Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
35.1 kB
/-
Copyright (c) 2014 Robert Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Lewis, Leonardo de Moura, Mario Carneiro, Floris van Doorn
-/
import algebra.field.basic
import algebra.group_power.lemmas
import algebra.group_power.order
import algebra.order.ring
import order.bounds
import tactic.monotonicity.basic
/-!
# Linear ordered (semi)fields
A linear ordered (semi)field is a (semi)field equipped with a linear order such that
* addition respects the order: `a ≤ b → c + a ≤ c + b`;
* multiplication of positives is positive: `0 < a → 0 < b → 0 < a * b`;
* `0 < 1`.
## Main Definitions
* `linear_ordered_semifield`: Typeclass for linear order semifields.
* `linear_ordered_field`: Typeclass for linear ordered fields.
-/
set_option old_structure_cmd true
variables {α β : Type*}
/-- A linear ordered semifield is a field with a linear order respecting the operations. -/
@[protect_proj] class linear_ordered_semifield (α : Type*)
extends linear_ordered_semiring α, semifield α
/-- A linear ordered field is a field with a linear order respecting the operations. -/
@[protect_proj] class linear_ordered_field (α : Type*) extends linear_ordered_comm_ring α, field α
@[priority 100] -- See note [lower instance priority]
instance linear_ordered_field.to_linear_ordered_semifield [linear_ordered_field α] :
linear_ordered_semifield α :=
{ ..linear_ordered_ring.to_linear_ordered_semiring, ..‹linear_ordered_field α› }
namespace function
/-- Pullback a `linear_ordered_semifield` under an injective map. -/
@[reducible] -- See note [reducible non-instances]
def injective.linear_ordered_semifield [linear_ordered_semifield α] [has_zero β] [has_one β]
[has_add β] [has_mul β] [has_pow β ℕ] [has_smul ℕ β] [has_nat_cast β] [has_inv β] [has_div β]
[has_pow β ℤ] [has_sup β] [has_inf β] (f : β → α) (hf : injective f) (zero : f 0 = 0)
(one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) (hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y))
(hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) :
linear_ordered_semifield β :=
{ ..hf.linear_ordered_semiring f zero one add mul nsmul npow nat_cast hsup hinf,
..hf.semifield f zero one add mul inv div nsmul npow zpow nat_cast }
/-- Pullback a `linear_ordered_field` under an injective map. -/
@[reducible] -- See note [reducible non-instances]
def injective.linear_ordered_field [linear_ordered_field α] [has_zero β] [has_one β] [has_add β]
[has_mul β] [has_neg β] [has_sub β] [has_pow β ℕ] [has_smul ℕ β] [has_smul ℤ β] [has_smul ℚ β]
[has_nat_cast β] [has_int_cast β] [has_rat_cast β] [has_inv β] [has_div β] [has_pow β ℤ]
[has_sup β] [has_inf β]
(f : β → α) (hf : injective f) (zero : f 0 = 0) (one : f 1 = 1)
(add : ∀ x y, f (x + y) = f x + f y) (mul : ∀ x y, f (x * y) = f x * f y)
(neg : ∀ x, f (-x) = -f x) (sub : ∀ x y, f (x - y) = f x - f y)
(inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
(qsmul : ∀ x (n : ℚ), f (n • x) = n • f x)
(npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n)
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) (rat_cast : ∀ n : ℚ, f n = n)
(hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y)) (hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) :
linear_ordered_field β :=
{ .. hf.linear_ordered_ring f zero one add mul neg sub nsmul zsmul npow nat_cast int_cast hsup hinf,
.. hf.field f zero one add mul neg sub inv div nsmul zsmul qsmul npow zpow nat_cast int_cast
rat_cast }
end function
section linear_ordered_semifield
variables [linear_ordered_semifield α] {a b c d e : α}
/-- `equiv.mul_left₀` as an order_iso. -/
@[simps {simp_rhs := tt}]
def order_iso.mul_left₀ (a : α) (ha : 0 < a) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_left ha, ..equiv.mul_left₀ a ha.ne' }
/-- `equiv.mul_right₀` as an order_iso. -/
@[simps {simp_rhs := tt}]
def order_iso.mul_right₀ (a : α) (ha : 0 < a) : α ≃o α :=
{ map_rel_iff' := λ _ _, mul_le_mul_right ha, ..equiv.mul_right₀ a ha.ne' }
/-!
### Lemmas about pos, nonneg, nonpos, neg
-/
@[simp] lemma inv_pos : 0 < a⁻¹ ↔ 0 < a :=
suffices ∀ a : α, 0 < a → 0 < a⁻¹,
from ⟨λ h, inv_inv a ▸ this _ h, this a⟩,
assume a ha, flip lt_of_mul_lt_mul_left ha.le $ by simp [ne_of_gt ha, zero_lt_one]
alias inv_pos ↔ _ inv_pos_of_pos
@[simp] lemma inv_nonneg : 0 ≤ a⁻¹ ↔ 0 ≤ a :=
by simp only [le_iff_eq_or_lt, inv_pos, zero_eq_inv]
alias inv_nonneg ↔ _ inv_nonneg_of_nonneg
@[simp] lemma inv_lt_zero : a⁻¹ < 0 ↔ a < 0 :=
by simp only [← not_le, inv_nonneg]
@[simp] lemma inv_nonpos : a⁻¹ ≤ 0 ↔ a ≤ 0 :=
by simp only [← not_lt, inv_pos]
lemma one_div_pos : 0 < 1 / a ↔ 0 < a :=
inv_eq_one_div a ▸ inv_pos
lemma one_div_neg : 1 / a < 0 ↔ a < 0 :=
inv_eq_one_div a ▸ inv_lt_zero
lemma one_div_nonneg : 01 / a ↔ 0 ≤ a :=
inv_eq_one_div a ▸ inv_nonneg
lemma one_div_nonpos : 1 / a ≤ 0 ↔ a ≤ 0 :=
inv_eq_one_div a ▸ inv_nonpos
lemma div_pos (ha : 0 < a) (hb : 0 < b) : 0 < a / b :=
by { rw div_eq_mul_inv, exact mul_pos ha (inv_pos.2 hb) }
lemma div_nonneg (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a / b :=
by { rw div_eq_mul_inv, exact mul_nonneg ha (inv_nonneg.2 hb) }
lemma div_nonpos_of_nonpos_of_nonneg (ha : a ≤ 0) (hb : 0 ≤ b) : a / b ≤ 0 :=
by { rw div_eq_mul_inv, exact mul_nonpos_of_nonpos_of_nonneg ha (inv_nonneg.2 hb) }
lemma div_nonpos_of_nonneg_of_nonpos (ha : 0 ≤ a) (hb : b ≤ 0) : a / b ≤ 0 :=
by { rw div_eq_mul_inv, exact mul_nonpos_of_nonneg_of_nonpos ha (inv_nonpos.2 hb) }
/-!
### Relating one division with another term.
-/
lemma le_div_iff (hc : 0 < c) : a ≤ b / c ↔ a * c ≤ b :=
⟨λ h, div_mul_cancel b (ne_of_lt hc).symm ▸ mul_le_mul_of_nonneg_right h hc.le,
λ h, calc
a = a * c * (1 / c) : mul_mul_div a (ne_of_lt hc).symm
... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right h (one_div_pos.2 hc).le
... = b / c : (div_eq_mul_one_div b c).symm⟩
lemma le_div_iff' (hc : 0 < c) : a ≤ b / c ↔ c * a ≤ b :=
by rw [mul_comm, le_div_iff hc]
lemma div_le_iff (hb : 0 < b) : a / b ≤ c ↔ a ≤ c * b :=
⟨λ h, calc
a = a / b * b : by rw (div_mul_cancel _ (ne_of_lt hb).symm)
... ≤ c * b : mul_le_mul_of_nonneg_right h hb.le,
λ h, calc
a / b = a * (1 / b) : div_eq_mul_one_div a b
... ≤ (c * b) * (1 / b) : mul_le_mul_of_nonneg_right h (one_div_pos.2 hb).le
... = (c * b) / b : (div_eq_mul_one_div (c * b) b).symm
... = c : by refine (div_eq_iff (ne_of_gt hb)).mpr rfl⟩
lemma div_le_iff' (hb : 0 < b) : a / b ≤ c ↔ a ≤ b * c :=
by rw [mul_comm, div_le_iff hb]
lemma lt_div_iff (hc : 0 < c) : a < b / c ↔ a * c < b :=
lt_iff_lt_of_le_iff_le $ div_le_iff hc
lemma lt_div_iff' (hc : 0 < c) : a < b / c ↔ c * a < b :=
by rw [mul_comm, lt_div_iff hc]
lemma div_lt_iff (hc : 0 < c) : b / c < a ↔ b < a * c :=
lt_iff_lt_of_le_iff_le (le_div_iff hc)
lemma div_lt_iff' (hc : 0 < c) : b / c < a ↔ b < c * a :=
by rw [mul_comm, div_lt_iff hc]
lemma inv_mul_le_iff (h : 0 < b) : b⁻¹ * a ≤ c ↔ a ≤ b * c :=
begin
rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div],
exact div_le_iff' h,
end
lemma inv_mul_le_iff' (h : 0 < b) : b⁻¹ * a ≤ c ↔ a ≤ c * b :=
by rw [inv_mul_le_iff h, mul_comm]
lemma mul_inv_le_iff (h : 0 < b) : a * b⁻¹ ≤ c ↔ a ≤ b * c :=
by rw [mul_comm, inv_mul_le_iff h]
lemma mul_inv_le_iff' (h : 0 < b) : a * b⁻¹ ≤ c ↔ a ≤ c * b :=
by rw [mul_comm, inv_mul_le_iff' h]
lemma div_self_le_one (a : α) : a / a ≤ 1 :=
if h : a = 0 then by simp [h] else by simp [h]
lemma inv_mul_lt_iff (h : 0 < b) : b⁻¹ * a < c ↔ a < b * c :=
begin
rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div],
exact div_lt_iff' h,
end
lemma inv_mul_lt_iff' (h : 0 < b) : b⁻¹ * a < c ↔ a < c * b :=
by rw [inv_mul_lt_iff h, mul_comm]
lemma mul_inv_lt_iff (h : 0 < b) : a * b⁻¹ < c ↔ a < b * c :=
by rw [mul_comm, inv_mul_lt_iff h]
lemma mul_inv_lt_iff' (h : 0 < b) : a * b⁻¹ < c ↔ a < c * b :=
by rw [mul_comm, inv_mul_lt_iff' h]
lemma inv_pos_le_iff_one_le_mul (ha : 0 < a) : a⁻¹ ≤ b ↔ 1 ≤ b * a :=
by { rw [inv_eq_one_div], exact div_le_iff ha }
lemma inv_pos_le_iff_one_le_mul' (ha : 0 < a) : a⁻¹ ≤ b ↔ 1 ≤ a * b :=
by { rw [inv_eq_one_div], exact div_le_iff' ha }
lemma inv_pos_lt_iff_one_lt_mul (ha : 0 < a) : a⁻¹ < b ↔ 1 < b * a :=
by { rw [inv_eq_one_div], exact div_lt_iff ha }
lemma inv_pos_lt_iff_one_lt_mul' (ha : 0 < a) : a⁻¹ < b ↔ 1 < a * b :=
by { rw [inv_eq_one_div], exact div_lt_iff' ha }
/-- One direction of `div_le_iff` where `b` is allowed to be `0` (but `c` must be nonnegative) -/
lemma div_le_of_nonneg_of_le_mul (hb : 0 ≤ b) (hc : 0 ≤ c) (h : a ≤ c * b) : a / b ≤ c :=
by { rcases eq_or_lt_of_le hb with rfl|hb', simp [hc], rwa [div_le_iff hb'] }
lemma div_le_one_of_le (h : a ≤ b) (hb : 0 ≤ b) : a / b ≤ 1 :=
div_le_of_nonneg_of_le_mul hb zero_le_one $ by rwa one_mul
/-!
### Bi-implications of inequalities using inversions
-/
lemma inv_le_inv_of_le (ha : 0 < a) (h : a ≤ b) : b⁻¹ ≤ a⁻¹ :=
by rwa [← one_div a, le_div_iff' ha, ← div_eq_mul_inv, div_le_iff (ha.trans_le h), one_mul]
/-- See `inv_le_inv_of_le` for the implication from right-to-left with one fewer assumption. -/
lemma inv_le_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by rw [← one_div, div_le_iff ha, ← div_eq_inv_mul, le_div_iff hb, one_mul]
/-- In a linear ordered field, for positive `a` and `b` we have `a⁻¹ ≤ b ↔ b⁻¹ ≤ a`.
See also `inv_le_of_inv_le` for a one-sided implication with one fewer assumption. -/
lemma inv_le (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
by rw [← inv_le_inv hb (inv_pos.2 ha), inv_inv]
lemma inv_le_of_inv_le (ha : 0 < a) (h : a⁻¹ ≤ b) : b⁻¹ ≤ a :=
(inv_le ha ((inv_pos.2 ha).trans_le h)).1 h
lemma le_inv (ha : 0 < a) (hb : 0 < b) : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
by rw [← inv_le_inv (inv_pos.2 hb) ha, inv_inv]
/-- See `inv_lt_inv_of_lt` for the implication from right-to-left with one fewer assumption. -/
lemma inv_lt_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b⁻¹ ↔ b < a :=
lt_iff_lt_of_le_iff_le (inv_le_inv hb ha)
lemma inv_lt_inv_of_lt (hb : 0 < b) (h : b < a) : a⁻¹ < b⁻¹ :=
(inv_lt_inv (hb.trans h) hb).2 h
/-- In a linear ordered field, for positive `a` and `b` we have `a⁻¹ < b ↔ b⁻¹ < a`.
See also `inv_lt_of_inv_lt` for a one-sided implication with one fewer assumption. -/
lemma inv_lt (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b ↔ b⁻¹ < a :=
lt_iff_lt_of_le_iff_le (le_inv hb ha)
lemma inv_lt_of_inv_lt (ha : 0 < a) (h : a⁻¹ < b) : b⁻¹ < a :=
(inv_lt ha ((inv_pos.2 ha).trans h)).1 h
lemma lt_inv (ha : 0 < a) (hb : 0 < b) : a < b⁻¹ ↔ b < a⁻¹ :=
lt_iff_lt_of_le_iff_le (inv_le hb ha)
lemma inv_lt_one (ha : 1 < a) : a⁻¹ < 1 :=
by rwa [inv_lt ((@zero_lt_one α _ _).trans ha) zero_lt_one, inv_one]
lemma one_lt_inv (h₁ : 0 < a) (h₂ : a < 1) : 1 < a⁻¹ :=
by rwa [lt_inv (@zero_lt_one α _ _) h₁, inv_one]
lemma inv_le_one (ha : 1 ≤ a) : a⁻¹ ≤ 1 :=
by rwa [inv_le ((@zero_lt_one α _ _).trans_le ha) zero_lt_one, inv_one]
lemma one_le_inv (h₁ : 0 < a) (h₂ : a ≤ 1) : 1 ≤ a⁻¹ :=
by rwa [le_inv (@zero_lt_one α _ _) h₁, inv_one]
lemma inv_lt_one_iff_of_pos (h₀ : 0 < a) : a⁻¹ < 1 ↔ 1 < a :=
⟨λ h₁, inv_inv a ▸ one_lt_inv (inv_pos.2 h₀) h₁, inv_lt_one⟩
lemma inv_lt_one_iff : a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a :=
begin
cases le_or_lt a 0 with ha ha,
{ simp [ha, (inv_nonpos.2 ha).trans_lt zero_lt_one] },
{ simp only [ha.not_le, false_or, inv_lt_one_iff_of_pos ha] }
end
lemma one_lt_inv_iff : 1 < a⁻¹ ↔ 0 < a ∧ a < 1 :=
⟨λ h, ⟨inv_pos.1 (zero_lt_one.trans h), inv_inv a ▸ inv_lt_one h⟩, and_imp.2 one_lt_inv⟩
lemma inv_le_one_iff : a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a :=
begin
rcases em (a = 1) with (rfl|ha),
{ simp [le_rfl] },
{ simp only [ne.le_iff_lt (ne.symm ha), ne.le_iff_lt (mt inv_eq_one.1 ha), inv_lt_one_iff] }
end
lemma one_le_inv_iff : 1 ≤ a⁻¹ ↔ 0 < a ∧ a ≤ 1 :=
⟨λ h, ⟨inv_pos.1 (zero_lt_one.trans_le h), inv_inv a ▸ inv_le_one h⟩, and_imp.2 one_le_inv⟩
/-!
### Relating two divisions.
-/
@[mono] lemma div_le_div_of_le (hc : 0 ≤ c) (h : a ≤ b) : a / c ≤ b / c :=
begin
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 hc)
end
-- Not a `mono` lemma b/c `div_le_div` is strictly more general
lemma div_le_div_of_le_left (ha : 0 ≤ a) (hc : 0 < c) (h : c ≤ b) : a / b ≤ a / c :=
begin
rw [div_eq_mul_inv, div_eq_mul_inv],
exact mul_le_mul_of_nonneg_left ((inv_le_inv (hc.trans_le h) hc).mpr h) ha
end
lemma div_le_div_of_le_of_nonneg (hab : a ≤ b) (hc : 0 ≤ c) : a / c ≤ b / c :=
div_le_div_of_le hc hab
lemma div_lt_div_of_lt (hc : 0 < c) (h : a < b) : a / c < b / c :=
begin
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
exact mul_lt_mul_of_pos_right h (one_div_pos.2 hc)
end
lemma div_le_div_right (hc : 0 < c) : a / c ≤ b / c ↔ a ≤ b :=
⟨le_imp_le_of_lt_imp_lt $ div_lt_div_of_lt hc, div_le_div_of_le $ hc.le⟩
lemma div_lt_div_right (hc : 0 < c) : a / c < b / c ↔ a < b :=
lt_iff_lt_of_le_iff_le $ div_le_div_right hc
lemma div_lt_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b < a / c ↔ c < b :=
by simp only [div_eq_mul_inv, mul_lt_mul_left ha, inv_lt_inv hb hc]
lemma div_le_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b ≤ a / c ↔ c ≤ b :=
le_iff_le_iff_lt_iff_lt.2 (div_lt_div_left ha hc hb)
lemma div_lt_div_iff (b0 : 0 < b) (d0 : 0 < d) :
a / b < c / d ↔ a * d < c * b :=
by rw [lt_div_iff d0, div_mul_eq_mul_div, div_lt_iff b0]
lemma div_le_div_iff (b0 : 0 < b) (d0 : 0 < d) : a / b ≤ c / d ↔ a * d ≤ c * b :=
by rw [le_div_iff d0, div_mul_eq_mul_div, div_le_iff b0]
@[mono] lemma div_le_div (hc : 0 ≤ c) (hac : a ≤ c) (hd : 0 < d) (hbd : d ≤ b) : a / b ≤ c / d :=
by { rw div_le_div_iff (hd.trans_le hbd) hd, exact mul_le_mul hac hbd hd.le hc }
lemma div_lt_div (hac : a < c) (hbd : d ≤ b) (c0 : 0 ≤ c) (d0 : 0 < d) :
a / b < c / d :=
(div_lt_div_iff (d0.trans_le hbd) d0).2 (mul_lt_mul hac hbd d0 c0)
lemma div_lt_div' (hac : a ≤ c) (hbd : d < b) (c0 : 0 < c) (d0 : 0 < d) :
a / b < c / d :=
(div_lt_div_iff (d0.trans hbd) d0).2 (mul_lt_mul' hac hbd d0.le c0)
lemma div_lt_div_of_lt_left (hc : 0 < c) (hb : 0 < b) (h : b < a) : c / a < c / b :=
(div_lt_div_left hc (hb.trans h) hb).mpr h
/-!
### Relating one division and involving `1`
-/
lemma div_le_self (ha : 0 ≤ a) (hb : 1 ≤ b) : a / b ≤ a :=
by simpa only [div_one] using div_le_div_of_le_left ha zero_lt_one hb
lemma div_lt_self (ha : 0 < a) (hb : 1 < b) : a / b < a :=
by simpa only [div_one] using div_lt_div_of_lt_left ha zero_lt_one hb
lemma le_div_self (ha : 0 ≤ a) (hb₀ : 0 < b) (hb₁ : b ≤ 1) : a ≤ a / b :=
by simpa only [div_one] using div_le_div_of_le_left ha hb₀ hb₁
lemma one_le_div (hb : 0 < b) : 1 ≤ a / b ↔ b ≤ a :=
by rw [le_div_iff hb, one_mul]
lemma div_le_one (hb : 0 < b) : a / b ≤ 1 ↔ a ≤ b :=
by rw [div_le_iff hb, one_mul]
lemma one_lt_div (hb : 0 < b) : 1 < a / b ↔ b < a :=
by rw [lt_div_iff hb, one_mul]
lemma div_lt_one (hb : 0 < b) : a / b < 1 ↔ a < b :=
by rw [div_lt_iff hb, one_mul]
lemma one_div_le (ha : 0 < a) (hb : 0 < b) : 1 / a ≤ b ↔ 1 / b ≤ a :=
by simpa using inv_le ha hb
lemma one_div_lt (ha : 0 < a) (hb : 0 < b) : 1 / a < b ↔ 1 / b < a :=
by simpa using inv_lt ha hb
lemma le_one_div (ha : 0 < a) (hb : 0 < b) : a ≤ 1 / b ↔ b ≤ 1 / a :=
by simpa using le_inv ha hb
lemma lt_one_div (ha : 0 < a) (hb : 0 < b) : a < 1 / b ↔ b < 1 / a :=
by simpa using lt_inv ha hb
/-!
### Relating two divisions, involving `1`
-/
lemma one_div_le_one_div_of_le (ha : 0 < a) (h : a ≤ b) : 1 / b ≤ 1 / a :=
by simpa using inv_le_inv_of_le ha h
lemma one_div_lt_one_div_of_lt (ha : 0 < a) (h : a < b) : 1 / b < 1 / a :=
by rwa [lt_div_iff' ha, ← div_eq_mul_one_div, div_lt_one (ha.trans h)]
lemma le_of_one_div_le_one_div (ha : 0 < a) (h : 1 / a ≤ 1 / b) : b ≤ a :=
le_imp_le_of_lt_imp_lt (one_div_lt_one_div_of_lt ha) h
lemma lt_of_one_div_lt_one_div (ha : 0 < a) (h : 1 / a < 1 / b) : b < a :=
lt_imp_lt_of_le_imp_le (one_div_le_one_div_of_le ha) h
/-- For the single implications with fewer assumptions, see `one_div_le_one_div_of_le` and
`le_of_one_div_le_one_div` -/
lemma one_div_le_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a ≤ 1 / b ↔ b ≤ a :=
div_le_div_left zero_lt_one ha hb
/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_lt` and
`lt_of_one_div_lt_one_div` -/
lemma one_div_lt_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a < 1 / b ↔ b < a :=
div_lt_div_left zero_lt_one ha hb
lemma one_lt_one_div (h1 : 0 < a) (h2 : a < 1) : 1 < 1 / a :=
by rwa [lt_one_div (@zero_lt_one α _ _) h1, one_div_one]
lemma one_le_one_div (h1 : 0 < a) (h2 : a ≤ 1) : 11 / a :=
by rwa [le_one_div (@zero_lt_one α _ _) h1, one_div_one]
/-!
### Results about halving.
The equalities also hold in semifields of characteristic `0`.
-/
/- TODO: Unify `add_halves` and `add_halves'` into a single lemma about
`division_semiring` + `char_zero` -/
lemma add_halves (a : α) : a / 2 + a / 2 = a :=
by rw [div_add_div_same, ← two_mul, mul_div_cancel_left a two_ne_zero]
-- TODO: Generalize to `division_semiring`
lemma add_self_div_two (a : α) : (a + a) / 2 = a :=
by rw [← mul_two, mul_div_cancel a two_ne_zero]
lemma half_pos (h : 0 < a) : 0 < a / 2 := div_pos h zero_lt_two
lemma one_half_pos : (0:α) < 1 / 2 := half_pos zero_lt_one
lemma div_two_lt_of_pos (h : 0 < a) : a / 2 < a :=
by { rw [div_lt_iff (@zero_lt_two α _ _)], exact lt_mul_of_one_lt_right h one_lt_two }
lemma half_lt_self : 0 < a → a / 2 < a := div_two_lt_of_pos
lemma half_le_self (ha_nonneg : 0 ≤ a) : a / 2 ≤ a :=
begin
by_cases h0 : a = 0,
{ simp [h0], },
{ rw ← ne.def at h0,
exact (half_lt_self (lt_of_le_of_ne ha_nonneg h0.symm)).le, },
end
lemma one_half_lt_one : (1 / 2 : α) < 1 := half_lt_self zero_lt_one
lemma left_lt_add_div_two : a < (a + b) / 2 ↔ a < b := by simp [lt_div_iff, mul_two]
lemma add_div_two_lt_right : (a + b) / 2 < b ↔ a < b := by simp [div_lt_iff, mul_two]
/-!
### Miscellaneous lemmas
-/
lemma mul_le_mul_of_mul_div_le (h : a * (b / c) ≤ d) (hc : 0 < c) : b * a ≤ d * c :=
begin
rw [← mul_div_assoc] at h,
rwa [mul_comm b, ← div_le_iff hc],
end
lemma div_mul_le_div_mul_of_div_le_div (h : a / b ≤ c / d) (he : 0 ≤ e) :
a / (b * e) ≤ c / (d * e) :=
begin
rw [div_mul_eq_div_mul_one_div, div_mul_eq_div_mul_one_div],
exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 he)
end
lemma exists_pos_mul_lt {a : α} (h : 0 < a) (b : α) : ∃ c : α, 0 < c ∧ b * c < a :=
begin
have : 0 < a / max (b + 1) 1, from div_pos h (lt_max_iff.2 (or.inr zero_lt_one)),
refine ⟨a / max (b + 1) 1, this, _⟩,
rw [← lt_div_iff this, div_div_cancel' h.ne'],
exact lt_max_iff.2 (or.inl $ lt_add_one _)
end
lemma monotone.div_const {β : Type*} [preorder β] {f : β → α} (hf : monotone f)
{c : α} (hc : 0 ≤ c) : monotone (λ x, (f x) / c) :=
by simpa only [div_eq_mul_inv] using hf.mul_const (inv_nonneg.2 hc)
lemma strict_mono.div_const {β : Type*} [preorder β] {f : β → α} (hf : strict_mono f)
{c : α} (hc : 0 < c) :
strict_mono (λ x, (f x) / c) :=
by simpa only [div_eq_mul_inv] using hf.mul_const (inv_pos.2 hc)
@[priority 100] -- see Note [lower instance priority]
instance linear_ordered_field.to_densely_ordered : densely_ordered α :=
{ dense := λ a₁ a₂ h, ⟨(a₁ + a₂) / 2,
calc a₁ = (a₁ + a₁) / 2 : (add_self_div_two a₁).symm
... < (a₁ + a₂) / 2 : div_lt_div_of_lt zero_lt_two (add_lt_add_left h _),
calc (a₁ + a₂) / 2 < (a₂ + a₂) / 2 : div_lt_div_of_lt zero_lt_two (add_lt_add_right h _)
... = a₂ : add_self_div_two a₂⟩ }
lemma min_div_div_right {c : α} (hc : 0 ≤ c) (a b : α) : min (a / c) (b / c) = (min a b) / c :=
eq.symm $ monotone.map_min (λ x y, div_le_div_of_le hc)
lemma max_div_div_right {c : α} (hc : 0 ≤ c) (a b : α) : max (a / c) (b / c) = (max a b) / c :=
eq.symm $ monotone.map_max (λ x y, div_le_div_of_le hc)
lemma one_div_strict_anti_on : strict_anti_on (λ x : α, 1 / x) (set.Ioi 0) :=
λ x x1 y y1 xy, (one_div_lt_one_div (set.mem_Ioi.mp y1) (set.mem_Ioi.mp x1)).mpr xy
lemma one_div_pow_le_one_div_pow_of_le (a1 : 1 ≤ a) {m n : ℕ} (mn : m ≤ n) :
1 / a ^ n ≤ 1 / a ^ m :=
by refine (one_div_le_one_div _ _).mpr (pow_le_pow a1 mn);
exact pow_pos (zero_lt_one.trans_le a1) _
lemma one_div_pow_lt_one_div_pow_of_lt (a1 : 1 < a) {m n : ℕ} (mn : m < n) :
1 / a ^ n < 1 / a ^ m :=
by refine (one_div_lt_one_div _ _).mpr (pow_lt_pow a1 mn);
exact pow_pos (trans zero_lt_one a1) _
lemma one_div_pow_anti (a1 : 1 ≤ a) : antitone (λ n : ℕ, 1 / a ^ n) :=
λ m n, one_div_pow_le_one_div_pow_of_le a1
lemma one_div_pow_strict_anti (a1 : 1 < a) : strict_anti (λ n : ℕ, 1 / a ^ n) :=
λ m n, one_div_pow_lt_one_div_pow_of_lt a1
lemma inv_strict_anti_on : strict_anti_on (λ x : α, x⁻¹) (set.Ioi 0) :=
λ x hx y hy xy, (inv_lt_inv hy hx).2 xy
lemma inv_pow_le_inv_pow_of_le (a1 : 1 ≤ a) {m n : ℕ} (mn : m ≤ n) :
(a ^ n)⁻¹ ≤ (a ^ m)⁻¹ :=
by convert one_div_pow_le_one_div_pow_of_le a1 mn; simp
lemma inv_pow_lt_inv_pow_of_lt (a1 : 1 < a) {m n : ℕ} (mn : m < n) :
(a ^ n)⁻¹ < (a ^ m)⁻¹ :=
by convert one_div_pow_lt_one_div_pow_of_lt a1 mn; simp
lemma inv_pow_anti (a1 : 1 ≤ a) : antitone (λ n : ℕ, (a ^ n)⁻¹) :=
λ m n, inv_pow_le_inv_pow_of_le a1
lemma inv_pow_strict_anti (a1 : 1 < a) : strict_anti (λ n : ℕ, (a ^ n)⁻¹) :=
λ m n, inv_pow_lt_inv_pow_of_lt a1
/-! ### Results about `is_lub` and `is_glb` -/
lemma is_glb.mul_left {s : set α} (ha : 0 ≤ a) (hs : is_glb s b) :
is_glb ((λ b, a * b) '' s) (a * b) :=
begin
rcases lt_or_eq_of_le ha with ha | rfl,
{ exact (order_iso.mul_left₀ _ ha).is_glb_image'.2 hs, },
{ simp_rw zero_mul,
rw hs.nonempty.image_const,
exact is_glb_singleton },
end
lemma is_glb.mul_right {s : set α} (ha : 0 ≤ a) (hs : is_glb s b) :
is_glb ((λ b, b * a) '' s) (b * a) :=
by simpa [mul_comm] using hs.mul_left ha
end linear_ordered_semifield
section
variables [linear_ordered_field α] {a b c d : α}
/-! ### Lemmas about pos, nonneg, nonpos, neg -/
lemma div_pos_iff : 0 < a / b ↔ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0 := by simp [division_def, mul_pos_iff]
lemma div_neg_iff : a / b < 00 < a ∧ b < 0 ∨ a < 00 < b := by simp [division_def, mul_neg_iff]
lemma div_nonneg_iff : 0 ≤ a / b ↔ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0 :=
by simp [division_def, mul_nonneg_iff]
lemma div_nonpos_iff : a / b ≤ 00 ≤ a ∧ b ≤ 0 ∨ a ≤ 00 ≤ b :=
by simp [division_def, mul_nonpos_iff]
lemma div_nonneg_of_nonpos (ha : a ≤ 0) (hb : b ≤ 0) : 0 ≤ a / b :=
div_nonneg_iff.2 $ or.inr ⟨ha, hb⟩
lemma div_pos_of_neg_of_neg (ha : a < 0) (hb : b < 0) : 0 < a / b :=
div_pos_iff.2 $ or.inr ⟨ha, hb⟩
lemma div_neg_of_neg_of_pos (ha : a < 0) (hb : 0 < b) : a / b < 0 :=
div_neg_iff.2 $ or.inr ⟨ha, hb⟩
lemma div_neg_of_pos_of_neg (ha : 0 < a) (hb : b < 0) : a / b < 0 :=
div_neg_iff.2 $ or.inl ⟨ha, hb⟩
/-! ### Relating one division with another term -/
lemma div_le_iff_of_neg (hc : c < 0) : b / c ≤ a ↔ a * c ≤ b :=
⟨λ h, div_mul_cancel b (ne_of_lt hc) ▸ mul_le_mul_of_nonpos_right h hc.le,
λ h, calc
a = a * c * (1 / c) : mul_mul_div a (ne_of_lt hc)
... ≥ b * (1 / c) : mul_le_mul_of_nonpos_right h (one_div_neg.2 hc).le
... = b / c : (div_eq_mul_one_div b c).symm⟩
lemma div_le_iff_of_neg' (hc : c < 0) : b / c ≤ a ↔ c * a ≤ b :=
by rw [mul_comm, div_le_iff_of_neg hc]
lemma le_div_iff_of_neg (hc : c < 0) : a ≤ b / c ↔ b ≤ a * c :=
by rw [← neg_neg c, mul_neg, div_neg, le_neg,
div_le_iff (neg_pos.2 hc), neg_mul]
lemma le_div_iff_of_neg' (hc : c < 0) : a ≤ b / c ↔ b ≤ c * a :=
by rw [mul_comm, le_div_iff_of_neg hc]
lemma div_lt_iff_of_neg (hc : c < 0) : b / c < a ↔ a * c < b :=
lt_iff_lt_of_le_iff_le $ le_div_iff_of_neg hc
lemma div_lt_iff_of_neg' (hc : c < 0) : b / c < a ↔ c * a < b :=
by rw [mul_comm, div_lt_iff_of_neg hc]
lemma lt_div_iff_of_neg (hc : c < 0) : a < b / c ↔ b < a * c :=
lt_iff_lt_of_le_iff_le $ div_le_iff_of_neg hc
lemma lt_div_iff_of_neg' (hc : c < 0) : a < b / c ↔ b < c * a :=
by rw [mul_comm, lt_div_iff_of_neg hc]
/-! ### Bi-implications of inequalities using inversions -/
lemma inv_le_inv_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a :=
by rw [← one_div, div_le_iff_of_neg ha, ← div_eq_inv_mul, div_le_iff_of_neg hb, one_mul]
lemma inv_le_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ ≤ b ↔ b⁻¹ ≤ a :=
by rw [← inv_le_inv_of_neg hb (inv_lt_zero.2 ha), inv_inv]
lemma le_inv_of_neg (ha : a < 0) (hb : b < 0) : a ≤ b⁻¹ ↔ b ≤ a⁻¹ :=
by rw [← inv_le_inv_of_neg (inv_lt_zero.2 hb) ha, inv_inv]
lemma inv_lt_inv_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ < b⁻¹ ↔ b < a :=
lt_iff_lt_of_le_iff_le (inv_le_inv_of_neg hb ha)
lemma inv_lt_of_neg (ha : a < 0) (hb : b < 0) : a⁻¹ < b ↔ b⁻¹ < a :=
lt_iff_lt_of_le_iff_le (le_inv_of_neg hb ha)
lemma lt_inv_of_neg (ha : a < 0) (hb : b < 0) : a < b⁻¹ ↔ b < a⁻¹ :=
lt_iff_lt_of_le_iff_le (inv_le_of_neg hb ha)
/-! ### Relating two divisions -/
lemma div_le_div_of_nonpos_of_le (hc : c ≤ 0) (h : b ≤ a) : a / c ≤ b / c :=
begin
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
exact mul_le_mul_of_nonpos_right h (one_div_nonpos.2 hc)
end
lemma div_lt_div_of_neg_of_lt (hc : c < 0) (h : b < a) : a / c < b / c :=
begin
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c],
exact mul_lt_mul_of_neg_right h (one_div_neg.2 hc)
end
lemma div_le_div_right_of_neg (hc : c < 0) : a / c ≤ b / c ↔ b ≤ a :=
⟨le_imp_le_of_lt_imp_lt $ div_lt_div_of_neg_of_lt hc, div_le_div_of_nonpos_of_le $ hc.le⟩
lemma div_lt_div_right_of_neg (hc : c < 0) : a / c < b / c ↔ b < a :=
lt_iff_lt_of_le_iff_le $ div_le_div_right_of_neg hc
/-! ### Relating one division and involving `1` -/
lemma one_le_div_of_neg (hb : b < 0) : 1 ≤ a / b ↔ a ≤ b :=
by rw [le_div_iff_of_neg hb, one_mul]
lemma div_le_one_of_neg (hb : b < 0) : a / b ≤ 1 ↔ b ≤ a :=
by rw [div_le_iff_of_neg hb, one_mul]
lemma one_lt_div_of_neg (hb : b < 0) : 1 < a / b ↔ a < b :=
by rw [lt_div_iff_of_neg hb, one_mul]
lemma div_lt_one_of_neg (hb : b < 0) : a / b < 1 ↔ b < a :=
by rw [div_lt_iff_of_neg hb, one_mul]
lemma one_div_le_of_neg (ha : a < 0) (hb : b < 0) : 1 / a ≤ b ↔ 1 / b ≤ a :=
by simpa using inv_le_of_neg ha hb
lemma one_div_lt_of_neg (ha : a < 0) (hb : b < 0) : 1 / a < b ↔ 1 / b < a :=
by simpa using inv_lt_of_neg ha hb
lemma le_one_div_of_neg (ha : a < 0) (hb : b < 0) : a ≤ 1 / b ↔ b ≤ 1 / a :=
by simpa using le_inv_of_neg ha hb
lemma lt_one_div_of_neg (ha : a < 0) (hb : b < 0) : a < 1 / b ↔ b < 1 / a :=
by simpa using lt_inv_of_neg ha hb
lemma one_lt_div_iff : 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b :=
begin
rcases lt_trichotomy b 0 with (hb|rfl|hb),
{ simp [hb, hb.not_lt, one_lt_div_of_neg] },
{ simp [lt_irrefl, zero_le_one] },
{ simp [hb, hb.not_lt, one_lt_div] }
end
lemma one_le_div_iff : 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b :=
begin
rcases lt_trichotomy b 0 with (hb|rfl|hb),
{ simp [hb, hb.not_lt, one_le_div_of_neg] },
{ simp [lt_irrefl, zero_lt_one.not_le, zero_lt_one] },
{ simp [hb, hb.not_lt, one_le_div] }
end
lemma div_lt_one_iff : a / b < 10 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a :=
begin
rcases lt_trichotomy b 0 with (hb|rfl|hb),
{ simp [hb, hb.not_lt, hb.ne, div_lt_one_of_neg] },
{ simp [zero_lt_one], },
{ simp [hb, hb.not_lt, div_lt_one, hb.ne.symm] }
end
lemma div_le_one_iff : a / b ≤ 10 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a :=
begin
rcases lt_trichotomy b 0 with (hb|rfl|hb),
{ simp [hb, hb.not_lt, hb.ne, div_le_one_of_neg] },
{ simp [zero_le_one], },
{ simp [hb, hb.not_lt, div_le_one, hb.ne.symm] }
end
/-! ### Relating two divisions, involving `1` -/
lemma one_div_le_one_div_of_neg_of_le (hb : b < 0) (h : a ≤ b) : 1 / b ≤ 1 / a :=
by rwa [div_le_iff_of_neg' hb, ← div_eq_mul_one_div, div_le_one_of_neg (h.trans_lt hb)]
lemma one_div_lt_one_div_of_neg_of_lt (hb : b < 0) (h : a < b) : 1 / b < 1 / a :=
by rwa [div_lt_iff_of_neg' hb, ← div_eq_mul_one_div, div_lt_one_of_neg (h.trans hb)]
lemma le_of_neg_of_one_div_le_one_div (hb : b < 0) (h : 1 / a ≤ 1 / b) : b ≤ a :=
le_imp_le_of_lt_imp_lt (one_div_lt_one_div_of_neg_of_lt hb) h
lemma lt_of_neg_of_one_div_lt_one_div (hb : b < 0) (h : 1 / a < 1 / b) : b < a :=
lt_imp_lt_of_le_imp_le (one_div_le_one_div_of_neg_of_le hb) h
/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_neg_of_lt` and
`lt_of_one_div_lt_one_div` -/
lemma one_div_le_one_div_of_neg (ha : a < 0) (hb : b < 0) : 1 / a ≤ 1 / b ↔ b ≤ a :=
by simpa [one_div] using inv_le_inv_of_neg ha hb
/-- For the single implications with fewer assumptions, see `one_div_lt_one_div_of_lt` and
`lt_of_one_div_lt_one_div` -/
lemma one_div_lt_one_div_of_neg (ha : a < 0) (hb : b < 0) : 1 / a < 1 / b ↔ b < a :=
lt_iff_lt_of_le_iff_le (one_div_le_one_div_of_neg hb ha)
lemma one_div_lt_neg_one (h1 : a < 0) (h2 : -1 < a) : 1 / a < -1 :=
suffices 1 / a < 1 / -1, by rwa one_div_neg_one_eq_neg_one at this,
one_div_lt_one_div_of_neg_of_lt h1 h2
lemma one_div_le_neg_one (h1 : a < 0) (h2 : -1 ≤ a) : 1 / a ≤ -1 :=
suffices 1 / a ≤ 1 / -1, by rwa one_div_neg_one_eq_neg_one at this,
one_div_le_one_div_of_neg_of_le h1 h2
/-! ### Results about halving -/
lemma sub_self_div_two (a : α) : a - a / 2 = a / 2 :=
suffices a / 2 + a / 2 - a / 2 = a / 2, by rwa add_halves at this,
by rw [add_sub_cancel]
lemma div_two_sub_self (a : α) : a / 2 - a = - (a / 2) :=
suffices a / 2 - (a / 2 + a / 2) = - (a / 2), by rwa add_halves at this,
by rw [sub_add_eq_sub_sub, sub_self, zero_sub]
lemma add_sub_div_two_lt (h : a < b) : a + (b - a) / 2 < b :=
begin
rwa [← div_sub_div_same, sub_eq_add_neg, add_comm (b/2), ← add_assoc, ← sub_eq_add_neg,
← lt_sub_iff_add_lt, sub_self_div_two, sub_self_div_two, div_lt_div_right (@zero_lt_two α _ _)]
end
/-- An inequality involving `2`. -/
lemma sub_one_div_inv_le_two (a2 : 2 ≤ a) : (1 - 1 / a)⁻¹ ≤ 2 :=
begin
-- Take inverses on both sides to obtain `2⁻¹ ≤ 1 - 1 / a`
refine (inv_le_inv_of_le (inv_pos.2 zero_lt_two) _).trans_eq (inv_inv (2 : α)),
-- move `1 / a` to the left and `1 - 1 / 2 = 1 / 2` to the right to obtain `1 / a ≤ ⅟ 2`
refine (le_sub_iff_add_le.2 (_ : _ + 2⁻¹ = _ ).le).trans ((sub_le_sub_iff_left 1).2 _),
{ -- show 2⁻¹ + 2⁻¹ = 1
exact (two_mul _).symm.trans (mul_inv_cancel two_ne_zero) },
{ -- take inverses on both sides and use the assumption `2 ≤ a`.
exact (one_div a).le.trans (inv_le_inv_of_le zero_lt_two a2) }
end
/-! ### Results about `is_lub` and `is_glb` -/
-- TODO: Generalize to `linear_ordered_semifield`
lemma is_lub.mul_left {s : set α} (ha : 0 ≤ a) (hs : is_lub s b) :
is_lub ((λ b, a * b) '' s) (a * b) :=
begin
rcases lt_or_eq_of_le ha with ha | rfl,
{ exact (order_iso.mul_left₀ _ ha).is_lub_image'.2 hs, },
{ simp_rw zero_mul,
rw hs.nonempty.image_const,
exact is_lub_singleton },
end
-- TODO: Generalize to `linear_ordered_semifield`
lemma is_lub.mul_right {s : set α} (ha : 0 ≤ a) (hs : is_lub s b) :
is_lub ((λ b, b * a) '' s) (b * a) :=
by simpa [mul_comm] using hs.mul_left ha
/-! ### Miscellaneous lemmmas -/
lemma mul_sub_mul_div_mul_neg_iff (hc : c ≠ 0) (hd : d ≠ 0) :
(a * d - b * c) / (c * d) < 0 ↔ a / c < b / d :=
by rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_lt_zero]
lemma mul_sub_mul_div_mul_nonpos_iff (hc : c ≠ 0) (hd : d ≠ 0) :
(a * d - b * c) / (c * d) ≤ 0 ↔ a / c ≤ b / d :=
by rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_nonpos]
alias mul_sub_mul_div_mul_neg_iff ↔ div_lt_div_of_mul_sub_mul_div_neg mul_sub_mul_div_mul_neg
alias mul_sub_mul_div_mul_nonpos_iff ↔
div_le_div_of_mul_sub_mul_div_nonpos mul_sub_mul_div_mul_nonpos
lemma exists_add_lt_and_pos_of_lt (h : b < a) : ∃ c, b + c < a ∧ 0 < c :=
⟨(a - b) / 2, add_sub_div_two_lt h, div_pos (sub_pos_of_lt h) zero_lt_two⟩
lemma le_of_forall_sub_le (h : ∀ ε > 0, b - ε ≤ a) : b ≤ a :=
begin
contrapose! h,
simpa only [and_comm ((0 : α) < _), lt_sub_iff_add_lt, gt_iff_lt]
using exists_add_lt_and_pos_of_lt h,
end
lemma mul_self_inj_of_nonneg (a0 : 0 ≤ a) (b0 : 0 ≤ b) : a * a = b * b ↔ a = b :=
mul_self_eq_mul_self_iff.trans $ or_iff_left_of_imp $
λ h, by { subst a, have : b = 0 := le_antisymm (neg_nonneg.1 a0) b0, rw [this, neg_zero] }
lemma min_div_div_right_of_nonpos (hc : c ≤ 0) (a b : α) : min (a / c) (b / c) = (max a b) / c :=
eq.symm $ antitone.map_max $ λ x y, div_le_div_of_nonpos_of_le hc
lemma max_div_div_right_of_nonpos (hc : c ≤ 0) (a b : α) : max (a / c) (b / c) = (min a b) / c :=
eq.symm $ antitone.map_min $ λ x y, div_le_div_of_nonpos_of_le hc
lemma abs_inv (a : α) : |a⁻¹| = (|a|)⁻¹ := (abs_hom : α →*₀ α).map_inv a
lemma abs_div (a b : α) : |a / b| = |a| / |b| := (abs_hom : α →*₀ α).map_div a b
lemma abs_one_div (a : α) : |1 / a| = 1 / |a| := by rw [abs_div, abs_one]
lemma pow_minus_two_nonneg : 0 ≤ a^(-2 : ℤ) :=
begin
simp only [inv_nonneg, zpow_neg],
change 0 ≤ a ^ ((2 : ℕ) : ℤ),
rw zpow_coe_nat,
apply sq_nonneg,
end
/-- Bernoulli's inequality reformulated to estimate `(n : α)`. -/
lemma nat.cast_le_pow_sub_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ (a ^ n - 1) / (a - 1) :=
(le_div_iff (sub_pos.2 H)).2 $ le_sub_left_of_add_le $
one_add_mul_sub_le_pow ((neg_le_self zero_le_one).trans H.le) _
/-- For any `a > 1` and a natural `n` we have `n ≤ a ^ n / (a - 1)`. See also
`nat.cast_le_pow_sub_div_sub` for a stronger inequality with `a ^ n - 1` in the numerator. -/
theorem nat.cast_le_pow_div_sub (H : 1 < a) (n : ℕ) : (n : α) ≤ a ^ n / (a - 1) :=
(n.cast_le_pow_sub_div_sub H).trans $ div_le_div_of_le (sub_nonneg.2 H.le)
(sub_le_self _ zero_le_one)
end