Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 David Kurniadi Angdinata. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: David Kurniadi Angdinata | |
-/ | |
import field_theory.splitting_field | |
/-! | |
# Cubics and discriminants | |
This file defines cubic polynomials over a semiring and their discriminants over a splitting field. | |
## Main definitions | |
* `cubic`: the structure representing a cubic polynomial. | |
* `disc`: the discriminant of a cubic polynomial. | |
## Main statements | |
* `disc_ne_zero_iff_roots_nodup`: the cubic discriminant is not equal to zero if and only if | |
the cubic has no duplicate roots. | |
## References | |
* https://en.wikipedia.org/wiki/Cubic_equation | |
* https://en.wikipedia.org/wiki/Discriminant | |
## Tags | |
cubic, discriminant, polynomial, root | |
-/ | |
noncomputable theory | |
/-- The structure representing a cubic polynomial. -/ | |
@[ext] structure cubic (R : Type*) := (a b c d : R) | |
namespace cubic | |
open cubic polynomial | |
open_locale polynomial | |
variables {R S F K : Type*} | |
instance [inhabited R] : inhabited (cubic R) := β¨β¨default, default, default, defaultβ©β© | |
instance [has_zero R] : has_zero (cubic R) := β¨β¨0, 0, 0, 0β©β© | |
section basic | |
variables {P : cubic R} [semiring R] | |
/-- Convert a cubic polynomial to a polynomial. -/ | |
def to_poly (P : cubic R) : R[X] := C P.a * X ^ 3 + C P.b * X ^ 2 + C P.c * X + C P.d | |
/-! ### Coefficients -/ | |
section coeff | |
private lemma coeffs : | |
(β n > 3, P.to_poly.coeff n = 0) β§ P.to_poly.coeff 3 = P.a β§ P.to_poly.coeff 2 = P.b | |
β§ P.to_poly.coeff 1 = P.c β§ P.to_poly.coeff 0 = P.d := | |
begin | |
simp only [to_poly, coeff_add, coeff_C, coeff_C_mul_X, coeff_C_mul_X_pow], | |
norm_num, | |
intros n hn, | |
repeat { rw [if_neg] }, | |
any_goals { linarith only [hn] }, | |
repeat { rw [zero_add] } | |
end | |
@[simp] lemma coeff_gt_three (n : β) (hn : 3 < n) : P.to_poly.coeff n = 0 := coeffs.1 n hn | |
@[simp] lemma coeff_three : P.to_poly.coeff 3 = P.a := coeffs.2.1 | |
@[simp] lemma coeff_two : P.to_poly.coeff 2 = P.b := coeffs.2.2.1 | |
@[simp] lemma coeff_one : P.to_poly.coeff 1 = P.c := coeffs.2.2.2.1 | |
@[simp] lemma coeff_zero : P.to_poly.coeff 0 = P.d := coeffs.2.2.2.2 | |
lemma a_of_eq {Q : cubic R} (h : P.to_poly = Q.to_poly) : P.a = Q.a := | |
by rw [β coeff_three, h, coeff_three] | |
lemma b_of_eq {Q : cubic R} (h : P.to_poly = Q.to_poly) : P.b = Q.b := | |
by rw [β coeff_two, h, coeff_two] | |
lemma c_of_eq {Q : cubic R} (h : P.to_poly = Q.to_poly) : P.c = Q.c := | |
by rw [β coeff_one, h, coeff_one] | |
lemma d_of_eq {Q : cubic R} (h : P.to_poly = Q.to_poly) : P.d = Q.d := | |
by rw [β coeff_zero, h, coeff_zero] | |
@[simp] lemma to_poly_injective (P Q : cubic R) : P.to_poly = Q.to_poly β P = Q := | |
β¨Ξ» h, cubic.ext _ _ (a_of_eq h) (b_of_eq h) (c_of_eq h) (d_of_eq h), congr_arg _β© | |
@[simp] lemma of_a_eq_zero (ha : P.a = 0) : P.to_poly = C P.b * X ^ 2 + C P.c * X + C P.d := | |
by rw [to_poly, C_eq_zero.mpr ha, zero_mul, zero_add] | |
@[simp] lemma of_a_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) : P.to_poly = C P.c * X + C P.d := | |
by rw [of_a_eq_zero ha, C_eq_zero.mpr hb, zero_mul, zero_add] | |
@[simp] lemma of_a_b_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : P.to_poly = C P.d := | |
by rw [of_a_b_eq_zero ha hb, C_eq_zero.mpr hc, zero_mul, zero_add] | |
@[simp] lemma of_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : P.to_poly = 0 := | |
by rw [of_a_b_c_eq_zero ha hb hc, C_eq_zero.mpr hd] | |
@[simp] lemma zero : (0 : cubic R).to_poly = 0 := of_zero rfl rfl rfl rfl | |
@[simp] lemma eq_zero_iff : P.to_poly = 0 β P = 0 := by rw [β zero, to_poly_injective] | |
lemma ne_zero (h0 : Β¬P.a = 0 β¨ Β¬P.b = 0 β¨ Β¬P.c = 0 β¨ Β¬P.d = 0) : P.to_poly β 0 := | |
by { contrapose! h0, rw [eq_zero_iff.mp h0], exact β¨rfl, rfl, rfl, rflβ© } | |
lemma ne_zero_of_a_ne_zero (ha : P.a β 0) : P.to_poly β 0 := (or_imp_distrib.mp ne_zero).1 ha | |
lemma ne_zero_of_b_ne_zero (hb : P.b β 0) : P.to_poly β 0 := | |
(or_imp_distrib.mp (or_imp_distrib.mp ne_zero).2).1 hb | |
lemma ne_zero_of_c_ne_zero (hc : P.c β 0) : P.to_poly β 0 := | |
(or_imp_distrib.mp (or_imp_distrib.mp (or_imp_distrib.mp ne_zero).2).2).1 hc | |
lemma ne_zero_of_d_ne_zero (hd : P.d β 0) : P.to_poly β 0 := | |
(or_imp_distrib.mp (or_imp_distrib.mp (or_imp_distrib.mp ne_zero).2).2).2 hd | |
end coeff | |
/-! ### Degrees -/ | |
section degree | |
/-- The equivalence between cubic polynomials and polynomials of degree at most three. -/ | |
@[simps] def equiv : cubic R β {p : R[X] // p.degree β€ 3} := | |
{ to_fun := Ξ» P, β¨P.to_poly, degree_cubic_leβ©, | |
inv_fun := Ξ» f, β¨coeff f 3, coeff f 2, coeff f 1, coeff f 0β©, | |
left_inv := Ξ» P, by ext; simp only [subtype.coe_mk, coeffs], | |
right_inv := Ξ» f, | |
begin | |
ext (_ | _ | _ | _ | n); simp only [subtype.coe_mk, coeffs], | |
have h3 : 3 < n + 4 := by linarith only, | |
rw [coeff_gt_three _ h3, | |
(degree_le_iff_coeff_zero (f : R[X]) 3).mp f.2 _ $ with_bot.coe_lt_coe.mpr h3] | |
end } | |
lemma degree (ha : P.a β 0) : P.to_poly.degree = 3 := degree_cubic ha | |
lemma degree_of_a_eq_zero (ha : P.a = 0) (hb : P.b β 0) : P.to_poly.degree = 2 := | |
by rw [of_a_eq_zero ha, degree_quadratic hb] | |
lemma degree_of_a_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c β 0) : P.to_poly.degree = 1 := | |
by rw [of_a_b_eq_zero ha hb, degree_linear hc] | |
lemma degree_of_a_b_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d β 0) : | |
P.to_poly.degree = 0 := | |
by rw [of_a_b_c_eq_zero ha hb hc, degree_C hd] | |
lemma degree_of_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) (hd : P.d = 0) : | |
P.to_poly.degree = β₯ := | |
by rw [of_zero ha hb hc hd, degree_zero] | |
lemma leading_coeff (ha : P.a β 0) : P.to_poly.leading_coeff = P.a := leading_coeff_cubic ha | |
lemma leading_coeff_of_a_eq_zero (ha : P.a = 0) (hb : P.b β 0) : P.to_poly.leading_coeff = P.b := | |
by rw [of_a_eq_zero ha, leading_coeff_quadratic hb] | |
lemma leading_coeff_of_a_b_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c β 0) : | |
P.to_poly.leading_coeff = P.c := | |
by rw [of_a_b_eq_zero ha hb, leading_coeff_linear hc] | |
lemma leading_coeff_of_a_b_c_eq_zero (ha : P.a = 0) (hb : P.b = 0) (hc : P.c = 0) : | |
P.to_poly.leading_coeff = P.d := | |
by rw [of_a_b_c_eq_zero ha hb hc, leading_coeff_C] | |
end degree | |
/-! ### Map across a homomorphism -/ | |
section map | |
variables [semiring S] {Ο : R β+* S} | |
/-- Map a cubic polynomial across a semiring homomorphism. -/ | |
def map (Ο : R β+* S) (P : cubic R) : cubic S := β¨Ο P.a, Ο P.b, Ο P.c, Ο P.dβ© | |
lemma map_to_poly : (map Ο P).to_poly = polynomial.map Ο P.to_poly := | |
by simp only [map, to_poly, map_C, map_X, polynomial.map_add, polynomial.map_mul, | |
polynomial.map_pow] | |
end map | |
end basic | |
section roots | |
open multiset | |
/-! ### Roots over an extension -/ | |
section extension | |
variables {P : cubic R} [comm_ring R] [comm_ring S] {Ο : R β+* S} | |
/-- The roots of a cubic polynomial. -/ | |
def roots [is_domain R] (P : cubic R) : multiset R := P.to_poly.roots | |
lemma map_roots [is_domain S] : (map Ο P).roots = (polynomial.map Ο P.to_poly).roots := | |
by rw [roots, map_to_poly] | |
theorem mem_roots_iff [is_domain R] (h0 : P.to_poly β 0) (x : R) : | |
x β P.roots β P.a * x ^ 3 + P.b * x ^ 2 + P.c * x + P.d = 0 := | |
begin | |
rw [roots, mem_roots h0, is_root, to_poly], | |
simp only [eval_C, eval_X, eval_add, eval_mul, eval_pow] | |
end | |
theorem card_roots_le [is_domain R] [decidable_eq R] : P.roots.to_finset.card β€ 3 := | |
begin | |
apply (to_finset_card_le P.to_poly.roots).trans, | |
by_cases hP : P.to_poly = 0, | |
{ exact (card_roots' P.to_poly).trans (by { rw [hP, nat_degree_zero], exact zero_le 3 }) }, | |
{ exact with_bot.coe_le_coe.1 ((card_roots hP).trans degree_cubic_le) } | |
end | |
end extension | |
variables {P : cubic F} [field F] [field K] {Ο : F β+* K} {x y z : K} | |
/-! ### Roots over a splitting field -/ | |
section split | |
theorem splits_iff_card_roots (ha : P.a β 0) : splits Ο P.to_poly β (map Ο P).roots.card = 3 := | |
begin | |
replace ha : (map Ο P).a β 0 := (ring_hom.map_ne_zero Ο).mpr ha, | |
nth_rewrite_lhs 0 [β ring_hom.id_comp Ο], | |
rw [roots, β splits_map_iff, β map_to_poly, splits_iff_card_roots, | |
β ((degree_eq_iff_nat_degree_eq $ ne_zero_of_a_ne_zero ha).mp $ degree ha : _ = 3)] | |
end | |
theorem splits_iff_roots_eq_three (ha : P.a β 0) : | |
splits Ο P.to_poly β β x y z : K, (map Ο P).roots = {x, y, z} := | |
by rw [splits_iff_card_roots ha, card_eq_three] | |
theorem eq_prod_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
(map Ο P).to_poly = C (Ο P.a) * (X - C x) * (X - C y) * (X - C z) := | |
begin | |
rw [map_to_poly, eq_prod_roots_of_splits $ (splits_iff_roots_eq_three ha).mpr $ exists.intro x $ | |
exists.intro y $ exists.intro z h3, leading_coeff ha, β map_roots, h3], | |
change C (Ο P.a) * ((X - C x) ::β (X - C y) ::β {X - C z}).prod = _, | |
rw [prod_cons, prod_cons, prod_singleton, mul_assoc, mul_assoc] | |
end | |
theorem eq_sum_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
map Ο P = β¨Ο P.a, Ο P.a * -(x + y + z), Ο P.a * (x * y + x * z + y * z), Ο P.a * -(x * y * z)β© := | |
begin | |
apply_fun to_poly, | |
any_goals { exact Ξ» P Q, (to_poly_injective P Q).mp }, | |
rw [eq_prod_three_roots ha h3, to_poly], | |
simp only [C_neg, C_add, C_mul], | |
ring1 | |
end | |
theorem b_eq_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
Ο P.b = Ο P.a * -(x + y + z) := | |
by injection eq_sum_three_roots ha h3 | |
theorem c_eq_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
Ο P.c = Ο P.a * (x * y + x * z + y * z) := | |
by injection eq_sum_three_roots ha h3 | |
theorem d_eq_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
Ο P.d = Ο P.a * -(x * y * z) := | |
by injection eq_sum_three_roots ha h3 | |
end split | |
/-! ### Discriminant over a splitting field -/ | |
section discriminant | |
/-- The discriminant of a cubic polynomial. -/ | |
def disc {R : Type*} [ring R] (P : cubic R) : R := | |
P.b ^ 2 * P.c ^ 2 - 4 * P.a * P.c ^ 3 - 4 * P.b ^ 3 * P.d - 27 * P.a ^ 2 * P.d ^ 2 | |
+ 18 * P.a * P.b * P.c * P.d | |
theorem disc_eq_prod_three_roots (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
Ο P.disc = (Ο P.a * Ο P.a * (x - y) * (x - z) * (y - z)) ^ 2 := | |
begin | |
simp only [disc, ring_hom.map_add, ring_hom.map_sub, ring_hom.map_mul, map_pow], | |
simp only [ring_hom.map_one, map_bit0, map_bit1], | |
rw [b_eq_three_roots ha h3, c_eq_three_roots ha h3, d_eq_three_roots ha h3], | |
ring1 | |
end | |
theorem disc_ne_zero_iff_roots_ne (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
P.disc β 0 β x β y β§ x β z β§ y β z := | |
begin | |
rw [β ring_hom.map_ne_zero Ο, disc_eq_prod_three_roots ha h3, pow_two], | |
simp only [mul_ne_zero_iff, sub_ne_zero], | |
rw [ring_hom.map_ne_zero], | |
tautology | |
end | |
theorem disc_ne_zero_iff_roots_nodup (ha : P.a β 0) (h3 : (map Ο P).roots = {x, y, z}) : | |
P.disc β 0 β (map Ο P).roots.nodup := | |
begin | |
rw [disc_ne_zero_iff_roots_ne ha h3, h3], | |
change _ β (x ::β y ::β {z}).nodup, | |
rw [nodup_cons, nodup_cons, mem_cons, mem_singleton, mem_singleton], | |
simp only [nodup_singleton], | |
tautology | |
end | |
theorem card_roots_of_disc_ne_zero [decidable_eq K] (ha : P.a β 0) | |
(h3 : (map Ο P).roots = {x, y, z}) (hd : P.disc β 0) : (map Ο P).roots.to_finset.card = 3 := | |
begin | |
rw [to_finset_card_of_nodup $ (disc_ne_zero_iff_roots_nodup ha h3).mp hd, | |
β splits_iff_card_roots ha, splits_iff_roots_eq_three ha], | |
exact β¨x, β¨y, β¨z, h3β©β©β© | |
end | |
end discriminant | |
end roots | |
end cubic | |