Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 David Wärn. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: David Wärn | |
-/ | |
import topology.stone_cech | |
import topology.algebra.semigroup | |
import data.stream.init | |
/-! | |
# Hindman's theorem on finite sums | |
We prove Hindman's theorem on finite sums, using idempotent ultrafilters. | |
Given an infinite sequence `a₀, a₁, a₂, …` of positive integers, the set `FS(a₀, …)` is the set | |
of positive integers that can be expressed as a finite sum of `aᵢ`'s, without repetition. Hindman's | |
theorem asserts that whenever the positive integers are finitely colored, there exists a sequence | |
`a₀, a₁, a₂, …` such that `FS(a₀, …)` is monochromatic. There is also a stronger version, saying | |
that whenever a set of the form `FS(a₀, …)` is finitely colored, there exists a sequence | |
`b₀, b₁, b₂, …` such that `FS(b₀, …)` is monochromatic and contained in `FS(a₀, …)`. We prove both | |
these versions for a general semigroup `M` instead of `ℕ+` since it is no harder, although this | |
special case implies the general case. | |
The idea of the proof is to extend the addition `(+) : M → M → M` to addition `(+) : βM → βM → βM` | |
on the space `βM` of ultrafilters on `M`. One can prove that if `U` is an _idempotent_ ultrafilter, | |
i.e. `U + U = U`, then any `U`-large subset of `M` contains some set `FS(a₀, …)` (see | |
`exists_FS_of_large`). And with the help of a general topological argument one can show that any set | |
of the form `FS(a₀, …)` is `U`-large according to some idempotent ultrafilter `U` (see | |
`exists_idempotent_ultrafilter_le_FS`). This is enough to prove the theorem since in any finite | |
partition of a `U`-large set, one of the parts is `U`-large. | |
## Main results | |
- `FS_partition_regular`: the strong form of Hindman's theorem | |
- `exists_FS_of_finite_cover`: the weak form of Hindman's theorem | |
## Tags | |
Ramsey theory, ultrafilter | |
-/ | |
open filter | |
/-- Multiplication of ultrafilters given by `∀ᶠ m in U*V, p m ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m*m')`. -/ | |
@[to_additive "Addition of ultrafilters given by | |
`∀ᶠ m in U+V, p m ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m+m')`." ] | |
def ultrafilter.has_mul {M} [has_mul M] : has_mul (ultrafilter M) := | |
{ mul := λ U V, (*) <$> U <*> V } | |
local attribute [instance] ultrafilter.has_mul ultrafilter.has_add | |
/- We could have taken this as the definition of `U * V`, but then we would have to prove that it | |
defines an ultrafilter. -/ | |
@[to_additive] | |
lemma ultrafilter.eventually_mul {M} [has_mul M] (U V : ultrafilter M) (p : M → Prop) : | |
(∀ᶠ m in ↑(U * V), p m) ↔ ∀ᶠ m in U, ∀ᶠ m' in V, p (m * m') := iff.rfl | |
/-- Semigroup structure on `ultrafilter M` induced by a semigroup structure on `M`. -/ | |
@[to_additive "Additive semigroup structure on `ultrafilter M` induced by an additive semigroup | |
structure on `M`."] | |
def ultrafilter.semigroup {M} [semigroup M] : semigroup (ultrafilter M) := | |
{ mul_assoc := λ U V W, ultrafilter.coe_inj.mp $ filter.ext' $ λ p, | |
by simp only [ultrafilter.eventually_mul, mul_assoc] | |
..ultrafilter.has_mul } | |
local attribute [instance] ultrafilter.semigroup ultrafilter.add_semigroup | |
/- We don't prove `continuous_mul_right`, because in general it is false! -/ | |
@[to_additive] | |
lemma ultrafilter.continuous_mul_left {M} [semigroup M] (V : ultrafilter M) : continuous (* V) := | |
topological_space.is_topological_basis.continuous ultrafilter_basis_is_basis _ $ | |
set.forall_range_iff.mpr $ λ s, ultrafilter_is_open_basic { m : M | ∀ᶠ m' in V, m * m' ∈ s } | |
namespace hindman | |
/-- `FS a` is the set of finite sums in `a`, i.e. `m ∈ FS a` if `m` is the sum of a nonempty | |
subsequence of `a`. We give a direct inductive definition instead of talking about subsequences. -/ | |
inductive FS {M} [add_semigroup M] : stream M → set M | |
| head (a : stream M) : FS a a.head | |
| tail (a : stream M) (m : M) (h : FS a.tail m) : FS a m | |
| cons (a : stream M) (m : M) (h : FS a.tail m) : FS a (a.head + m) | |
/-- `FP a` is the set of finite products in `a`, i.e. `m ∈ FP a` if `m` is the product of a nonempty | |
subsequence of `a`. We give a direct inductive definition instead of talking about subsequences. -/ | |
@[to_additive FS] | |
inductive FP {M} [semigroup M] : stream M → set M | |
| head (a : stream M) : FP a a.head | |
| tail (a : stream M) (m : M) (h : FP a.tail m) : FP a m | |
| cons (a : stream M) (m : M) (h : FP a.tail m) : FP a (a.head * m) | |
/-- If `m` and `m'` are finite products in `M`, then so is `m * m'`, provided that `m'` is obtained | |
from a subsequence of `M` starting sufficiently late. -/ | |
@[to_additive] | |
lemma FP.mul {M} [semigroup M] {a : stream M} {m : M} (hm : m ∈ FP a) : | |
∃ n, ∀ m' ∈ FP (a.drop n), m * m' ∈ FP a := | |
begin | |
induction hm with a a m hm ih a m hm ih, | |
{ exact ⟨1, λ m hm, FP.cons a m hm⟩, }, | |
{ cases ih with n hn, use n+1, intros m' hm', exact FP.tail _ _ (hn _ hm'), }, | |
{ cases ih with n hn, use n+1, intros m' hm', rw mul_assoc, exact FP.cons _ _ (hn _ hm'), }, | |
end | |
@[to_additive exists_idempotent_ultrafilter_le_FS] | |
lemma exists_idempotent_ultrafilter_le_FP {M} [semigroup M] (a : stream M) : | |
∃ U : ultrafilter M, U * U = U ∧ ∀ᶠ m in U, m ∈ FP a := | |
begin | |
let S : set (ultrafilter M) := ⋂ n, { U | ∀ᶠ m in U, m ∈ FP (a.drop n) }, | |
obtain ⟨U, hU, U_idem⟩ := exists_idempotent_in_compact_subsemigroup _ S _ _ _, | |
{ refine ⟨U, U_idem, _⟩, convert set.mem_Inter.mp hU 0, }, | |
{ exact ultrafilter.continuous_mul_left }, | |
{ apply is_compact.nonempty_Inter_of_sequence_nonempty_compact_closed, | |
{ intros n U hU, | |
apply eventually.mono hU, | |
rw [add_comm, ←stream.drop_drop, ←stream.tail_eq_drop], | |
exact FP.tail _ }, | |
{ intro n, exact ⟨pure _, mem_pure.mpr $ FP.head _⟩, }, | |
{ exact (ultrafilter_is_closed_basic _).is_compact, }, | |
{ intro n, apply ultrafilter_is_closed_basic, }, }, | |
{ exact is_closed.is_compact (is_closed_Inter $ λ i, ultrafilter_is_closed_basic _) }, | |
{ intros U hU V hV, | |
rw set.mem_Inter at *, | |
intro n, | |
rw [set.mem_set_of_eq, ultrafilter.eventually_mul], | |
apply eventually.mono (hU n), | |
intros m hm, | |
obtain ⟨n', hn⟩ := FP.mul hm, | |
apply eventually.mono (hV (n' + n)), | |
intros m' hm', | |
apply hn, | |
simpa only [stream.drop_drop] using hm', } | |
end | |
@[to_additive exists_FS_of_large] | |
lemma exists_FP_of_large {M} [semigroup M] (U : ultrafilter M) (U_idem : U * U = U) | |
(s₀ : set M) (sU : s₀ ∈ U) : ∃ a, FP a ⊆ s₀ := | |
begin | |
/- Informally: given a `U`-large set `s₀`, the set `s₀ ∩ { m | ∀ᶠ m' in U, m * m' ∈ s₀ }` is also | |
`U`-large (since `U` is idempotent). Thus in particular there is an `a₀` in this intersection. Now | |
let `s₁` be the intersection `s₀ ∩ { m | a₀ * m ∈ s₀ }`. By choice of `a₀`, this is again `U`-large, | |
so we can repeat the argument starting from `s₁`, obtaining `a₁`, `s₂`, etc. This gives the desired | |
infinite sequence. -/ | |
have exists_elem : ∀ {s : set M} (hs : s ∈ U), (s ∩ { m | ∀ᶠ m' in U, m * m' ∈ s }).nonempty := | |
λ s hs, ultrafilter.nonempty_of_mem (inter_mem hs $ by { rw ←U_idem at hs, exact hs }), | |
let elem : { s // s ∈ U } → M := λ p, (exists_elem p.property).some, | |
let succ : { s // s ∈ U } → { s // s ∈ U } := λ p, ⟨p.val ∩ { m | elem p * m ∈ p.val }, | |
inter_mem p.2 $ show _, from set.inter_subset_right _ _ (exists_elem p.2).some_mem⟩, | |
use stream.corec elem succ (subtype.mk s₀ sU), | |
suffices : ∀ (a : stream M) (m ∈ FP a), ∀ p, a = stream.corec elem succ p → m ∈ p.val, | |
{ intros m hm, exact this _ m hm ⟨s₀, sU⟩ rfl, }, | |
clear sU s₀, | |
intros a m h, | |
induction h with b b n h ih b n h ih, | |
{ rintros p rfl, | |
rw [stream.corec_eq, stream.head_cons], | |
exact set.inter_subset_left _ _ (set.nonempty.some_mem _), }, | |
{ rintros p rfl, | |
refine set.inter_subset_left _ _ (ih (succ p) _), | |
rw [stream.corec_eq, stream.tail_cons], }, | |
{ rintros p rfl, | |
have := set.inter_subset_right _ _ (ih (succ p) _), | |
{ simpa only using this }, | |
rw [stream.corec_eq, stream.tail_cons], }, | |
end | |
/-- The strong form of **Hindman's theorem**: in any finite cover of an FP-set, one the parts | |
contains an FP-set. -/ | |
@[to_additive FS_partition_regular] | |
lemma FP_partition_regular {M} [semigroup M] (a : stream M) (s : set (set M)) (sfin : s.finite) | |
(scov : FP a ⊆ ⋃₀ s) : ∃ (c ∈ s) (b : stream M), FP b ⊆ c := | |
let ⟨U, idem, aU⟩ := exists_idempotent_ultrafilter_le_FP a in | |
let ⟨c, cs, hc⟩ := (ultrafilter.finite_sUnion_mem_iff sfin).mp (mem_of_superset aU scov) in | |
⟨c, cs, exists_FP_of_large U idem c hc⟩ | |
/-- The weak form of **Hindman's theorem**: in any finite cover of a nonempty semigroup, one of the | |
parts contains an FP-set. -/ | |
@[to_additive exists_FS_of_finite_cover] | |
lemma exists_FP_of_finite_cover {M} [semigroup M] [nonempty M] (s : set (set M)) | |
(sfin : s.finite) (scov : ⊤ ⊆ ⋃₀ s) : ∃ (c ∈ s) (a : stream M), FP a ⊆ c := | |
let ⟨U, hU⟩ := exists_idempotent_of_compact_t2_of_continuous_mul_left | |
(@ultrafilter.continuous_mul_left M _) in | |
let ⟨c, c_s, hc⟩ := (ultrafilter.finite_sUnion_mem_iff sfin).mp (mem_of_superset univ_mem scov) in | |
⟨c, c_s, exists_FP_of_large U hU c hc⟩ | |
@[to_additive FS_iter_tail_sub_FS] | |
lemma FP_drop_subset_FP {M} [semigroup M] (a : stream M) (n : ℕ) : | |
FP (a.drop n) ⊆ FP a := | |
begin | |
induction n with n ih, { refl }, | |
rw [nat.succ_eq_one_add, ←stream.drop_drop], | |
exact trans (FP.tail _) ih, | |
end | |
@[to_additive] | |
lemma FP.singleton {M} [semigroup M] (a : stream M) (i : ℕ) : a.nth i ∈ FP a := | |
by { induction i with i ih generalizing a, { apply FP.head }, { apply FP.tail, apply ih } } | |
@[to_additive] | |
lemma FP.mul_two {M} [semigroup M] (a : stream M) (i j : ℕ) (ij : i < j) : | |
a.nth i * a.nth j ∈ FP a := | |
begin | |
refine FP_drop_subset_FP _ i _, | |
rw ←stream.head_drop, | |
apply FP.cons, | |
rcases le_iff_exists_add.mp (nat.succ_le_of_lt ij) with ⟨d, hd⟩, | |
have := FP.singleton (a.drop i).tail d, | |
rw [stream.tail_eq_drop, stream.nth_drop, stream.nth_drop] at this, | |
convert this, | |
rw [hd, add_comm, nat.succ_add, nat.add_succ], | |
end | |
@[to_additive] | |
lemma FP.finset_prod {M} [comm_monoid M] (a : stream M) (s : finset ℕ) (hs : s.nonempty) : | |
s.prod (λ i, a.nth i) ∈ FP a := | |
begin | |
refine FP_drop_subset_FP _ (s.min' hs) _, | |
induction s using finset.strong_induction with s ih, | |
rw [←finset.mul_prod_erase _ _ (s.min'_mem hs), ←stream.head_drop], | |
cases (s.erase (s.min' hs)).eq_empty_or_nonempty with h h, | |
{ rw [h, finset.prod_empty, mul_one], exact FP.head _ }, | |
{ apply FP.cons, rw [stream.tail_eq_drop, stream.drop_drop, add_comm], | |
refine set.mem_of_subset_of_mem _ (ih _ (finset.erase_ssubset $ s.min'_mem hs) h), | |
have : s.min' hs + 1 ≤ (s.erase (s.min' hs)).min' h := | |
nat.succ_le_of_lt (finset.min'_lt_of_mem_erase_min' _ _ $ finset.min'_mem _ _), | |
cases le_iff_exists_add.mp this with d hd, | |
rw [hd, add_comm, ←stream.drop_drop], | |
apply FP_drop_subset_FP } | |
end | |
end hindman | |