Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 David Wärn. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: David Wärn | |
-/ | |
import category_theory.action | |
import combinatorics.quiver.arborescence | |
import combinatorics.quiver.connected_component | |
import group_theory.is_free_group | |
/-! | |
# The Nielsen-Schreier theorem | |
This file proves that a subgroup of a free group is itself free. | |
## Main result | |
- `subgroup_is_free_of_is_free H`: an instance saying that a subgroup of a free group is free. | |
## Proof overview | |
The proof is analogous to the proof using covering spaces and fundamental groups of graphs, | |
but we work directly with groupoids instead of topological spaces. Under this analogy, | |
- `is_free_groupoid G` corresponds to saying that a space is a graph. | |
- `End_mul_equiv_subgroup H` plays the role of replacing 'subgroup of fundamental group' with | |
'fundamental group of covering space'. | |
- `action_groupoid_is_free G A` corresponds to the fact that a covering of a (single-vertex) | |
graph is a graph. | |
- `End_is_free T` corresponds to the fact that, given a spanning tree `T` of a | |
graph, its fundamental group is free (generated by loops from the complement of the tree). | |
## Implementation notes | |
Our definition of `is_free_groupoid` is nonstandard. Normally one would require that functors | |
`G ⥤ X` to any _groupoid_ `X` are given by graph homomorphisms from the generators, but we only | |
consider _groups_ `X`. This simplifies the argument since functor equality is complicated in | |
general, but simple for functors to single object categories. | |
## References | |
https://ncatlab.org/nlab/show/Nielsen-Schreier+theorem | |
## Tags | |
free group, free groupoid, Nielsen-Schreier | |
-/ | |
noncomputable theory | |
open_locale classical | |
universes v u | |
open category_theory category_theory.action_category category_theory.single_obj quiver | |
is_free_group as fgp | |
/-- `is_free_groupoid.generators G` is a type synonym for `G`. We think of this as | |
the vertices of the generating quiver of `G` when `G` is free. We can't use `G` directly, | |
since `G` already has a quiver instance from being a groupoid. -/ | |
@[nolint unused_arguments has_inhabited_instance] | |
def is_free_groupoid.generators (G) [groupoid G] := G | |
/-- A groupoid `G` is free when we have the following data: | |
- a quiver on `is_free_groupoid.generators G` (a type synonym for `G`) | |
- a function `of` taking a generating arrow to a morphism in `G` | |
- such that a functor from `G` to any group `X` is uniquely determined | |
by assigning labels in `X` to the generating arrows. | |
This definition is nonstandard. Normally one would require that functors `G ⥤ X` | |
to any _groupoid_ `X` are given by graph homomorphisms from `generators`. -/ | |
class is_free_groupoid (G) [groupoid.{v} G] := | |
(quiver_generators : quiver.{v+1} (is_free_groupoid.generators G)) | |
(of : Π {a b : is_free_groupoid.generators G}, (a ⟶ b) → ((show G, from a) ⟶ b)) | |
(unique_lift : ∀ {X : Type v} [group X] (f : labelling (is_free_groupoid.generators G) X), | |
∃! F : G ⥤ single_obj X, ∀ a b (g : a ⟶ b), | |
F.map (of g) = f g) | |
namespace is_free_groupoid | |
attribute [instance] quiver_generators | |
/-- Two functors from a free groupoid to a group are equal when they agree on the generating | |
quiver. -/ | |
@[ext] | |
lemma ext_functor {G} [groupoid.{v} G] [is_free_groupoid G] {X : Type v} [group X] | |
(f g : G ⥤ single_obj X) | |
(h : ∀ a b (e : a ⟶ b), f.map (of e) = g.map (of e)) : | |
f = g := | |
let ⟨_, _, u⟩ := @unique_lift G _ _ X _ (λ (a b : generators G) (e : a ⟶ b), g.map (of e)) in | |
trans (u _ h) (u _ (λ _ _ _, rfl)).symm | |
/-- An action groupoid over a free froup is free. More generally, one could show that the groupoid | |
of elements over a free groupoid is free, but this version is easier to prove and suffices for our | |
purposes. | |
Analogous to the fact that a covering space of a graph is a graph. (A free groupoid is like a graph, | |
and a groupoid of elements is like a covering space.) -/ | |
instance action_groupoid_is_free {G A : Type u} [group G] [is_free_group G] [mul_action G A] : | |
is_free_groupoid (action_category G A) := | |
{ quiver_generators := ⟨λ a b, { e : fgp.generators G // fgp.of e • a.back = b.back }⟩, | |
of := λ a b e, ⟨fgp.of e, e.property⟩, | |
unique_lift := begin | |
introsI X _ f, | |
let f' : fgp.generators G → (A → X) ⋊[mul_aut_arrow] G := | |
λ e, ⟨λ b, @f ⟨(), _⟩ ⟨(), b⟩ ⟨e, smul_inv_smul _ b⟩, fgp.of e⟩, | |
rcases fgp.unique_lift f' with ⟨F', hF', uF'⟩, | |
refine ⟨uncurry F' _, _, _⟩, | |
{ suffices : semidirect_product.right_hom.comp F' = monoid_hom.id _, | |
{ exact monoid_hom.ext_iff.mp this }, | |
ext, | |
rw [monoid_hom.comp_apply, hF'], | |
refl }, | |
{ rintros ⟨⟨⟩, a : A⟩ ⟨⟨⟩, b⟩ ⟨e, h : fgp.of e • a = b⟩, | |
change (F' (fgp.of _)).left _ = _, | |
rw hF', | |
cases (inv_smul_eq_iff.mpr h.symm), | |
refl }, | |
{ intros E hE, | |
have : curry E = F', | |
{ apply uF', | |
intro e, | |
ext, | |
{ convert hE _ _ _, refl }, | |
{ refl } }, | |
apply functor.hext, | |
{ intro, apply unit.ext }, | |
{ refine action_category.cases _, intros, | |
simp only [←this, uncurry_map, curry_apply_left, coe_back, hom_of_pair.val] } }, | |
end } | |
namespace spanning_tree | |
/- In this section, we suppose we have a free groupoid with a spanning tree for its generating | |
quiver. The goal is to prove that the vertex group at the root is free. A picture to have in mind | |
is that we are 'pulling' the endpoints of all the edges of the quiver along the spanning tree to | |
the root. -/ | |
variables {G : Type u} [groupoid.{u} G] [is_free_groupoid G] | |
(T : wide_subquiver (symmetrify $ generators G)) [arborescence T] | |
/-- The root of `T`, except its type is `G` instead of the type synonym `T`. -/ | |
private def root' : G := show T, from root T | |
/-- A path in the tree gives a hom, by composition. -/ | |
-- this has to be marked noncomputable, see issue #451. | |
-- It might be nicer to define this in terms of `compose_path` | |
noncomputable def hom_of_path : Π {a : G}, path (root T) a → (root' T ⟶ a) | |
| _ path.nil := 𝟙 _ | |
| a (path.cons p f) := hom_of_path p ≫ sum.rec_on f.val (λ e, of e) (λ e, inv (of e)) | |
/-- For every vertex `a`, there is a canonical hom from the root, given by the path in the tree. -/ | |
def tree_hom (a : G) : root' T ⟶ a := hom_of_path T default | |
/-- Any path to `a` gives `tree_hom T a`, since paths in the tree are unique. -/ | |
lemma tree_hom_eq {a : G} (p : path (root T) a) : tree_hom T a = hom_of_path T p := | |
by rw [tree_hom, unique.default_eq] | |
@[simp] lemma tree_hom_root : tree_hom T (root' T) = 𝟙 _ := | |
-- this should just be `tree_hom_eq T path.nil`, but Lean treats `hom_of_path` with suspicion. | |
trans (tree_hom_eq T path.nil) rfl | |
/-- Any hom in `G` can be made into a loop, by conjugating with `tree_hom`s. -/ | |
def loop_of_hom {a b : G} (p : a ⟶ b) : End (root' T) := | |
tree_hom T a ≫ p ≫ inv (tree_hom T b) | |
/-- Turning an edge in the spanning tree into a loop gives the indentity loop. -/ | |
lemma loop_of_hom_eq_id {a b : generators G} (e ∈ wide_subquiver_symmetrify T a b) : | |
loop_of_hom T (of e) = 𝟙 (root' T) := | |
begin | |
rw [loop_of_hom, ←category.assoc, is_iso.comp_inv_eq, category.id_comp], | |
cases H, | |
{ rw [tree_hom_eq T (path.cons default ⟨sum.inl e, H⟩), hom_of_path], refl }, | |
{ rw [tree_hom_eq T (path.cons default ⟨sum.inr e, H⟩), hom_of_path], | |
simp only [is_iso.inv_hom_id, category.comp_id, category.assoc, tree_hom] } | |
end | |
/-- Since a hom gives a loop, any homomorphism from the vertex group at the root | |
extends to a functor on the whole groupoid. -/ | |
@[simps] def functor_of_monoid_hom {X} [monoid X] (f : End (root' T) →* X) : | |
G ⥤ single_obj X := | |
{ obj := λ _, (), | |
map := λ a b p, f (loop_of_hom T p), | |
map_id' := begin | |
intro a, | |
rw [loop_of_hom, category.id_comp, is_iso.hom_inv_id, ←End.one_def, f.map_one, id_as_one], | |
end, | |
map_comp' := begin | |
intros, | |
rw [comp_as_mul, ←f.map_mul], | |
simp only [is_iso.inv_hom_id_assoc, loop_of_hom, End.mul_def, category.assoc] | |
end } | |
/-- Given a free groupoid and an arborescence of its generating quiver, the vertex | |
group at the root is freely generated by loops coming from generating arrows | |
in the complement of the tree. -/ | |
def End_is_free : is_free_group (End (root' T)) := | |
is_free_group.of_unique_lift | |
((wide_subquiver_equiv_set_total $ wide_subquiver_symmetrify T)ᶜ : set _) | |
(λ e, loop_of_hom T (of e.val.hom)) | |
begin | |
introsI X _ f, | |
let f' : labelling (generators G) X := λ a b e, | |
if h : e ∈ wide_subquiver_symmetrify T a b then 1 | |
else f ⟨⟨a, b, e⟩, h⟩, | |
rcases unique_lift f' with ⟨F', hF', uF'⟩, | |
refine ⟨F'.map_End _, _, _⟩, | |
{ suffices : ∀ {x y} (q : x ⟶ y), F'.map (loop_of_hom T q) = (F'.map q : X), | |
{ rintro ⟨⟨a, b, e⟩, h⟩, | |
rw [functor.map_End_apply, this, hF'], | |
exact dif_neg h }, | |
intros, | |
suffices : ∀ {a} (p : path (root' T) a), F'.map (hom_of_path T p) = 1, | |
{ simp only [this, tree_hom, comp_as_mul, inv_as_inv, loop_of_hom, | |
inv_one, mul_one, one_mul, functor.map_inv, functor.map_comp] }, | |
intros a p, induction p with b c p e ih, | |
{ rw [hom_of_path, F'.map_id, id_as_one] }, | |
rw [hom_of_path, F'.map_comp, comp_as_mul, ih, mul_one], | |
rcases e with ⟨e | e, eT⟩, | |
{ rw hF', exact dif_pos (or.inl eT) }, | |
{ rw [F'.map_inv, inv_as_inv, inv_eq_one, hF'], exact dif_pos (or.inr eT) } }, | |
{ intros E hE, | |
ext, | |
suffices : (functor_of_monoid_hom T E).map x = F'.map x, | |
{ simpa only [loop_of_hom, functor_of_monoid_hom_map, is_iso.inv_id, tree_hom_root, | |
category.id_comp, category.comp_id] using this }, | |
congr, | |
apply uF', | |
intros a b e, | |
change E (loop_of_hom T _) = dite _ _ _, | |
split_ifs, | |
{ rw [loop_of_hom_eq_id T e h, ←End.one_def, E.map_one] }, | |
{ exact hE ⟨⟨a, b, e⟩, h⟩ } } | |
end | |
end spanning_tree | |
/-- Another name for the identity function `G → G`, to help type checking. -/ | |
private def symgen {G : Type u} [groupoid.{v} G] [is_free_groupoid G] : | |
G → symmetrify (generators G) := id | |
/-- If there exists a morphism `a → b` in a free groupoid, then there also exists a zigzag | |
from `a` to `b` in the generating quiver. -/ | |
lemma path_nonempty_of_hom {G} [groupoid.{u u} G] [is_free_groupoid G] {a b : G} : | |
nonempty (a ⟶ b) → nonempty (path (symgen a) (symgen b)) := | |
begin | |
rintro ⟨p⟩, | |
rw [←@weakly_connected_component.eq (generators G), eq_comm, | |
←free_group.of_injective.eq_iff, ←mul_inv_eq_one], | |
let X := free_group (weakly_connected_component $ generators G), | |
let f : G → X := λ g, free_group.of (weakly_connected_component.mk g), | |
let F : G ⥤ single_obj X := single_obj.difference_functor f, | |
change F.map p = ((category_theory.functor.const G).obj ()).map p, | |
congr, ext, | |
rw [functor.const_obj_map, id_as_one, difference_functor_map, mul_inv_eq_one], | |
apply congr_arg free_group.of, | |
apply (weakly_connected_component.eq _ _).mpr, | |
exact ⟨hom.to_path (sum.inr e)⟩, | |
end | |
/-- Given a connected free groupoid, its generating quiver is rooted-connected. -/ | |
instance generators_connected (G) [groupoid.{u u} G] [is_connected G] [is_free_groupoid G] | |
(r : G) : rooted_connected (symgen r) := | |
⟨λ b, path_nonempty_of_hom (category_theory.nonempty_hom_of_connected_groupoid r b)⟩ | |
/-- A vertex group in a free connected groupoid is free. With some work one could drop the | |
connectedness assumption, by looking at connected components. -/ | |
instance End_is_free_of_connected_free {G} [groupoid G] [is_connected G] [is_free_groupoid G] | |
(r : G) : is_free_group (End r) := | |
spanning_tree.End_is_free $ geodesic_subtree (symgen r) | |
end is_free_groupoid | |
/-- The Nielsen-Schreier theorem: a subgroup of a free group is free. -/ | |
instance subgroup_is_free_of_is_free {G : Type u} [group G] [is_free_group G] | |
(H : subgroup G) : is_free_group H := | |
is_free_group.of_mul_equiv (End_mul_equiv_subgroup H) | |