Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon | |
-/ | |
import tactic.ext | |
import tactic.lint | |
/-! | |
# Functors | |
This module provides additional lemmas, definitions, and instances for `functor`s. | |
## Main definitions | |
* `const α` is the functor that sends all types to `α`. | |
* `add_const α` is `const α` but for when `α` has an additive structure. | |
* `comp F G` for functors `F` and `G` is the functor composition of `F` and `G`. | |
* `liftp` and `liftr` respectively lift predicates and relations on a type `α` | |
to `F α`. Terms of `F α` are considered to, in some sense, contain values of type `α`. | |
## Tags | |
functor, applicative | |
-/ | |
attribute [functor_norm] seq_assoc pure_seq_eq_map map_pure seq_map_assoc map_seq | |
universes u v w | |
section functor | |
variables {F : Type u → Type v} | |
variables {α β γ : Type u} | |
variables [functor F] [is_lawful_functor F] | |
lemma functor.map_id : (<$>) id = (id : F α → F α) := | |
by apply funext; apply id_map | |
lemma functor.map_comp_map (f : α → β) (g : β → γ) : | |
((<$>) g ∘ (<$>) f : F α → F γ) = (<$>) (g ∘ f) := | |
by apply funext; intro; rw comp_map | |
theorem functor.ext {F} : ∀ {F1 : functor F} {F2 : functor F} | |
[@is_lawful_functor F F1] [@is_lawful_functor F F2] | |
(H : ∀ α β (f : α → β) (x : F α), | |
@functor.map _ F1 _ _ f x = @functor.map _ F2 _ _ f x), | |
F1 = F2 | |
| ⟨m, mc⟩ ⟨m', mc'⟩ H1 H2 H := | |
begin | |
cases show @m = @m', by funext α β f x; apply H, | |
congr, funext α β, | |
have E1 := @map_const_eq _ ⟨@m, @mc⟩ H1, | |
have E2 := @map_const_eq _ ⟨@m, @mc'⟩ H2, | |
exact E1.trans E2.symm | |
end | |
end functor | |
/-- Introduce the `id` functor. Incidentally, this is `pure` for | |
`id` as a `monad` and as an `applicative` functor. -/ | |
def id.mk {α : Sort u} : α → id α := id | |
namespace functor | |
/-- `const α` is the constant functor, mapping every type to `α`. When | |
`α` has a monoid structure, `const α` has an `applicative` instance. | |
(If `α` has an additive monoid structure, see `functor.add_const`.) -/ | |
@[nolint unused_arguments] | |
def const (α : Type*) (β : Type*) := α | |
/-- `const.mk` is the canonical map `α → const α β` (the identity), and | |
it can be used as a pattern to extract this value. -/ | |
@[pattern] def const.mk {α β} (x : α) : const α β := x | |
/-- `const.mk'` is `const.mk` but specialized to map `α` to | |
`const α punit`, where `punit` is the terminal object in `Type*`. -/ | |
def const.mk' {α} (x : α) : const α punit := x | |
/-- Extract the element of `α` from the `const` functor. -/ | |
def const.run {α β} (x : const α β) : α := x | |
namespace const | |
protected lemma ext {α β} {x y : const α β} (h : x.run = y.run) : x = y := h | |
/-- The map operation of the `const γ` functor. -/ | |
@[nolint unused_arguments] | |
protected def map {γ α β} (f : α → β) (x : const γ β) : const γ α := x | |
instance {γ} : functor (const γ) := | |
{ map := @const.map γ } | |
instance {γ} : is_lawful_functor (const γ) := | |
by constructor; intros; refl | |
instance {α β} [inhabited α] : inhabited (const α β) := | |
⟨(default : α)⟩ | |
end const | |
/-- `add_const α` is a synonym for constant functor `const α`, mapping | |
every type to `α`. When `α` has a additive monoid structure, | |
`add_const α` has an `applicative` instance. (If `α` has a | |
multiplicative monoid structure, see `functor.const`.) -/ | |
def add_const (α : Type*) := const α | |
/-- `add_const.mk` is the canonical map `α → add_const α β`, which is the identity, | |
where `add_const α β = const α β`. It can be used as a pattern to extract this value. -/ | |
@[pattern] | |
def add_const.mk {α β} (x : α) : add_const α β := x | |
/-- Extract the element of `α` from the constant functor. -/ | |
def add_const.run {α β} : add_const α β → α := id | |
instance add_const.functor {γ} : functor (add_const γ) := | |
@const.functor γ | |
instance add_const.is_lawful_functor {γ} : is_lawful_functor (add_const γ) := | |
@const.is_lawful_functor γ | |
instance {α β} [inhabited α] : inhabited (add_const α β) := | |
⟨(default : α)⟩ | |
/-- `functor.comp` is a wrapper around `function.comp` for types. | |
It prevents Lean's type class resolution mechanism from trying | |
a `functor (comp F id)` when `functor F` would do. -/ | |
def comp (F : Type u → Type w) (G : Type v → Type u) (α : Type v) : Type w := | |
F $ G α | |
/-- Construct a term of `comp F G α` from a term of `F (G α)`, which is the same type. | |
Can be used as a pattern to extract a term of `F (G α)`. -/ | |
@[pattern] def comp.mk {F : Type u → Type w} {G : Type v → Type u} {α : Type v} | |
(x : F (G α)) : comp F G α := x | |
/-- Extract a term of `F (G α)` from a term of `comp F G α`, which is the same type. -/ | |
def comp.run {F : Type u → Type w} {G : Type v → Type u} {α : Type v} | |
(x : comp F G α) : F (G α) := x | |
namespace comp | |
variables {F : Type u → Type w} {G : Type v → Type u} | |
protected lemma ext | |
{α} {x y : comp F G α} : x.run = y.run → x = y := id | |
instance {α} [inhabited (F (G α))] : inhabited (comp F G α) := | |
⟨(default : F (G α))⟩ | |
variables [functor F] [functor G] | |
/-- The map operation for the composition `comp F G` of functors `F` and `G`. -/ | |
protected def map {α β : Type v} (h : α → β) : comp F G α → comp F G β | |
| (comp.mk x) := comp.mk ((<$>) h <$> x) | |
instance : functor (comp F G) := { map := @comp.map F G _ _ } | |
@[functor_norm] lemma map_mk {α β} (h : α → β) (x : F (G α)) : | |
h <$> comp.mk x = comp.mk ((<$>) h <$> x) := rfl | |
@[simp] protected lemma run_map {α β} (h : α → β) (x : comp F G α) : | |
(h <$> x).run = (<$>) h <$> x.run := rfl | |
variables [is_lawful_functor F] [is_lawful_functor G] | |
variables {α β γ : Type v} | |
protected lemma id_map : ∀ (x : comp F G α), comp.map id x = x | |
| (comp.mk x) := by simp [comp.map, functor.map_id] | |
protected lemma comp_map (g' : α → β) (h : β → γ) : ∀ (x : comp F G α), | |
comp.map (h ∘ g') x = comp.map h (comp.map g' x) | |
| (comp.mk x) := by simp [comp.map, functor.map_comp_map g' h] with functor_norm | |
instance : is_lawful_functor (comp F G) := | |
{ id_map := @comp.id_map F G _ _ _ _, | |
comp_map := @comp.comp_map F G _ _ _ _ } | |
theorem functor_comp_id {F} [AF : functor F] [is_lawful_functor F] : | |
@comp.functor F id _ _ = AF := | |
@functor.ext F _ AF (@comp.is_lawful_functor F id _ _ _ _) _ (λ α β f x, rfl) | |
theorem functor_id_comp {F} [AF : functor F] [is_lawful_functor F] : | |
@comp.functor id F _ _ = AF := | |
@functor.ext F _ AF (@comp.is_lawful_functor id F _ _ _ _) _ (λ α β f x, rfl) | |
end comp | |
namespace comp | |
open function (hiding comp) | |
open functor | |
variables {F : Type u → Type w} {G : Type v → Type u} | |
variables [applicative F] [applicative G] | |
/-- The `<*>` operation for the composition of applicative functors. -/ | |
protected def seq {α β : Type v} : comp F G (α → β) → comp F G α → comp F G β | |
| (comp.mk f) (comp.mk x) := comp.mk $ (<*>) <$> f <*> x | |
instance : has_pure (comp F G) := | |
⟨λ _ x, comp.mk $ pure $ pure x⟩ | |
instance : has_seq (comp F G) := | |
⟨λ _ _ f x, comp.seq f x⟩ | |
@[simp] protected lemma run_pure {α : Type v} : | |
∀ x : α, (pure x : comp F G α).run = pure (pure x) | |
| _ := rfl | |
@[simp] protected lemma run_seq {α β : Type v} (f : comp F G (α → β)) (x : comp F G α) : | |
(f <*> x).run = (<*>) <$> f.run <*> x.run := rfl | |
instance : applicative (comp F G) := | |
{ map := @comp.map F G _ _, | |
seq := @comp.seq F G _ _, | |
..comp.has_pure } | |
end comp | |
variables {F : Type u → Type u} [functor F] | |
/-- If we consider `x : F α` to, in some sense, contain values of type `α`, | |
predicate `liftp p x` holds iff every value contained by `x` satisfies `p`. -/ | |
def liftp {α : Type u} (p : α → Prop) (x : F α) : Prop := | |
∃ u : F (subtype p), subtype.val <$> u = x | |
/-- If we consider `x : F α` to, in some sense, contain values of type `α`, then | |
`liftr r x y` relates `x` and `y` iff (1) `x` and `y` have the same shape and | |
(2) we can pair values `a` from `x` and `b` from `y` so that `r a b` holds. -/ | |
def liftr {α : Type u} (r : α → α → Prop) (x y : F α) : Prop := | |
∃ u : F {p : α × α // r p.fst p.snd}, | |
(λ t : {p : α × α // r p.fst p.snd}, t.val.fst) <$> u = x ∧ | |
(λ t : {p : α × α // r p.fst p.snd}, t.val.snd) <$> u = y | |
/-- If we consider `x : F α` to, in some sense, contain values of type `α`, then | |
`supp x` is the set of values of type `α` that `x` contains. -/ | |
def supp {α : Type u} (x : F α) : set α := { y : α | ∀ ⦃p⦄, liftp p x → p y } | |
theorem of_mem_supp {α : Type u} {x : F α} {p : α → Prop} (h : liftp p x) : | |
∀ y ∈ supp x, p y := | |
λ y hy, hy h | |
end functor | |