Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Kevin Kappelmann. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kevin Kappelmann | |
-/ | |
import algebra.continued_fractions.translations | |
/-! | |
# Stabilisation of gcf Computations Under Termination | |
## Summary | |
We show that the continuants and convergents of a gcf stabilise once the gcf terminates. | |
-/ | |
namespace generalized_continued_fraction | |
variables {K : Type*} {g : generalized_continued_fraction K} {n m : ℕ} | |
/-- If a gcf terminated at position `n`, it also terminated at `m ≥ n`.-/ | |
lemma terminated_stable (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.terminated_at m := | |
g.s.terminated_stable n_le_m terminated_at_n | |
variable [division_ring K] | |
lemma continuants_aux_stable_step_of_terminated (terminated_at_n : g.terminated_at n) : | |
g.continuants_aux (n + 2) = g.continuants_aux (n + 1) := | |
by { rw [terminated_at_iff_s_none] at terminated_at_n, | |
simp only [terminated_at_n, continuants_aux] } | |
lemma continuants_aux_stable_of_terminated (succ_n_le_m : (n + 1) ≤ m) | |
(terminated_at_n : g.terminated_at n) : | |
g.continuants_aux m = g.continuants_aux (n + 1) := | |
begin | |
induction succ_n_le_m with m succ_n_le_m IH, | |
{ refl }, | |
{ have : g.continuants_aux (m + 1) = g.continuants_aux m, by | |
{ have : n ≤ m - 1, from nat.le_pred_of_lt succ_n_le_m, | |
have : g.terminated_at (m - 1), from terminated_stable this terminated_at_n, | |
have stable_step : g.continuants_aux (m - 1 + 2) = g.continuants_aux (m - 1 + 1), from | |
continuants_aux_stable_step_of_terminated this, | |
have one_le_m : 1 ≤ m, from nat.one_le_of_lt succ_n_le_m, | |
have : m - 1 + 2 = m + 2 - 1, from tsub_add_eq_add_tsub one_le_m, | |
have : m - 1 + 1 = m + 1 - 1, from tsub_add_eq_add_tsub one_le_m, | |
simpa [*] using stable_step }, | |
exact (eq.trans this IH) } | |
end | |
lemma convergents'_aux_stable_step_of_terminated {s : seq $ pair K} | |
(terminated_at_n : s.terminated_at n) : | |
convergents'_aux s (n + 1) = convergents'_aux s n := | |
begin | |
change s.nth n = none at terminated_at_n, | |
induction n with n IH generalizing s, | |
case nat.zero | |
{ simp only [convergents'_aux, terminated_at_n, seq.head] }, | |
case nat.succ | |
{ cases s_head_eq : s.head with gp_head, | |
case option.none { simp only [convergents'_aux, s_head_eq] }, | |
case option.some | |
{ have : s.tail.terminated_at n, by simp only [seq.terminated_at, s.nth_tail, terminated_at_n], | |
simp only [convergents'_aux, s_head_eq, (IH this)] } } | |
end | |
lemma convergents'_aux_stable_of_terminated | |
{s : seq $ pair K} (n_le_m : n ≤ m) | |
(terminated_at_n : s.terminated_at n) : | |
convergents'_aux s m = convergents'_aux s n := | |
begin | |
induction n_le_m with m n_le_m IH generalizing s, | |
{ refl }, | |
{ cases s_head_eq : s.head with gp_head, | |
case option.none { cases n; simp only [convergents'_aux, s_head_eq] }, | |
case option.some | |
{ have : convergents'_aux s (n + 1) = convergents'_aux s n, from | |
convergents'_aux_stable_step_of_terminated terminated_at_n, | |
rw [←this], | |
have : s.tail.terminated_at n, by | |
simpa only [seq.terminated_at, seq.nth_tail] using (s.le_stable n.le_succ terminated_at_n), | |
have : convergents'_aux s.tail m = convergents'_aux s.tail n, from IH this, | |
simp only [convergents'_aux, s_head_eq, this] } } | |
end | |
lemma continuants_stable_of_terminated (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.continuants m = g.continuants n := | |
by simp only [nth_cont_eq_succ_nth_cont_aux, | |
(continuants_aux_stable_of_terminated (nat.pred_le_iff.elim_left n_le_m) terminated_at_n)] | |
lemma numerators_stable_of_terminated (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.numerators m = g.numerators n := | |
by simp only [num_eq_conts_a, (continuants_stable_of_terminated n_le_m terminated_at_n)] | |
lemma denominators_stable_of_terminated (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.denominators m = g.denominators n := | |
by simp only [denom_eq_conts_b, (continuants_stable_of_terminated n_le_m terminated_at_n)] | |
lemma convergents_stable_of_terminated (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.convergents m = g.convergents n := | |
by simp only [convergents, (denominators_stable_of_terminated n_le_m terminated_at_n), | |
(numerators_stable_of_terminated n_le_m terminated_at_n)] | |
lemma convergents'_stable_of_terminated (n_le_m : n ≤ m) (terminated_at_n : g.terminated_at n) : | |
g.convergents' m = g.convergents' n := | |
by simp only [convergents', (convergents'_aux_stable_of_terminated n_le_m terminated_at_n)] | |
end generalized_continued_fraction | |