Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Violeta Hernández Palacios. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Violeta Hernández Palacios | |
-/ | |
import data.polynomial.cardinal | |
import ring_theory.algebraic | |
/-! | |
### Cardinality of algebraic numbers | |
In this file, we prove variants of the following result: the cardinality of algebraic numbers under | |
an R-algebra is at most `# polynomial R * ℵ₀`. | |
Although this can be used to prove that real or complex transcendental numbers exist, a more direct | |
proof is given by `liouville.is_transcendental`. | |
-/ | |
universes u v | |
open cardinal polynomial | |
open_locale cardinal | |
namespace algebraic | |
theorem aleph_0_le_cardinal_mk_of_char_zero (R A : Type*) [comm_ring R] [is_domain R] | |
[ring A] [algebra R A] [char_zero A] : ℵ₀ ≤ #{x : A // is_algebraic R x} := | |
@mk_le_of_injective (ulift ℕ) {x : A | is_algebraic R x} (λ n, ⟨_, is_algebraic_nat n.down⟩) | |
(λ m n hmn, by simpa using hmn) | |
section lift | |
variables (R : Type u) (A : Type v) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] | |
[no_zero_smul_divisors R A] | |
theorem cardinal_mk_lift_le_mul : | |
cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ cardinal.lift.{v u} (#(polynomial R)) * ℵ₀ := | |
begin | |
rw [←mk_ulift, ←mk_ulift], | |
let g : ulift.{u} {x : A | is_algebraic R x} → ulift.{v} (polynomial R) := | |
λ x, ulift.up (classical.some x.1.2), | |
apply cardinal.mk_le_mk_mul_of_mk_preimage_le g (λ f, _), | |
suffices : fintype (g ⁻¹' {f}), | |
{ exact @mk_le_aleph_0 _ (@fintype.to_encodable _ this) }, | |
by_cases hf : f.1 = 0, | |
{ convert set.fintype_empty, | |
apply set.eq_empty_iff_forall_not_mem.2 (λ x hx, _), | |
simp only [set.mem_preimage, set.mem_singleton_iff] at hx, | |
apply_fun ulift.down at hx, | |
rw hf at hx, | |
exact (classical.some_spec x.1.2).1 hx }, | |
let h : g ⁻¹' {f} → f.down.root_set A := λ x, ⟨x.1.1.1, (mem_root_set_iff hf x.1.1.1).2 begin | |
have key' : g x = f := x.2, | |
simp_rw ← key', | |
exact (classical.some_spec x.1.1.2).2 | |
end⟩, | |
apply fintype.of_injective h (λ _ _ H, _), | |
simp only [subtype.val_eq_coe, subtype.mk_eq_mk] at H, | |
exact subtype.ext (ulift.down_injective (subtype.ext H)) | |
end | |
theorem cardinal_mk_lift_le_max : | |
cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ max (cardinal.lift.{v u} (#R)) ℵ₀ := | |
(cardinal_mk_lift_le_mul R A).trans $ | |
(mul_le_mul_right' (lift_le.2 cardinal_mk_le_max) _).trans $ by simp [le_total] | |
theorem cardinal_mk_lift_le_of_infinite [infinite R] : | |
cardinal.lift.{u v} (#{x : A // is_algebraic R x}) ≤ cardinal.lift.{v u} (#R) := | |
(cardinal_mk_lift_le_max R A).trans $ by simp | |
variable [encodable R] | |
@[simp] theorem countable_of_encodable : set.countable {x : A | is_algebraic R x} := | |
begin | |
rw [←mk_set_le_aleph_0, ←lift_le], | |
apply (cardinal_mk_lift_le_max R A).trans, | |
simp | |
end | |
@[simp] theorem cardinal_mk_of_encodable_of_char_zero [char_zero A] [is_domain R] : | |
#{x : A // is_algebraic R x} = ℵ₀ := | |
le_antisymm (by simp) (aleph_0_le_cardinal_mk_of_char_zero R A) | |
end lift | |
section non_lift | |
variables (R A : Type u) [comm_ring R] [comm_ring A] [is_domain A] [algebra R A] | |
[no_zero_smul_divisors R A] | |
theorem cardinal_mk_le_mul : #{x : A // is_algebraic R x} ≤ #(polynomial R) * ℵ₀ := | |
by { rw [←lift_id (#_), ←lift_id (#(polynomial R))], exact cardinal_mk_lift_le_mul R A } | |
theorem cardinal_mk_le_max : #{x : A // is_algebraic R x} ≤ max (#R) ℵ₀ := | |
by { rw [←lift_id (#_), ←lift_id (#R)], exact cardinal_mk_lift_le_max R A } | |
theorem cardinal_mk_le_of_infinite [infinite R] : #{x : A // is_algebraic R x} ≤ #R := | |
(cardinal_mk_le_max R A).trans $ by simp | |
end non_lift | |
end algebraic | |