Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison, Jannis Limperg | |
-/ | |
/-! | |
# Monadic instances for `ulift` and `plift` | |
In this file we define `monad` and `is_lawful_monad` instances on `plift` and `ulift`. -/ | |
universes u v | |
namespace plift | |
variables {α : Sort u} {β : Sort v} | |
/-- Functorial action. -/ | |
protected def map (f : α → β) (a : plift α) : plift β := | |
plift.up (f a.down) | |
@[simp] lemma map_up (f : α → β) (a : α) : (plift.up a).map f = plift.up (f a) := rfl | |
/-- Embedding of pure values. -/ | |
@[simp] protected def pure : α → plift α := up | |
/-- Applicative sequencing. -/ | |
protected def seq (f : plift (α → β)) (x : plift α) : plift β := | |
plift.up (f.down x.down) | |
@[simp] lemma seq_up (f : α → β) (x : α) : (plift.up f).seq (plift.up x) = plift.up (f x) := rfl | |
/-- Monadic bind. -/ | |
protected def bind (a : plift α) (f : α → plift β) : plift β := f a.down | |
@[simp] lemma bind_up (a : α) (f : α → plift β) : (plift.up a).bind f = f a := rfl | |
instance : monad plift := | |
{ map := @plift.map, | |
pure := @plift.pure, | |
seq := @plift.seq, | |
bind := @plift.bind } | |
instance : is_lawful_functor plift := | |
{ id_map := λ α ⟨x⟩, rfl, | |
comp_map := λ α β γ g h ⟨x⟩, rfl } | |
instance : is_lawful_applicative plift := | |
{ pure_seq_eq_map := λ α β g ⟨x⟩, rfl, | |
map_pure := λ α β g x, rfl, | |
seq_pure := λ α β ⟨g⟩ x, rfl, | |
seq_assoc := λ α β γ ⟨x⟩ ⟨g⟩ ⟨h⟩, rfl } | |
instance : is_lawful_monad plift := | |
{ bind_pure_comp_eq_map := λ α β f ⟨x⟩, rfl, | |
bind_map_eq_seq := λ α β ⟨a⟩ ⟨b⟩, rfl, | |
pure_bind := λ α β x f, rfl, | |
bind_assoc := λ α β γ ⟨x⟩ f g, rfl } | |
@[simp] lemma rec.constant {α : Sort u} {β : Type v} (b : β) : | |
@plift.rec α (λ _, β) (λ _, b) = λ _, b := | |
funext (λ x, plift.cases_on x (λ a, eq.refl (plift.rec (λ a', b) {down := a}))) | |
end plift | |
namespace ulift | |
variables {α : Type u} {β : Type v} | |
/-- Functorial action. -/ | |
protected def map (f : α → β) (a : ulift α) : ulift β := | |
ulift.up (f a.down) | |
@[simp] lemma map_up (f : α → β) (a : α) : (ulift.up a).map f = ulift.up (f a) := rfl | |
/-- Embedding of pure values. -/ | |
@[simp] protected def pure : α → ulift α := up | |
/-- Applicative sequencing. -/ | |
protected def seq (f : ulift (α → β)) (x : ulift α) : ulift β := | |
ulift.up (f.down x.down) | |
@[simp] lemma seq_up (f : α → β) (x : α) : (ulift.up f).seq (ulift.up x) = ulift.up (f x) := rfl | |
/-- Monadic bind. -/ | |
protected def bind (a : ulift α) (f : α → ulift β) : ulift β := f a.down | |
@[simp] lemma bind_up (a : α) (f : α → ulift β) : (ulift.up a).bind f = f a := rfl | |
instance : monad ulift := | |
{ map := @ulift.map, | |
pure := @ulift.pure, | |
seq := @ulift.seq, | |
bind := @ulift.bind } | |
instance : is_lawful_functor ulift := | |
{ id_map := λ α ⟨x⟩, rfl, | |
comp_map := λ α β γ g h ⟨x⟩, rfl } | |
instance : is_lawful_applicative ulift := | |
{ to_is_lawful_functor := ulift.is_lawful_functor, | |
pure_seq_eq_map := λ α β g ⟨x⟩, rfl, | |
map_pure := λ α β g x, rfl, | |
seq_pure := λ α β ⟨g⟩ x, rfl, | |
seq_assoc := λ α β γ ⟨x⟩ ⟨g⟩ ⟨h⟩, rfl } | |
instance : is_lawful_monad ulift := | |
{ bind_pure_comp_eq_map := λ α β f ⟨x⟩, rfl, | |
bind_map_eq_seq := λ α β ⟨a⟩ ⟨b⟩, rfl, | |
pure_bind := λ α β x f, | |
by { dsimp only [bind, pure, ulift.pure, ulift.bind], cases (f x), refl }, | |
bind_assoc := λ α β γ ⟨x⟩ f g, | |
by { dsimp only [bind, pure, ulift.pure, ulift.bind], cases (f x), refl } } | |
@[simp] lemma rec.constant {α : Type u} {β : Sort v} (b : β) : | |
@ulift.rec α (λ _, β) (λ _, b) = λ _, b := | |
funext (λ x, ulift.cases_on x (λ a, eq.refl (ulift.rec (λ a', b) {down := a}))) | |
end ulift | |