p LEADSTO (q \/* r))(CONS st Pr) /\ (q UNLESS b)(CONS st Pr) /\ | |
(p' LEADSTO (q' \/* r'))(CONS st Pr) /\ (q' UNLESS b')(CONS st Pr) | |
==> | |
((p /\* p') LEADSTO | |
((q /\* q') \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr)`), | |
REPEAT STRIP_TAC THEN | |
MP_TAC (SPECL | |
[(`b:'a->bool`); (`(r:'a->bool) \/* (r' \/* b')`)] OR_IMPLY_WEAK_lemma) THEN | |
REWRITE_TAC [SYM (SPECL [(`b:'a->bool`); (`r:'a->bool`); (`(r':'a->bool) \/* b'`)] | |
OR_ASSOC_lemma)] THEN | |
ONCE_REWRITE_TAC [SPECL [(`(r':'a->bool) \/* b'`); (`r:'a->bool`); (`b:'a->bool`)] | |
OR_COMM_OR_lemma] THEN | |
DISCH_TAC THEN | |
MP_TAC (SPECL | |
[(`b':'a->bool`); (`(r':'a->bool) \/* (r \/* b)`)] OR_IMPLY_WEAK_lemma) THEN | |
REWRITE_TAC [SYM (SPECL [(`b':'a->bool`); (`r':'a->bool`); (`(r:'a->bool) \/* b`)] | |
OR_ASSOC_lemma)] THEN | |
ONCE_REWRITE_TAC [SPECL [(`(r:'a->bool) \/* b`); (`r':'a->bool`); (`b':'a->bool`)] | |
OR_COMM_OR_lemma] THEN | |
ONCE_REWRITE_TAC [SPECL [(`(r':'a->bool) \/* b'`); (`(r:'a->bool) \/* b`)] | |
OR_COMM_lemma] THEN | |
DISCH_TAC THEN | |
MP_TAC (SPECL | |
[(`r:'a->bool`); (`(b:'a->bool) \/* (r' \/* b')`)] OR_IMPLY_WEAK_lemma) THEN | |
REWRITE_TAC [SYM (SPECL [(`r:'a->bool`); (`b:'a->bool`); (`(r':'a->bool) \/* b'`)] | |
OR_ASSOC_lemma)] THEN | |
DISCH_TAC THEN | |
MP_TAC (SPECL | |
[(`r':'a->bool`); (`(b':'a->bool) \/* (r \/* b)`)] OR_IMPLY_WEAK_lemma) THEN | |
REWRITE_TAC [SYM (SPECL [(`r':'a->bool`); (`b':'a->bool`); (`(r:'a->bool) \/* b`)] | |
OR_ASSOC_lemma)] THEN | |
ONCE_REWRITE_TAC [SPECL [(`(r':'a->bool) \/* b'`); (`(r:'a->bool) \/* b`)] | |
OR_COMM_lemma] THEN | |
DISCH_TAC THEN | |
REWRITE_TAC [SYM (SPECL [(`(r:'a->bool) \/* b`); (`(r':'a->bool) \/* b'`); | |
(`(q:'a->bool) /\* q'`)] | |
OR_ASSOC_lemma)] THEN | |
ONCE_REWRITE_TAC [SPECL | |
[(`(((r:'a->bool) \/* b) \/* (r' \/* b'))`); (`(q:'a->bool) /\* q'`)] | |
OR_COMM_lemma] THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((q:'a->bool) UNLESS b)(CONS st Pr)`); | |
(`!s:'a. b s ==> ((r \/* b) \/* (r' \/* b'))s`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`q:'a->bool`); (`b:'a->bool`); (`((r:'a->bool) \/* b) \/* (r' \/* b')`); | |
(`CONS (st:'a->'a) Pr`)] | |
UNLESS_thm3)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((q':'a->bool) UNLESS b')(CONS st Pr)`); | |
(`!s:'a. b' s ==> ((r \/* b) \/* (r' \/* b'))s`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`q':'a->bool`); (`b':'a->bool`); (`((r:'a->bool) \/* b) \/* (r' \/* b')`); | |
(`CONS (st:'a->'a) Pr`)] | |
UNLESS_thm3)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`r:'a->bool`); (`((r:'a->bool) \/* b) \/* (r' \/* b')`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm25)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`r':'a->bool`); (`((r:'a->bool) \/* b) \/* (r' \/* b')`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] LEADSTO_thm25)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p:'a->bool) LEADSTO (q \/* r))(CONS st Pr)`); | |
(`((r:'a->bool) LEADSTO ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); (`r:'a->bool`); | |
(`((r:'a->bool) \/* b) \/* (r' \/* b')`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm28)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p':'a->bool) LEADSTO (q' \/* r'))(CONS st Pr)`); | |
(`((r':'a->bool) LEADSTO ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p':'a->bool`); (`q':'a->bool`); (`r':'a->bool`); | |
(`((r:'a->bool) \/* b) \/* (r' \/* b')`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_thm28)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p:'a->bool) LEADSTO (q \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr)`); | |
(`((q:'a->bool) UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p':'a->bool) LEADSTO(q' \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr)`); | |
(`((q':'a->bool) UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`((p:'a->bool) LEADSTO(q \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr) /\ | |
((q:'a->bool) UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`); | |
(`((p':'a->bool)LEADSTO(q' \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr) /\ | |
((q':'a->bool) UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`)] | |
AND_INTRO_THM)) THEN | |
UNDISCH_TAC | |
(`(((p:'a->bool) LEADSTO(q \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr) /\ | |
(q UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)) /\ | |
(p' LEADSTO (q' \/* ((r \/* b) \/* (r' \/* b'))))(CONS st Pr) /\ | |
(q' UNLESS ((r \/* b) \/* (r' \/* b')))(CONS st Pr)`) THEN | |
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC))] THEN | |
DISCH_TAC THEN | |
STRIP_ASSUME_TAC (UNDISCH_ALL (SPECL | |
[(`p:'a->bool`); (`q:'a->bool`); (`((r:'a->bool) \/* b) \/* (r' \/* b'):'a->bool`); | |
(`p':'a->bool`); (`q':'a->bool`); (`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_cor14)));; | |
(* Prove: | |
|- !P Q R B Pr. | |
(!i. ((P i) LEADSTO ((Q i) \/* (R i)))Pr) /\ (!i. ((Q i) UNLESS (B i))Pr) ==> | |
(!i. ((/<=\* P i) LEADSTO ((/<=\* Q i) \/* (( \<=/* R i) \/* ( \<=/* B i))))Pr) | |
*) | |
let LEADSTO_cor16_lemma1 = TAC_PROOF | |
(([], | |
(`!(Q:num->('a->bool)) R B i s. | |
((/<=\* Q(SUC i)) \/* | |
(((( \<=/* R i) \/* ( \<=/* B i)) \/* ( \<=/* B i)) \/* | |
((R(SUC i)) \/* (B(SUC i)))))s = | |
((/<=\* Q(SUC i)) \/* (( \<=/* R(SUC i)) \/* ( \<=/* B(SUC i))))s`)), | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC [OR_def; AND_LE_N_def; OR_LE_N_def; AND_def] THEN | |
BETA_TAC THEN | |
EQ_TAC THEN REPEAT STRIP_TAC THEN RES_TAC THEN ASM_REWRITE_TAC []);; | |
let LEADSTO_cor16 = prove_thm | |
("LEADSTO_cor16", | |
(`!(P:num->('a->bool)) Q R B st Pr. | |
(!i. ((P i) LEADSTO ((Q i) \/* (R i)))(CONS st Pr)) /\ | |
(!i. ((Q i) UNLESS (B i))(CONS st Pr)) ==> | |
(!i. ((/<=\* P i) LEADSTO | |
((/<=\* Q i) \/* (( \<=/* R i) \/* ( \<=/* B i)))) (CONS st Pr))`), | |
REPEAT GEN_TAC THEN | |
STRIP_TAC THEN | |
INDUCT_TAC THENL | |
[ | |
ASM_REWRITE_TAC [AND_LE_N_def; OR_LE_N_def] THEN | |
ASSUME_TAC (ONCE_REWRITE_RULE [OR_ASSOC_lemma] (SPECL | |
[(`((Q:num->('a->bool))0) \/* (R 0)`); (`((B:num->('a->bool))0)`)] | |
OR_IMPLY_WEAK_lemma)) THEN | |
ASSUME_TAC (SPEC (`0`) (ASSUME | |
(`!i.(((P:num->('a->bool))i) LEADSTO ((Q i) \/* (R i)))(CONS st Pr)`))) THEN | |
IMP_RES_TAC (SPECL [`(P:num->('a->bool)) 0`; | |
`(Q:num->('a->bool)) 0 \/* R 0`; | |
`(Q:num->('a->bool)) 0 \/* R 0 \/* B 0` ] LEADSTO_cor9) | |
; | |
ASSUME_TAC (SPEC (`SUC i`) (ASSUME | |
(`!i.(((P:num->('a->bool))i) LEADSTO ((Q i) \/* (R i)))(CONS st Pr)`))) THEN | |
ASSUME_TAC (SPEC (`SUC i`) (ASSUME | |
(`!i. (((Q:num->('a->bool)) i) UNLESS (B i))(CONS st Pr)`))) THEN | |
ASSUME_TAC (SPEC (`i:num`) (UNDISCH_ALL (SPECL | |
[(`Q:num->('a->bool)`); (`B:num->('a->bool)`); (`CONS st Pr:('a->'a)list`)] | |
UNLESS_cor16))) THEN | |
ACCEPT_TAC (REWRITE_RULE [ONCE_REWRITE_RULE [ETA_AX] | |
(MK_ABS (GEN (`s:'a`) (SPEC_ALL LEADSTO_cor16_lemma1)))] | |
(REWRITE_RULE [SYM (SPEC_ALL (CONJUNCT2 AND_LE_N_def))] (REWRITE_RULE | |
[ASSUME (`((/<=\* (P:num->'a->bool) i) LEADSTO | |
((/<=\* Q i) \/* (( \<=/* R i) \/* ( \<=/* B i))))(CONS st Pr)`); | |
ASSUME (`(((P:num->'a->bool)(SUC i)) LEADSTO ((Q(SUC i)) \/* (R(SUC i)))) | |
(CONS st Pr)`); | |
ASSUME (`(((Q:num->'a->bool)(SUC i)) UNLESS (B(SUC i)))(CONS st Pr)`); | |
ASSUME (`((/<=\* (Q:num->'a->bool) i) UNLESS ( \<=/* B i))(CONS st Pr)`)] | |
(SPECL | |
[(`/<=\* (P:num->('a->bool))i`); (`/<=\* (Q:num->('a->bool))i`); | |
(`( \<=/* (R:num->('a->bool))i) \/* ( \<=/* (B:num->('a->bool))i)`); | |
(` \<=/* (B:num->('a->bool))i`); | |
(`(P:num->('a->bool))(SUC i)`); (`(Q:num->('a->bool))(SUC i)`); | |
(`(R:num->('a->bool))(SUC i)`); (`(B:num->('a->bool))(SUC i)`); | |
(`st:'a->'a`); (`Pr:('a->'a)list`)] | |
LEADSTO_cor15)))) | |
]);; | |