Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.38 kB
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot
-/
import algebra.group.pi
import algebra.order.group
import tactic.pi_instances
/-!
# Pi instances for ordered groups and monoids
This file defines instances for ordered group, monoid, and related structures on Pi types.
-/
universes u v w
variable {I : Type u} -- The indexing type
variable {f : I → Type v} -- The family of types already equipped with instances
variables (x y : Π i, f i) (i : I)
namespace pi
/-- The product of a family of ordered commutative monoids is an ordered commutative monoid. -/
@[to_additive "The product of a family of ordered additive commutative monoids is
an ordered additive commutative monoid."]
instance ordered_comm_monoid {ι : Type*} {Z : ι → Type*} [∀ i, ordered_comm_monoid (Z i)] :
ordered_comm_monoid (Π i, Z i) :=
{ mul_le_mul_left := λ f g w h i, mul_le_mul_left' (w i) _,
..pi.partial_order,
..pi.comm_monoid, }
@[to_additive] instance : Type*} {α : ι → Type*} [Π i, has_le (α i)] [Π i, has_mul (α i)]
[Π i, has_exists_mul_of_le (α i)] :
has_exists_mul_of_le (Π i, α i) :=
⟨λ a b h, ⟨λ i, (exists_mul_of_le $ h i).some, funext $ λ i, (exists_mul_of_le $ h i).some_spec⟩⟩
/-- The product of a family of canonically ordered monoids is a canonically ordered monoid. -/
@[to_additive "The product of a family of canonically ordered additive monoids is
a canonically ordered additive monoid."]
instance : Type*} {Z : ι → Type*} [∀ i, canonically_ordered_monoid (Z i)] :
canonically_ordered_monoid (Π i, Z i) :=
{ le_self_mul := λ f g i, le_self_mul,
..pi.order_bot, ..pi.ordered_comm_monoid, ..pi.has_exists_mul_of_le }
@[to_additive]
instance ordered_cancel_comm_monoid [∀ i, ordered_cancel_comm_monoid $ f i] :
ordered_cancel_comm_monoid (Π i : I, f i) :=
by refine_struct { mul := (*), one := (1 : Π i, f i), le := (≤), lt := (<),
npow := monoid.npow, .. pi.partial_order, .. pi.monoid };
tactic.pi_instance_derive_field
@[to_additive]
instance ordered_comm_group [∀ i, ordered_comm_group $ f i] :
ordered_comm_group (Π i : I, f i) :=
{ mul := (*), one := (1 : Π i, f i), le := (≤), lt := (<),
npow := monoid.npow,
..pi.comm_group,
..pi.ordered_comm_monoid, }
end pi