Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Mario Carneiro. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Mario Carneiro | |
-/ | |
import algebra.field_power | |
import data.int.least_greatest | |
import data.rat.floor | |
/-! | |
# Archimedean groups and fields. | |
This file defines the archimedean property for ordered groups and proves several results connected | |
to this notion. Being archimedean means that for all elements `x` and `y>0` there exists a natural | |
number `n` such that `x ≤ n • y`. | |
## Main definitions | |
* `archimedean` is a typeclass for an ordered additive commutative monoid to have the archimedean | |
property. | |
* `archimedean.floor_ring` defines a floor function on an archimedean linearly ordered ring making | |
it into a `floor_ring`. | |
## Main statements | |
* `ℕ`, `ℤ`, and `ℚ` are archimedean. | |
-/ | |
open int set | |
variables {α : Type*} | |
/-- An ordered additive commutative monoid is called `archimedean` if for any two elements `x`, `y` | |
such that `0 < y` there exists a natural number `n` such that `x ≤ n • y`. -/ | |
class archimedean (α) [ordered_add_comm_monoid α] : Prop := | |
(arch : ∀ (x : α) {y}, 0 < y → ∃ n : ℕ, x ≤ n • y) | |
instance order_dual.archimedean [ordered_add_comm_group α] [archimedean α] : archimedean αᵒᵈ := | |
⟨λ x y hy, let ⟨n, hn⟩ := archimedean.arch (-x : α) (neg_pos.2 hy) in | |
⟨n, by rwa [neg_nsmul, neg_le_neg_iff] at hn⟩⟩ | |
section linear_ordered_add_comm_group | |
variables [linear_ordered_add_comm_group α] [archimedean α] | |
/-- An archimedean decidable linearly ordered `add_comm_group` has a version of the floor: for | |
`a > 0`, any `g` in the group lies between some two consecutive multiples of `a`. -/ | |
lemma exists_unique_zsmul_near_of_pos {a : α} (ha : 0 < a) (g : α) : | |
∃! k : ℤ, k • a ≤ g ∧ g < (k + 1) • a := | |
begin | |
let s : set ℤ := {n : ℤ | n • a ≤ g}, | |
obtain ⟨k, hk : -g ≤ k • a⟩ := archimedean.arch (-g) ha, | |
have h_ne : s.nonempty := ⟨-k, by simpa using neg_le_neg hk⟩, | |
obtain ⟨k, hk⟩ := archimedean.arch g ha, | |
have h_bdd : ∀ n ∈ s, n ≤ (k : ℤ), | |
{ assume n hn, | |
apply (zsmul_le_zsmul_iff ha).mp, | |
rw ← coe_nat_zsmul at hk, | |
exact le_trans hn hk }, | |
obtain ⟨m, hm, hm'⟩ := int.exists_greatest_of_bdd ⟨k, h_bdd⟩ h_ne, | |
have hm'' : g < (m + 1) • a, | |
{ contrapose! hm', exact ⟨m + 1, hm', lt_add_one _⟩, }, | |
refine ⟨m, ⟨hm, hm''⟩, λ n hn, (hm' n hn.1).antisymm $ int.le_of_lt_add_one _⟩, | |
rw ← zsmul_lt_zsmul_iff ha, | |
exact lt_of_le_of_lt hm hn.2 | |
end | |
lemma exists_unique_zsmul_near_of_pos' {a : α} (ha : 0 < a) (g : α) : | |
∃! k : ℤ, 0 ≤ g - k • a ∧ g - k • a < a := | |
by simpa only [sub_nonneg, add_zsmul, one_zsmul, sub_lt_iff_lt_add'] | |
using exists_unique_zsmul_near_of_pos ha g | |
lemma exists_unique_add_zsmul_mem_Ico {a : α} (ha : 0 < a) (b c : α) : | |
∃! m : ℤ, b + m • a ∈ set.Ico c (c + a) := | |
(equiv.neg ℤ).bijective.exists_unique_iff.2 $ | |
by simpa only [equiv.neg_apply, mem_Ico, neg_zsmul, ← sub_eq_add_neg, le_sub_iff_add_le, zero_add, | |
add_comm c, sub_lt_iff_lt_add', add_assoc] using exists_unique_zsmul_near_of_pos' ha (b - c) | |
lemma exists_unique_add_zsmul_mem_Ioc {a : α} (ha : 0 < a) (b c : α) : | |
∃! m : ℤ, b + m • a ∈ set.Ioc c (c + a) := | |
(equiv.add_right (1 : ℤ)).bijective.exists_unique_iff.2 $ | |
by simpa only [add_zsmul, sub_lt_iff_lt_add', le_sub_iff_add_le', ← add_assoc, and.comm, mem_Ioc, | |
equiv.coe_add_right, one_zsmul, add_le_add_iff_right] | |
using exists_unique_zsmul_near_of_pos ha (c - b) | |
end linear_ordered_add_comm_group | |
theorem exists_nat_gt [ordered_semiring α] [nontrivial α] [archimedean α] | |
(x : α) : ∃ n : ℕ, x < n := | |
let ⟨n, h⟩ := archimedean.arch x zero_lt_one in | |
⟨n+1, lt_of_le_of_lt (by rwa ← nsmul_one) | |
(nat.cast_lt.2 (nat.lt_succ_self _))⟩ | |
theorem exists_nat_ge [ordered_semiring α] [archimedean α] (x : α) : | |
∃ n : ℕ, x ≤ n := | |
begin | |
nontriviality α, | |
exact (exists_nat_gt x).imp (λ n, le_of_lt) | |
end | |
lemma add_one_pow_unbounded_of_pos [ordered_semiring α] [nontrivial α] [archimedean α] | |
(x : α) {y : α} (hy : 0 < y) : | |
∃ n : ℕ, x < (y + 1) ^ n := | |
have 0 ≤ 1 + y, from add_nonneg zero_le_one hy.le, | |
let ⟨n, h⟩ := archimedean.arch x hy in | |
⟨n, calc x ≤ n • y : h | |
... = n * y : nsmul_eq_mul _ _ | |
... < 1 + n * y : lt_one_add _ | |
... ≤ (1 + y) ^ n : one_add_mul_le_pow' (mul_nonneg hy.le hy.le) (mul_nonneg this this) | |
(add_nonneg zero_le_two hy.le) _ | |
... = (y + 1) ^ n : by rw [add_comm]⟩ | |
section linear_ordered_ring | |
variables [linear_ordered_ring α] [archimedean α] | |
lemma pow_unbounded_of_one_lt (x : α) {y : α} (hy1 : 1 < y) : | |
∃ n : ℕ, x < y ^ n := | |
sub_add_cancel y 1 ▸ add_one_pow_unbounded_of_pos _ (sub_pos.2 hy1) | |
/-- Every x greater than or equal to 1 is between two successive | |
natural-number powers of every y greater than one. -/ | |
lemma exists_nat_pow_near {x : α} {y : α} (hx : 1 ≤ x) (hy : 1 < y) : | |
∃ n : ℕ, y ^ n ≤ x ∧ x < y ^ (n + 1) := | |
have h : ∃ n : ℕ, x < y ^ n, from pow_unbounded_of_one_lt _ hy, | |
by classical; exact let n := nat.find h in | |
have hn : x < y ^ n, from nat.find_spec h, | |
have hnp : 0 < n, from pos_iff_ne_zero.2 (λ hn0, | |
by rw [hn0, pow_zero] at hn; exact (not_le_of_gt hn hx)), | |
have hnsp : nat.pred n + 1 = n, from nat.succ_pred_eq_of_pos hnp, | |
have hltn : nat.pred n < n, from nat.pred_lt (ne_of_gt hnp), | |
⟨nat.pred n, le_of_not_lt (nat.find_min h hltn), by rwa hnsp⟩ | |
theorem exists_int_gt (x : α) : ∃ n : ℤ, x < n := | |
let ⟨n, h⟩ := exists_nat_gt x in ⟨n, by rwa int.cast_coe_nat⟩ | |
theorem exists_int_lt (x : α) : ∃ n : ℤ, (n : α) < x := | |
let ⟨n, h⟩ := exists_int_gt (-x) in ⟨-n, by rw int.cast_neg; exact neg_lt.1 h⟩ | |
theorem exists_floor (x : α) : | |
∃ (fl : ℤ), ∀ (z : ℤ), z ≤ fl ↔ (z : α) ≤ x := | |
begin | |
haveI := classical.prop_decidable, | |
have : ∃ (ub : ℤ), (ub:α) ≤ x ∧ ∀ (z : ℤ), (z:α) ≤ x → z ≤ ub := | |
int.exists_greatest_of_bdd | |
(let ⟨n, hn⟩ := exists_int_gt x in ⟨n, λ z h', | |
int.cast_le.1 $ le_trans h' $ le_of_lt hn⟩) | |
(let ⟨n, hn⟩ := exists_int_lt x in ⟨n, le_of_lt hn⟩), | |
refine this.imp (λ fl h z, _), | |
cases h with h₁ h₂, | |
exact ⟨λ h, le_trans (int.cast_le.2 h) h₁, h₂ z⟩, | |
end | |
end linear_ordered_ring | |
section linear_ordered_field | |
variables [linear_ordered_field α] [archimedean α] {x y ε : α} | |
/-- Every positive `x` is between two successive integer powers of | |
another `y` greater than one. This is the same as `exists_mem_Ioc_zpow`, | |
but with ≤ and < the other way around. -/ | |
lemma exists_mem_Ico_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ico (y ^ n) (y ^ (n + 1)) := | |
by classical; exact | |
let ⟨N, hN⟩ := pow_unbounded_of_one_lt x⁻¹ hy in | |
have he: ∃ m : ℤ, y ^ m ≤ x, from | |
⟨-N, le_of_lt (by { rw [zpow_neg y (↑N), zpow_coe_nat], | |
exact (inv_lt hx (lt_trans (inv_pos.2 hx) hN)).1 hN })⟩, | |
let ⟨M, hM⟩ := pow_unbounded_of_one_lt x hy in | |
have hb: ∃ b : ℤ, ∀ m, y ^ m ≤ x → m ≤ b, from | |
⟨M, λ m hm, le_of_not_lt (λ hlt, not_lt_of_ge | |
(zpow_le_of_le hy.le hlt.le) | |
(lt_of_le_of_lt hm (by rwa ← zpow_coe_nat at hM)))⟩, | |
let ⟨n, hn₁, hn₂⟩ := int.exists_greatest_of_bdd hb he in | |
⟨n, hn₁, lt_of_not_ge (λ hge, not_le_of_gt (int.lt_succ _) (hn₂ _ hge))⟩ | |
/-- Every positive `x` is between two successive integer powers of | |
another `y` greater than one. This is the same as `exists_mem_Ico_zpow`, | |
but with ≤ and < the other way around. -/ | |
lemma exists_mem_Ioc_zpow (hx : 0 < x) (hy : 1 < y) : ∃ n : ℤ, x ∈ Ioc (y ^ n) (y ^ (n + 1)) := | |
let ⟨m, hle, hlt⟩ := exists_mem_Ico_zpow (inv_pos.2 hx) hy in | |
have hyp : 0 < y, from lt_trans zero_lt_one hy, | |
⟨-(m+1), | |
by rwa [zpow_neg, inv_lt (zpow_pos_of_pos hyp _) hx], | |
by rwa [neg_add, neg_add_cancel_right, zpow_neg, | |
le_inv hx (zpow_pos_of_pos hyp _)]⟩ | |
/-- For any `y < 1` and any positive `x`, there exists `n : ℕ` with `y ^ n < x`. -/ | |
lemma exists_pow_lt_of_lt_one (hx : 0 < x) (hy : y < 1) : ∃ n : ℕ, y ^ n < x := | |
begin | |
by_cases y_pos : y ≤ 0, | |
{ use 1, simp only [pow_one], linarith, }, | |
rw [not_le] at y_pos, | |
rcases pow_unbounded_of_one_lt (x⁻¹) (one_lt_inv y_pos hy) with ⟨q, hq⟩, | |
exact ⟨q, by rwa [inv_pow, inv_lt_inv hx (pow_pos y_pos _)] at hq⟩ | |
end | |
/-- Given `x` and `y` between `0` and `1`, `x` is between two successive powers of `y`. | |
This is the same as `exists_nat_pow_near`, but for elements between `0` and `1` -/ | |
lemma exists_nat_pow_near_of_lt_one (xpos : 0 < x) (hx : x ≤ 1) (ypos : 0 < y) (hy : y < 1) : | |
∃ n : ℕ, y ^ (n + 1) < x ∧ x ≤ y ^ n := | |
begin | |
rcases exists_nat_pow_near (one_le_inv_iff.2 ⟨xpos, hx⟩) (one_lt_inv_iff.2 ⟨ypos, hy⟩) | |
with ⟨n, hn, h'n⟩, | |
refine ⟨n, _, _⟩, | |
{ rwa [inv_pow, inv_lt_inv xpos (pow_pos ypos _)] at h'n }, | |
{ rwa [inv_pow, inv_le_inv (pow_pos ypos _) xpos] at hn } | |
end | |
lemma exists_rat_gt (x : α) : ∃ q : ℚ, x < q := | |
let ⟨n, h⟩ := exists_nat_gt x in ⟨n, by rwa rat.cast_coe_nat⟩ | |
theorem exists_rat_lt (x : α) : ∃ q : ℚ, (q : α) < x := | |
let ⟨n, h⟩ := exists_int_lt x in ⟨n, by rwa rat.cast_coe_int⟩ | |
theorem exists_rat_btwn {x y : α} (h : x < y) : ∃ q : ℚ, x < q ∧ (q:α) < y := | |
begin | |
cases exists_nat_gt (y - x)⁻¹ with n nh, | |
cases exists_floor (x * n) with z zh, | |
refine ⟨(z + 1 : ℤ) / n, _⟩, | |
have n0' := (inv_pos.2 (sub_pos.2 h)).trans nh, | |
have n0 := nat.cast_pos.1 n0', | |
rw [rat.cast_div_of_ne_zero, rat.cast_coe_nat, rat.cast_coe_int, div_lt_iff n0'], | |
refine ⟨(lt_div_iff n0').2 $ | |
(lt_iff_lt_of_le_iff_le (zh _)).1 (lt_add_one _), _⟩, | |
rw [int.cast_add, int.cast_one], | |
refine lt_of_le_of_lt (add_le_add_right ((zh _).1 le_rfl) _) _, | |
rwa [← lt_sub_iff_add_lt', ← sub_mul, | |
← div_lt_iff' (sub_pos.2 h), one_div], | |
{ rw [rat.coe_int_denom, nat.cast_one], exact one_ne_zero }, | |
{ intro H, rw [rat.coe_nat_num, int.cast_coe_nat, nat.cast_eq_zero] at H, subst H, cases n0 }, | |
{ rw [rat.coe_nat_denom, nat.cast_one], exact one_ne_zero } | |
end | |
lemma le_of_forall_rat_lt_imp_le (h : ∀ q : ℚ, (q : α) < x → (q : α) ≤ y) : x ≤ y := | |
le_of_not_lt $ λ hyx, let ⟨q, hy, hx⟩ := exists_rat_btwn hyx in hy.not_le $ h _ hx | |
lemma le_of_forall_lt_rat_imp_le (h : ∀ q : ℚ, y < q → x ≤ q) : x ≤ y := | |
le_of_not_lt $ λ hyx, let ⟨q, hy, hx⟩ := exists_rat_btwn hyx in hx.not_le $ h _ hy | |
lemma eq_of_forall_rat_lt_iff_lt (h : ∀ q : ℚ, (q : α) < x ↔ (q : α) < y) : x = y := | |
(le_of_forall_rat_lt_imp_le $ λ q hq, ((h q).1 hq).le).antisymm $ le_of_forall_rat_lt_imp_le $ | |
λ q hq, ((h q).2 hq).le | |
lemma eq_of_forall_lt_rat_iff_lt (h : ∀ q : ℚ, x < q ↔ y < q) : x = y := | |
(le_of_forall_lt_rat_imp_le $ λ q hq, ((h q).2 hq).le).antisymm $ le_of_forall_lt_rat_imp_le $ | |
λ q hq, ((h q).1 hq).le | |
theorem exists_nat_one_div_lt {ε : α} (hε : 0 < ε) : ∃ n : ℕ, 1 / (n + 1: α) < ε := | |
begin | |
cases exists_nat_gt (1/ε) with n hn, | |
use n, | |
rw [div_lt_iff, ← div_lt_iff' hε], | |
{ apply hn.trans, | |
simp [zero_lt_one] }, | |
{ exact n.cast_add_one_pos } | |
end | |
theorem exists_pos_rat_lt {x : α} (x0 : 0 < x) : ∃ q : ℚ, 0 < q ∧ (q : α) < x := | |
by simpa only [rat.cast_pos] using exists_rat_btwn x0 | |
lemma exists_rat_near (x : α) (ε0 : 0 < ε) : ∃ q : ℚ, |x - q| < ε := | |
let ⟨q, h₁, h₂⟩ := exists_rat_btwn $ ((sub_lt_self_iff x).2 ε0).trans ((lt_add_iff_pos_left x).2 ε0) | |
in ⟨q, abs_sub_lt_iff.2 ⟨sub_lt.1 h₁, sub_lt_iff_lt_add.2 h₂⟩⟩ | |
end linear_ordered_field | |
section linear_ordered_field | |
variables [linear_ordered_field α] | |
lemma archimedean_iff_nat_lt : archimedean α ↔ ∀ x : α, ∃ n : ℕ, x < n := | |
⟨@exists_nat_gt α _ _, λ H, ⟨λ x y y0, | |
(H (x / y)).imp $ λ n h, le_of_lt $ | |
by rwa [div_lt_iff y0, ← nsmul_eq_mul] at h⟩⟩ | |
lemma archimedean_iff_nat_le : archimedean α ↔ ∀ x : α, ∃ n : ℕ, x ≤ n := | |
archimedean_iff_nat_lt.trans | |
⟨λ H x, (H x).imp $ λ _, le_of_lt, | |
λ H x, let ⟨n, h⟩ := H x in ⟨n+1, | |
lt_of_le_of_lt h (nat.cast_lt.2 (lt_add_one _))⟩⟩ | |
lemma archimedean_iff_rat_lt : archimedean α ↔ ∀ x : α, ∃ q : ℚ, x < q := | |
⟨@exists_rat_gt α _, | |
λ H, archimedean_iff_nat_lt.2 $ λ x, | |
let ⟨q, h⟩ := H x in | |
⟨⌈q⌉₊, lt_of_lt_of_le h $ | |
by simpa only [rat.cast_coe_nat] using (@rat.cast_le α _ _ _).2 (nat.le_ceil _)⟩⟩ | |
lemma archimedean_iff_rat_le : archimedean α ↔ ∀ x : α, ∃ q : ℚ, x ≤ q := | |
archimedean_iff_rat_lt.trans | |
⟨λ H x, (H x).imp $ λ _, le_of_lt, | |
λ H x, let ⟨n, h⟩ := H x in ⟨n+1, | |
lt_of_le_of_lt h (rat.cast_lt.2 (lt_add_one _))⟩⟩ | |
end linear_ordered_field | |
instance : archimedean ℕ := | |
⟨λ n m m0, ⟨n, by simpa only [mul_one, nat.nsmul_eq_mul] using nat.mul_le_mul_left n m0⟩⟩ | |
instance : archimedean ℤ := | |
⟨λ n m m0, ⟨n.to_nat, le_trans (int.le_to_nat _) $ | |
by simpa only [nsmul_eq_mul, zero_add, mul_one] | |
using mul_le_mul_of_nonneg_left (int.add_one_le_iff.2 m0) (int.coe_zero_le n.to_nat)⟩⟩ | |
instance : archimedean ℚ := | |
archimedean_iff_rat_le.2 $ λ q, ⟨q, by rw rat.cast_id⟩ | |
/-- A linear ordered archimedean ring is a floor ring. This is not an `instance` because in some | |
cases we have a computable `floor` function. -/ | |
noncomputable def archimedean.floor_ring (α) [linear_ordered_ring α] [archimedean α] : | |
floor_ring α := | |
floor_ring.of_floor α (λ a, classical.some (exists_floor a)) | |
(λ z a, (classical.some_spec (exists_floor a) z).symm) | |