Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Adam Topaz. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison, Adam Topaz | |
-/ | |
import algebra.algebra.subalgebra.basic | |
import algebra.monoid_algebra.basic | |
/-! | |
# Free Algebras | |
Given a commutative semiring `R`, and a type `X`, we construct the free unital, associative | |
`R`-algebra on `X`. | |
## Notation | |
1. `free_algebra R X` is the free algebra itself. It is endowed with an `R`-algebra structure. | |
2. `free_algebra.ι R` is the function `X → free_algebra R X`. | |
3. Given a function `f : X → A` to an R-algebra `A`, `lift R f` is the lift of `f` to an | |
`R`-algebra morphism `free_algebra R X → A`. | |
## Theorems | |
1. `ι_comp_lift` states that the composition `(lift R f) ∘ (ι R)` is identical to `f`. | |
2. `lift_unique` states that whenever an R-algebra morphism `g : free_algebra R X → A` is | |
given whose composition with `ι R` is `f`, then one has `g = lift R f`. | |
3. `hom_ext` is a variant of `lift_unique` in the form of an extensionality theorem. | |
4. `lift_comp_ι` is a combination of `ι_comp_lift` and `lift_unique`. It states that the lift | |
of the composition of an algebra morphism with `ι` is the algebra morphism itself. | |
5. `equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X)` | |
6. An inductive principle `induction`. | |
## Implementation details | |
We construct the free algebra on `X` as a quotient of an inductive type `free_algebra.pre` by an | |
inductively defined relation `free_algebra.rel`. Explicitly, the construction involves three steps: | |
1. We construct an inductive type `free_algebra.pre R X`, the terms of which should be thought | |
of as representatives for the elements of `free_algebra R X`. | |
It is the free type with maps from `R` and `X`, and with two binary operations `add` and `mul`. | |
2. We construct an inductive relation `free_algebra.rel R X` on `free_algebra.pre R X`. | |
This is the smallest relation for which the quotient is an `R`-algebra where addition resp. | |
multiplication are induced by `add` resp. `mul` from 1., and for which the map from `R` is the | |
structure map for the algebra. | |
3. The free algebra `free_algebra R X` is the quotient of `free_algebra.pre R X` by | |
the relation `free_algebra.rel R X`. | |
-/ | |
variables (R : Type*) [comm_semiring R] | |
variables (X : Type*) | |
namespace free_algebra | |
/-- | |
This inductive type is used to express representatives of the free algebra. | |
-/ | |
inductive pre | |
| of : X → pre | |
| of_scalar : R → pre | |
| add : pre → pre → pre | |
| mul : pre → pre → pre | |
namespace pre | |
instance : inhabited (pre R X) := ⟨of_scalar 0⟩ | |
-- Note: These instances are only used to simplify the notation. | |
/-- Coercion from `X` to `pre R X`. Note: Used for notation only. -/ | |
def has_coe_generator : has_coe X (pre R X) := ⟨of⟩ | |
/-- Coercion from `R` to `pre R X`. Note: Used for notation only. -/ | |
def has_coe_semiring : has_coe R (pre R X) := ⟨of_scalar⟩ | |
/-- Multiplication in `pre R X` defined as `pre.mul`. Note: Used for notation only. -/ | |
def has_mul : has_mul (pre R X) := ⟨mul⟩ | |
/-- Addition in `pre R X` defined as `pre.add`. Note: Used for notation only. -/ | |
def has_add : has_add (pre R X) := ⟨add⟩ | |
/-- Zero in `pre R X` defined as the image of `0` from `R`. Note: Used for notation only. -/ | |
def has_zero : has_zero (pre R X) := ⟨of_scalar 0⟩ | |
/-- One in `pre R X` defined as the image of `1` from `R`. Note: Used for notation only. -/ | |
def has_one : has_one (pre R X) := ⟨of_scalar 1⟩ | |
/-- | |
Scalar multiplication defined as multiplication by the image of elements from `R`. | |
Note: Used for notation only. | |
-/ | |
def has_smul : has_smul R (pre R X) := ⟨λ r m, mul (of_scalar r) m⟩ | |
end pre | |
local attribute [instance] | |
pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero | |
pre.has_one pre.has_smul | |
/-- | |
Given a function from `X` to an `R`-algebra `A`, `lift_fun` provides a lift of `f` to a function | |
from `pre R X` to `A`. This is mainly used in the construction of `free_algebra.lift`. | |
-/ | |
def lift_fun {A : Type*} [semiring A] [algebra R A] (f : X → A) : pre R X → A := | |
λ t, pre.rec_on t f (algebra_map _ _) (λ _ _, (+)) (λ _ _, (*)) | |
/-- | |
An inductively defined relation on `pre R X` used to force the initial algebra structure on | |
the associated quotient. | |
-/ | |
inductive rel : (pre R X) → (pre R X) → Prop | |
-- force `of_scalar` to be a central semiring morphism | |
| add_scalar {r s : R} : rel ↑(r + s) (↑r + ↑s) | |
| mul_scalar {r s : R} : rel ↑(r * s) (↑r * ↑s) | |
| central_scalar {r : R} {a : pre R X} : rel (r * a) (a * r) | |
-- commutative additive semigroup | |
| add_assoc {a b c : pre R X} : rel (a + b + c) (a + (b + c)) | |
| add_comm {a b : pre R X} : rel (a + b) (b + a) | |
| zero_add {a : pre R X} : rel (0 + a) a | |
-- multiplicative monoid | |
| mul_assoc {a b c : pre R X} : rel (a * b * c) (a * (b * c)) | |
| one_mul {a : pre R X} : rel (1 * a) a | |
| mul_one {a : pre R X} : rel (a * 1) a | |
-- distributivity | |
| left_distrib {a b c : pre R X} : rel (a * (b + c)) (a * b + a * c) | |
| right_distrib {a b c : pre R X} : rel ((a + b) * c) (a * c + b * c) | |
-- other relations needed for semiring | |
| zero_mul {a : pre R X} : rel (0 * a) 0 | |
| mul_zero {a : pre R X} : rel (a * 0) 0 | |
-- compatibility | |
| add_compat_left {a b c : pre R X} : rel a b → rel (a + c) (b + c) | |
| add_compat_right {a b c : pre R X} : rel a b → rel (c + a) (c + b) | |
| mul_compat_left {a b c : pre R X} : rel a b → rel (a * c) (b * c) | |
| mul_compat_right {a b c : pre R X} : rel a b → rel (c * a) (c * b) | |
end free_algebra | |
/-- | |
The free algebra for the type `X` over the commutative semiring `R`. | |
-/ | |
def free_algebra := quot (free_algebra.rel R X) | |
namespace free_algebra | |
local attribute [instance] | |
pre.has_coe_generator pre.has_coe_semiring pre.has_mul pre.has_add pre.has_zero | |
pre.has_one pre.has_smul | |
instance : semiring (free_algebra R X) := | |
{ add := quot.map₂ (+) (λ _ _ _, rel.add_compat_right) (λ _ _ _, rel.add_compat_left), | |
add_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.add_assoc }, | |
zero := quot.mk _ 0, | |
zero_add := by { rintro ⟨⟩, exact quot.sound rel.zero_add }, | |
add_zero := begin | |
rintros ⟨⟩, | |
change quot.mk _ _ = _, | |
rw [quot.sound rel.add_comm, quot.sound rel.zero_add], | |
end, | |
add_comm := by { rintros ⟨⟩ ⟨⟩, exact quot.sound rel.add_comm }, | |
mul := quot.map₂ (*) (λ _ _ _, rel.mul_compat_right) (λ _ _ _, rel.mul_compat_left), | |
mul_assoc := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.mul_assoc }, | |
one := quot.mk _ 1, | |
one_mul := by { rintros ⟨⟩, exact quot.sound rel.one_mul }, | |
mul_one := by { rintros ⟨⟩, exact quot.sound rel.mul_one }, | |
left_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.left_distrib }, | |
right_distrib := by { rintros ⟨⟩ ⟨⟩ ⟨⟩, exact quot.sound rel.right_distrib }, | |
zero_mul := by { rintros ⟨⟩, exact quot.sound rel.zero_mul }, | |
mul_zero := by { rintros ⟨⟩, exact quot.sound rel.mul_zero } } | |
instance : inhabited (free_algebra R X) := ⟨0⟩ | |
instance : has_smul R (free_algebra R X) := | |
{ smul := λ r, quot.map ((*) ↑r) (λ a b, rel.mul_compat_right) } | |
instance : algebra R (free_algebra R X) := | |
{ to_fun := λ r, quot.mk _ r, | |
map_one' := rfl, | |
map_mul' := λ _ _, quot.sound rel.mul_scalar, | |
map_zero' := rfl, | |
map_add' := λ _ _, quot.sound rel.add_scalar, | |
commutes' := λ _, by { rintros ⟨⟩, exact quot.sound rel.central_scalar }, | |
smul_def' := λ _ _, rfl } | |
instance {S : Type*} [comm_ring S] : ring (free_algebra S X) := algebra.semiring_to_ring S | |
variables {X} | |
/-- | |
The canonical function `X → free_algebra R X`. | |
-/ | |
def ι : X → free_algebra R X := λ m, quot.mk _ m | |
@[simp] lemma quot_mk_eq_ι (m : X) : quot.mk (free_algebra.rel R X) m = ι R m := rfl | |
variables {A : Type*} [semiring A] [algebra R A] | |
/-- Internal definition used to define `lift` -/ | |
private def lift_aux (f : X → A) : (free_algebra R X →ₐ[R] A) := | |
{ to_fun := λ a, quot.lift_on a (lift_fun _ _ f) $ λ a b h, | |
begin | |
induction h, | |
{ exact (algebra_map R A).map_add h_r h_s, }, | |
{ exact (algebra_map R A).map_mul h_r h_s }, | |
{ apply algebra.commutes }, | |
{ change _ + _ + _ = _ + (_ + _), | |
rw add_assoc }, | |
{ change _ + _ = _ + _, | |
rw add_comm, }, | |
{ change (algebra_map _ _ _) + lift_fun R X f _ = lift_fun R X f _, | |
simp, }, | |
{ change _ * _ * _ = _ * (_ * _), | |
rw mul_assoc }, | |
{ change (algebra_map _ _ _) * lift_fun R X f _ = lift_fun R X f _, | |
simp, }, | |
{ change lift_fun R X f _ * (algebra_map _ _ _) = lift_fun R X f _, | |
simp, }, | |
{ change _ * (_ + _) = _ * _ + _ * _, | |
rw left_distrib, }, | |
{ change (_ + _) * _ = _ * _ + _ * _, | |
rw right_distrib, }, | |
{ change (algebra_map _ _ _) * _ = algebra_map _ _ _, | |
simp }, | |
{ change _ * (algebra_map _ _ _) = algebra_map _ _ _, | |
simp }, | |
repeat { change lift_fun R X f _ + lift_fun R X f _ = _, | |
rw h_ih, | |
refl, }, | |
repeat { change lift_fun R X f _ * lift_fun R X f _ = _, | |
rw h_ih, | |
refl, }, | |
end, | |
map_one' := by { change algebra_map _ _ _ = _, simp }, | |
map_mul' := by { rintros ⟨⟩ ⟨⟩, refl }, | |
map_zero' := by { change algebra_map _ _ _ = _, simp }, | |
map_add' := by { rintros ⟨⟩ ⟨⟩, refl }, | |
commutes' := by tauto } | |
/-- | |
Given a function `f : X → A` where `A` is an `R`-algebra, `lift R f` is the unique lift | |
of `f` to a morphism of `R`-algebras `free_algebra R X → A`. | |
-/ | |
def lift : (X → A) ≃ (free_algebra R X →ₐ[R] A) := | |
{ to_fun := lift_aux R, | |
inv_fun := λ F, F ∘ (ι R), | |
left_inv := λ f, by {ext, refl}, | |
right_inv := λ F, by | |
{ ext x, | |
rcases x, | |
induction x, | |
case pre.of : | |
{ change ((F : free_algebra R X → A) ∘ (ι R)) _ = _, | |
refl }, | |
case pre.of_scalar : | |
{ change algebra_map _ _ x = F (algebra_map _ _ x), | |
rw alg_hom.commutes F x, }, | |
case pre.add : a b ha hb | |
{ change lift_aux R (F ∘ ι R) (quot.mk _ _ + quot.mk _ _) = F (quot.mk _ _ + quot.mk _ _), | |
rw [alg_hom.map_add, alg_hom.map_add, ha, hb], }, | |
case pre.mul : a b ha hb | |
{ change lift_aux R (F ∘ ι R) (quot.mk _ _ * quot.mk _ _) = F (quot.mk _ _ * quot.mk _ _), | |
rw [alg_hom.map_mul, alg_hom.map_mul, ha, hb], }, }, } | |
@[simp] lemma lift_aux_eq (f : X → A) : lift_aux R f = lift R f := rfl | |
@[simp] | |
lemma lift_symm_apply (F : free_algebra R X →ₐ[R] A) : (lift R).symm F = F ∘ (ι R) := rfl | |
variables {R X} | |
@[simp] | |
theorem ι_comp_lift (f : X → A) : | |
(lift R f : free_algebra R X → A) ∘ (ι R) = f := by {ext, refl} | |
@[simp] | |
theorem lift_ι_apply (f : X → A) (x) : | |
lift R f (ι R x) = f x := rfl | |
@[simp] | |
theorem lift_unique (f : X → A) (g : free_algebra R X →ₐ[R] A) : | |
(g : free_algebra R X → A) ∘ (ι R) = f ↔ g = lift R f := | |
(lift R).symm_apply_eq | |
/-! | |
At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one | |
should only use the universal properties of the free algebra, and consider the actual implementation | |
as a quotient of an inductive type as completely hidden. | |
Of course, one still has the option to locally make these definitions `semireducible` if so desired, | |
and Lean is still willing in some circumstances to do unification based on the underlying | |
definition. | |
-/ | |
attribute [irreducible] ι lift | |
-- Marking `free_algebra` irreducible makes `ring` instances inaccessible on quotients. | |
-- https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/algebra.2Esemiring_to_ring.20breaks.20semimodule.20typeclass.20lookup/near/212580241 | |
-- For now, we avoid this by not marking it irreducible. | |
@[simp] | |
theorem lift_comp_ι (g : free_algebra R X →ₐ[R] A) : | |
lift R ((g : free_algebra R X → A) ∘ (ι R)) = g := | |
by { rw ←lift_symm_apply, exact (lift R).apply_symm_apply g } | |
/-- See note [partially-applied ext lemmas]. -/ | |
@[ext] | |
theorem hom_ext {f g : free_algebra R X →ₐ[R] A} | |
(w : ((f : free_algebra R X → A) ∘ (ι R)) = ((g : free_algebra R X → A) ∘ (ι R))) : f = g := | |
begin | |
rw [←lift_symm_apply, ←lift_symm_apply] at w, | |
exact (lift R).symm.injective w, | |
end | |
/-- | |
The free algebra on `X` is "just" the monoid algebra on the free monoid on `X`. | |
This would be useful when constructing linear maps out of a free algebra, | |
for example. | |
-/ | |
noncomputable | |
def equiv_monoid_algebra_free_monoid : free_algebra R X ≃ₐ[R] monoid_algebra R (free_monoid X) := | |
alg_equiv.of_alg_hom | |
(lift R (λ x, (monoid_algebra.of R (free_monoid X)) (free_monoid.of x))) | |
((monoid_algebra.lift R (free_monoid X) (free_algebra R X)) (free_monoid.lift (ι R))) | |
begin | |
apply monoid_algebra.alg_hom_ext, intro x, | |
apply free_monoid.rec_on x, | |
{ simp, refl, }, | |
{ intros x y ih, simp at ih, simp [ih], } | |
end | |
(by { ext, simp, }) | |
instance [nontrivial R] : nontrivial (free_algebra R X) := | |
equiv_monoid_algebra_free_monoid.surjective.nontrivial | |
section | |
/-- The left-inverse of `algebra_map`. -/ | |
def algebra_map_inv : free_algebra R X →ₐ[R] R := | |
lift R (0 : X → R) | |
lemma algebra_map_left_inverse : | |
function.left_inverse algebra_map_inv (algebra_map R $ free_algebra R X) := | |
λ x, by simp [algebra_map_inv] | |
@[simp] lemma algebra_map_inj (x y : R) : | |
algebra_map R (free_algebra R X) x = algebra_map R (free_algebra R X) y ↔ x = y := | |
algebra_map_left_inverse.injective.eq_iff | |
@[simp] lemma algebra_map_eq_zero_iff (x : R) : algebra_map R (free_algebra R X) x = 0 ↔ x = 0 := | |
map_eq_zero_iff (algebra_map _ _) algebra_map_left_inverse.injective | |
@[simp] lemma algebra_map_eq_one_iff (x : R) : algebra_map R (free_algebra R X) x = 1 ↔ x = 1 := | |
map_eq_one_iff (algebra_map _ _) algebra_map_left_inverse.injective | |
-- this proof is copied from the approach in `free_abelian_group.of_injective` | |
lemma ι_injective [nontrivial R] : function.injective (ι R : X → free_algebra R X) := | |
λ x y hoxy, classical.by_contradiction $ assume hxy : x ≠ y, | |
let f : free_algebra R X →ₐ[R] R := | |
lift R (λ z, by classical; exact if x = z then (1 : R) else 0) in | |
have hfx1 : f (ι R x) = 1, from (lift_ι_apply _ _).trans $ if_pos rfl, | |
have hfy1 : f (ι R y) = 1, from hoxy ▸ hfx1, | |
have hfy0 : f (ι R y) = 0, from (lift_ι_apply _ _).trans $ if_neg hxy, | |
one_ne_zero $ hfy1.symm.trans hfy0 | |
@[simp] lemma ι_inj [nontrivial R] (x y : X) : ι R x = ι R y ↔ x = y := | |
ι_injective.eq_iff | |
@[simp] lemma ι_ne_algebra_map [nontrivial R] (x : X) (r : R) : ι R x ≠ algebra_map R _ r := | |
λ h, | |
let f0 : free_algebra R X →ₐ[R] R := lift R 0 in | |
let f1 : free_algebra R X →ₐ[R] R := lift R 1 in | |
have hf0 : f0 (ι R x) = 0, from lift_ι_apply _ _, | |
have hf1 : f1 (ι R x) = 1, from lift_ι_apply _ _, | |
begin | |
rw [h, f0.commutes, algebra.id.map_eq_self] at hf0, | |
rw [h, f1.commutes, algebra.id.map_eq_self] at hf1, | |
exact zero_ne_one (hf0.symm.trans hf1), | |
end | |
@[simp] lemma ι_ne_zero [nontrivial R] (x : X) : ι R x ≠ 0 := | |
ι_ne_algebra_map x 0 | |
@[simp] lemma ι_ne_one [nontrivial R] (x : X) : ι R x ≠ 1 := | |
ι_ne_algebra_map x 1 | |
end | |
end free_algebra | |
/- There is something weird in the above namespace that breaks the typeclass resolution of | |
`has_coe_to_sort` below. Closing it and reopening it fixes it... -/ | |
namespace free_algebra | |
/-- An induction principle for the free algebra. | |
If `C` holds for the `algebra_map` of `r : R` into `free_algebra R X`, the `ι` of `x : X`, and is | |
preserved under addition and muliplication, then it holds for all of `free_algebra R X`. | |
-/ | |
@[elab_as_eliminator] | |
lemma induction {C : free_algebra R X → Prop} | |
(h_grade0 : ∀ r, C (algebra_map R (free_algebra R X) r)) | |
(h_grade1 : ∀ x, C (ι R x)) | |
(h_mul : ∀ a b, C a → C b → C (a * b)) | |
(h_add : ∀ a b, C a → C b → C (a + b)) | |
(a : free_algebra R X) : | |
C a := | |
begin | |
-- the arguments are enough to construct a subalgebra, and a mapping into it from X | |
let s : subalgebra R (free_algebra R X) := | |
{ carrier := C, | |
mul_mem' := h_mul, | |
add_mem' := h_add, | |
algebra_map_mem' := h_grade0, }, | |
let of : X → s := subtype.coind (ι R) h_grade1, | |
-- the mapping through the subalgebra is the identity | |
have of_id : alg_hom.id R (free_algebra R X) = s.val.comp (lift R of), | |
{ ext, | |
simp [of, subtype.coind], }, | |
-- finding a proof is finding an element of the subalgebra | |
convert subtype.prop (lift R of a), | |
simp [alg_hom.ext_iff] at of_id, | |
exact of_id a, | |
end | |
end free_algebra | |