Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury G. Kudryashov | |
-/ | |
import topology.algebra.mul_action | |
import group_theory.group_action.basic | |
/-! | |
In this file we define an action of a monoid `M` on a topological space `α` to be *minimal* if the | |
`M`-orbit of every point `x : α` is dense. We also provide an additive version of this definition | |
and prove some basic facts about minimal actions. | |
* Define a minimal set of an action. | |
group action, minimal | |
-/ | |
open_locale pointwise | |
/-- An action of an additive monoid `M` on a topological space is called *minimal* if the `M`-orbit | |
of every point `x : α` is dense. -/ | |
class add_action.is_minimal (M α : Type*) [add_monoid M] [topological_space α] [add_action M α] : | |
Prop := | |
(dense_orbit : ∀ x : α, dense (add_action.orbit M x)) | |
/-- An action of a monoid `M` on a topological space is called *minimal* if the `M`-orbit of every | |
point `x : α` is dense. -/ | |
@[to_additive] | |
class mul_action.is_minimal (M α : Type*) [monoid M] [topological_space α] [mul_action M α] : | |
Prop := | |
(dense_orbit : ∀ x : α, dense (mul_action.orbit M x)) | |
open mul_action set | |
variables (M G : Type*) {α : Type*} [monoid M] [group G] [topological_space α] [mul_action M α] | |
[mul_action G α] | |
@[to_additive] lemma mul_action.dense_orbit [is_minimal M α] (x : α) : dense (orbit M x) := | |
mul_action.is_minimal.dense_orbit x | |
@[to_additive] lemma dense_range_smul [is_minimal M α] (x : α) : | |
dense_range (λ c : M, c • x) := | |
mul_action.dense_orbit M x | |
@[priority 100, to_additive] | |
instance mul_action.is_minimal_of_pretransitive [is_pretransitive M α] : is_minimal M α := | |
⟨λ x, (surjective_smul M x).dense_range⟩ | |
@[to_additive] lemma is_open.exists_smul_mem [is_minimal M α] (x : α) {U : set α} (hUo : is_open U) | |
(hne : U.nonempty) : ∃ c : M, c • x ∈ U := | |
(dense_range_smul M x).exists_mem_open hUo hne | |
@[to_additive] lemma is_open.Union_preimage_smul [is_minimal M α] {U : set α} (hUo : is_open U) | |
(hne : U.nonempty) : (⋃ c : M, (•) c ⁻¹' U) = univ := | |
Union_eq_univ_iff.2 $ λ x, hUo.exists_smul_mem M x hne | |
@[to_additive] lemma is_open.Union_smul [is_minimal G α] {U : set α} (hUo : is_open U) | |
(hne : U.nonempty) : (⋃ g : G, g • U) = univ := | |
Union_eq_univ_iff.2 $ λ x, let ⟨g, hg⟩ := hUo.exists_smul_mem G x hne | |
in ⟨g⁻¹, _, hg, inv_smul_smul _ _⟩ | |
@[to_additive] | |
lemma is_compact.exists_finite_cover_smul [is_minimal G α] | |
[has_continuous_const_smul G α] {K U : set α} (hK : is_compact K) (hUo : is_open U) | |
(hne : U.nonempty) : | |
∃ I : finset G, K ⊆ ⋃ g ∈ I, g • U := | |
hK.elim_finite_subcover (λ g : G, g • U) (λ g, hUo.smul _) $ | |
calc K ⊆ univ : subset_univ K | |
... = ⋃ g : G, g • U : (hUo.Union_smul G hne).symm | |
@[to_additive] | |
lemma dense_of_nonempty_smul_invariant [is_minimal M α] {s : set α} (hne : s.nonempty) | |
(hsmul : ∀ c : M, c • s ⊆ s) : dense s := | |
let ⟨x, hx⟩ := hne in (mul_action.dense_orbit M x).mono | |
(range_subset_iff.2 $ λ c, hsmul c $ ⟨x, hx, rfl⟩) | |
@[to_additive] | |
lemma eq_empty_or_univ_of_smul_invariant_closed [is_minimal M α] {s : set α} (hs : is_closed s) | |
(hsmul : ∀ c : M, c • s ⊆ s) : s = ∅ ∨ s = univ := | |
s.eq_empty_or_nonempty.imp_right $ λ hne, hs.closure_eq ▸ | |
(dense_of_nonempty_smul_invariant M hne hsmul).closure_eq | |
@[to_additive] lemma is_minimal_iff_closed_smul_invariant [has_continuous_const_smul M α] : | |
is_minimal M α ↔ ∀ s : set α, is_closed s → (∀ c : M, c • s ⊆ s) → s = ∅ ∨ s = univ := | |
begin | |
split, { introsI h s, exact eq_empty_or_univ_of_smul_invariant_closed M }, | |
refine λ H, ⟨λ x, dense_iff_closure_eq.2 $ (H _ _ _).resolve_left _⟩, | |
exacts [is_closed_closure, λ c, smul_closure_orbit_subset _ _, | |
(orbit_nonempty _).closure.ne_empty] | |
end | |