Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2016 Jeremy Avigad. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jeremy Avigad, Leonardo de Moura | |
-/ | |
import tactic.doc_commands | |
import tactic.reserved_notation | |
/-! | |
# Basic logic properties | |
This file is one of the earliest imports in mathlib. | |
## Implementation notes | |
Theorems that require decidability hypotheses are in the namespace "decidable". | |
Classical versions are in the namespace "classical". | |
In the presence of automation, this whole file may be unnecessary. On the other hand, | |
maybe it is useful for writing automation. | |
-/ | |
open function | |
local attribute [instance, priority 10] classical.prop_decidable | |
section miscellany | |
/- We add the `inline` attribute to optimize VM computation using these declarations. For example, | |
`if p ∧ q then ... else ...` will not evaluate the decidability of `q` if `p` is false. -/ | |
attribute [inline] and.decidable or.decidable decidable.false xor.decidable iff.decidable | |
decidable.true implies.decidable not.decidable ne.decidable | |
bool.decidable_eq decidable.to_bool | |
attribute [simp] cast_eq cast_heq | |
variables {α : Type*} {β : Type*} | |
/-- An identity function with its main argument implicit. This will be printed as `hidden` even | |
if it is applied to a large term, so it can be used for elision, | |
as done in the `elide` and `unelide` tactics. -/ | |
@[reducible] def hidden {α : Sort*} {a : α} := a | |
/-- Ex falso, the nondependent eliminator for the `empty` type. -/ | |
def empty.elim {C : Sort*} : empty → C. | |
instance : subsingleton empty := ⟨λa, a.elim⟩ | |
instance subsingleton.prod {α β : Type*} [subsingleton α] [subsingleton β] : subsingleton (α × β) := | |
⟨by { intros a b, cases a, cases b, congr, }⟩ | |
instance : decidable_eq empty := λa, a.elim | |
instance sort.inhabited : inhabited Sort* := ⟨punit⟩ | |
instance sort.inhabited' : inhabited default := ⟨punit.star⟩ | |
instance psum.inhabited_left {α β} [inhabited α] : inhabited (psum α β) := ⟨psum.inl default⟩ | |
instance psum.inhabited_right {α β} [inhabited β] : inhabited (psum α β) := ⟨psum.inr default⟩ | |
@[priority 10] instance decidable_eq_of_subsingleton | |
{α} [subsingleton α] : decidable_eq α | |
| a b := is_true (subsingleton.elim a b) | |
@[simp] lemma eq_iff_true_of_subsingleton {α : Sort*} [subsingleton α] (x y : α) : | |
x = y ↔ true := | |
by cc | |
/-- If all points are equal to a given point `x`, then `α` is a subsingleton. -/ | |
lemma subsingleton_of_forall_eq {α : Sort*} (x : α) (h : ∀ y, y = x) : subsingleton α := | |
⟨λ a b, (h a).symm ▸ (h b).symm ▸ rfl⟩ | |
lemma subsingleton_iff_forall_eq {α : Sort*} (x : α) : subsingleton α ↔ ∀ y, y = x := | |
⟨λ h y, @subsingleton.elim _ h y x, subsingleton_of_forall_eq x⟩ | |
-- TODO[gh-6025]: make this an instance once safe to do so | |
lemma subtype.subsingleton (α : Sort*) [subsingleton α] (p : α → Prop) : subsingleton (subtype p) := | |
⟨λ ⟨x,_⟩ ⟨y,_⟩, have x = y, from subsingleton.elim _ _, by { cases this, refl }⟩ | |
/-- Add an instance to "undo" coercion transitivity into a chain of coercions, because | |
most simp lemmas are stated with respect to simple coercions and will not match when | |
part of a chain. -/ | |
@[simp] theorem coe_coe {α β γ} [has_coe α β] [has_coe_t β γ] | |
(a : α) : (a : γ) = (a : β) := rfl | |
theorem coe_fn_coe_trans | |
{α β γ δ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_fun γ δ] | |
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl | |
/-- Non-dependent version of `coe_fn_coe_trans`, helps `rw` figure out the argument. -/ | |
theorem coe_fn_coe_trans' | |
{α β γ} {δ : out_param $ _} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_fun γ (λ _, δ)] | |
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl | |
@[simp] theorem coe_fn_coe_base | |
{α β γ} [has_coe α β] [has_coe_to_fun β γ] | |
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl | |
/-- Non-dependent version of `coe_fn_coe_base`, helps `rw` figure out the argument. -/ | |
theorem coe_fn_coe_base' | |
{α β} {γ : out_param $ _} [has_coe α β] [has_coe_to_fun β (λ _, γ)] | |
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl | |
-- This instance should have low priority, to ensure we follow the chain | |
-- `set_like → has_coe_to_sort` | |
attribute [instance, priority 10] coe_sort_trans | |
theorem coe_sort_coe_trans | |
{α β γ δ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_sort γ δ] | |
(x : α) : @coe_sort α _ _ x = @coe_sort β _ _ x := rfl | |
/-- | |
Many structures such as bundled morphisms coerce to functions so that you can | |
transparently apply them to arguments. For example, if `e : α ≃ β` and `a : α` | |
then you can write `e a` and this is elaborated as `⇑e a`. This type of | |
coercion is implemented using the `has_coe_to_fun` type class. There is one | |
important consideration: | |
If a type coerces to another type which in turn coerces to a function, | |
then it **must** implement `has_coe_to_fun` directly: | |
```lean | |
structure sparkling_equiv (α β) extends α ≃ β | |
-- if we add a `has_coe` instance, | |
instance {α β} : has_coe (sparkling_equiv α β) (α ≃ β) := | |
⟨sparkling_equiv.to_equiv⟩ | |
-- then a `has_coe_to_fun` instance **must** be added as well: | |
instance {α β} : has_coe_to_fun (sparkling_equiv α β) := | |
⟨λ _, α → β, λ f, f.to_equiv.to_fun⟩ | |
``` | |
(Rationale: if we do not declare the direct coercion, then `⇑e a` is not in | |
simp-normal form. The lemma `coe_fn_coe_base` will unfold it to `⇑↑e a`. This | |
often causes loops in the simplifier.) | |
-/ | |
library_note "function coercion" | |
@[simp] theorem coe_sort_coe_base | |
{α β γ} [has_coe α β] [has_coe_to_sort β γ] | |
(x : α) : @coe_sort α _ _ x = @coe_sort β _ _ x := rfl | |
/-- `pempty` is the universe-polymorphic analogue of `empty`. -/ | |
@[derive decidable_eq] | |
inductive {u} pempty : Sort u | |
/-- Ex falso, the nondependent eliminator for the `pempty` type. -/ | |
def pempty.elim {C : Sort*} : pempty → C. | |
instance subsingleton_pempty : subsingleton pempty := ⟨λa, a.elim⟩ | |
@[simp] lemma not_nonempty_pempty : ¬ nonempty pempty := | |
assume ⟨h⟩, h.elim | |
lemma congr_heq {α β γ : Sort*} {f : α → γ} {g : β → γ} {x : α} {y : β} (h₁ : f == g) | |
(h₂ : x == y) : f x = g y := | |
by { cases h₂, cases h₁, refl } | |
lemma congr_arg_heq {α} {β : α → Sort*} (f : ∀ a, β a) : ∀ {a₁ a₂ : α}, a₁ = a₂ → f a₁ == f a₂ | |
| a _ rfl := heq.rfl | |
lemma ulift.down_injective {α : Sort*} : function.injective (@ulift.down α) | |
| ⟨a⟩ ⟨b⟩ rfl := rfl | |
@[simp] lemma ulift.down_inj {α : Sort*} {a b : ulift α} : a.down = b.down ↔ a = b := | |
⟨λ h, ulift.down_injective h, λ h, by rw h⟩ | |
lemma plift.down_injective {α : Sort*} : function.injective (@plift.down α) | |
| ⟨a⟩ ⟨b⟩ rfl := rfl | |
@[simp] lemma plift.down_inj {α : Sort*} {a b : plift α} : a.down = b.down ↔ a = b := | |
⟨λ h, plift.down_injective h, λ h, by rw h⟩ | |
-- missing [symm] attribute for ne in core. | |
attribute [symm] ne.symm | |
lemma ne_comm {α} {a b : α} : a ≠ b ↔ b ≠ a := ⟨ne.symm, ne.symm⟩ | |
@[simp] lemma eq_iff_eq_cancel_left {b c : α} : | |
(∀ {a}, a = b ↔ a = c) ↔ (b = c) := | |
⟨λ h, by rw [← h], λ h a, by rw h⟩ | |
@[simp] lemma eq_iff_eq_cancel_right {a b : α} : | |
(∀ {c}, a = c ↔ b = c) ↔ (a = b) := | |
⟨λ h, by rw h, λ h a, by rw h⟩ | |
/-- Wrapper for adding elementary propositions to the type class systems. | |
Warning: this can easily be abused. See the rest of this docstring for details. | |
Certain propositions should not be treated as a class globally, | |
but sometimes it is very convenient to be able to use the type class system | |
in specific circumstances. | |
For example, `zmod p` is a field if and only if `p` is a prime number. | |
In order to be able to find this field instance automatically by type class search, | |
we have to turn `p.prime` into an instance implicit assumption. | |
On the other hand, making `nat.prime` a class would require a major refactoring of the library, | |
and it is questionable whether making `nat.prime` a class is desirable at all. | |
The compromise is to add the assumption `[fact p.prime]` to `zmod.field`. | |
In particular, this class is not intended for turning the type class system | |
into an automated theorem prover for first order logic. -/ | |
class fact (p : Prop) : Prop := (out [] : p) | |
/-- | |
In most cases, we should not have global instances of `fact`; typeclass search only reads the head | |
symbol and then tries any instances, which means that adding any such instance will cause slowdowns | |
everywhere. We instead make them as lemmata and make them local instances as required. | |
-/ | |
library_note "fact non-instances" | |
lemma fact.elim {p : Prop} (h : fact p) : p := h.1 | |
lemma fact_iff {p : Prop} : fact p ↔ p := ⟨λ h, h.1, λ h, ⟨h⟩⟩ | |
/-- Swaps two pairs of arguments to a function. -/ | |
@[reducible] def function.swap₂ {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*} | |
{φ : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Sort*} (f : Π i₁ j₁ i₂ j₂, φ i₁ j₁ i₂ j₂) : | |
Π i₂ j₂ i₁ j₁, φ i₁ j₁ i₂ j₂ := | |
λ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂ | |
/-- If `x : α . tac_name` then `x.out : α`. These are definitionally equal, but this can | |
nevertheless be useful for various reasons, e.g. to apply further projection notation or in an | |
argument to `simp`. -/ | |
def auto_param.out {α : Sort*} {n : name} (x : auto_param α n) : α := x | |
/-- If `x : α := d` then `x.out : α`. These are definitionally equal, but this can | |
nevertheless be useful for various reasons, e.g. to apply further projection notation or in an | |
argument to `simp`. -/ | |
def opt_param.out {α : Sort*} {d : α} (x : α := d) : α := x | |
end miscellany | |
open function | |
/-! | |
### Declarations about propositional connectives | |
-/ | |
theorem false_ne_true : false ≠ true | |
| h := h.symm ▸ trivial | |
section propositional | |
variables {a b c d e f : Prop} | |
/-! ### Declarations about `implies` -/ | |
instance : is_refl Prop iff := ⟨iff.refl⟩ | |
instance : is_trans Prop iff := ⟨λ _ _ _, iff.trans⟩ | |
theorem iff_of_eq (e : a = b) : a ↔ b := e ▸ iff.rfl | |
theorem iff_iff_eq : (a ↔ b) ↔ a = b := ⟨propext, iff_of_eq⟩ | |
@[simp] lemma eq_iff_iff {p q : Prop} : (p = q) ↔ (p ↔ q) := iff_iff_eq.symm | |
@[simp] theorem imp_self : (a → a) ↔ true := iff_true_intro id | |
lemma iff.imp (h₁ : a ↔ b) (h₂ : c ↔ d) : (a → c) ↔ (b → d) := imp_congr h₁ h₂ | |
@[simp] lemma eq_true_eq_id : eq true = id := | |
by { funext, simp only [true_iff, id.def, iff_self, eq_iff_iff], } | |
theorem imp_intro {α β : Prop} (h : α) : β → α := λ _, h | |
theorem imp_false : (a → false) ↔ ¬ a := iff.rfl | |
theorem imp_and_distrib {α} : (α → b ∧ c) ↔ (α → b) ∧ (α → c) := | |
⟨λ h, ⟨λ ha, (h ha).left, λ ha, (h ha).right⟩, | |
λ h ha, ⟨h.left ha, h.right ha⟩⟩ | |
@[simp] theorem and_imp : (a ∧ b → c) ↔ (a → b → c) := | |
iff.intro (λ h ha hb, h ⟨ha, hb⟩) (λ h ⟨ha, hb⟩, h ha hb) | |
theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a) := | |
iff_iff_implies_and_implies _ _ | |
theorem iff_def' : (a ↔ b) ↔ (b → a) ∧ (a → b) := | |
iff_def.trans and.comm | |
theorem imp_true_iff {α : Sort*} : (α → true) ↔ true := | |
iff_true_intro $ λ_, trivial | |
theorem imp_iff_right (ha : a) : (a → b) ↔ b := | |
⟨λf, f ha, imp_intro⟩ | |
lemma imp_iff_not (hb : ¬ b) : a → b ↔ ¬ a := imp_congr_right $ λ _, iff_false_intro hb | |
theorem decidable.imp_iff_right_iff [decidable a] : ((a → b) ↔ b) ↔ (a ∨ b) := | |
⟨λ H, (decidable.em a).imp_right $ λ ha', H.1 $ λ ha, (ha' ha).elim, | |
λ H, H.elim imp_iff_right $ λ hb, ⟨λ hab, hb, λ _ _, hb⟩⟩ | |
@[simp] theorem imp_iff_right_iff : ((a → b) ↔ b) ↔ (a ∨ b) := | |
decidable.imp_iff_right_iff | |
lemma decidable.and_or_imp [decidable a] : (a ∧ b) ∨ (a → c) ↔ a → (b ∨ c) := | |
if ha : a then by simp only [ha, true_and, true_implies_iff] | |
else by simp only [ha, false_or, false_and, false_implies_iff] | |
@[simp] theorem and_or_imp : (a ∧ b) ∨ (a → c) ↔ a → (b ∨ c) := | |
decidable.and_or_imp | |
/-! ### Declarations about `not` -/ | |
/-- Ex falso for negation. From `¬ a` and `a` anything follows. This is the same as `absurd` with | |
the arguments flipped, but it is in the `not` namespace so that projection notation can be used. -/ | |
def not.elim {α : Sort*} (H1 : ¬a) (H2 : a) : α := absurd H2 H1 | |
@[reducible] theorem not.imp {a b : Prop} (H2 : ¬b) (H1 : a → b) : ¬a := mt H1 H2 | |
theorem not_not_of_not_imp : ¬(a → b) → ¬¬a := | |
mt not.elim | |
theorem not_of_not_imp {a : Prop} : ¬(a → b) → ¬b := | |
mt imp_intro | |
theorem dec_em (p : Prop) [decidable p] : p ∨ ¬p := decidable.em p | |
theorem dec_em' (p : Prop) [decidable p] : ¬p ∨ p := (dec_em p).swap | |
theorem em (p : Prop) : p ∨ ¬p := classical.em _ | |
theorem em' (p : Prop) : ¬p ∨ p := (em p).swap | |
theorem or_not {p : Prop} : p ∨ ¬p := em _ | |
section eq_or_ne | |
variables {α : Sort*} (x y : α) | |
theorem decidable.eq_or_ne [decidable (x = y)] : x = y ∨ x ≠ y := dec_em $ x = y | |
theorem decidable.ne_or_eq [decidable (x = y)] : x ≠ y ∨ x = y := dec_em' $ x = y | |
theorem eq_or_ne : x = y ∨ x ≠ y := em $ x = y | |
theorem ne_or_eq : x ≠ y ∨ x = y := em' $ x = y | |
end eq_or_ne | |
theorem by_contradiction {p} : (¬p → false) → p := decidable.by_contradiction | |
-- alias by_contradiction ← by_contra | |
theorem by_contra {p} : (¬p → false) → p := decidable.by_contradiction | |
/-- | |
In most of mathlib, we use the law of excluded middle (LEM) and the axiom of choice (AC) freely. | |
The `decidable` namespace contains versions of lemmas from the root namespace that explicitly | |
attempt to avoid the axiom of choice, usually by adding decidability assumptions on the inputs. | |
You can check if a lemma uses the axiom of choice by using `#print axioms foo` and seeing if | |
`classical.choice` appears in the list. | |
-/ | |
library_note "decidable namespace" | |
/-- | |
As mathlib is primarily classical, | |
if the type signature of a `def` or `lemma` does not require any `decidable` instances to state, | |
it is preferable not to introduce any `decidable` instances that are needed in the proof | |
as arguments, but rather to use the `classical` tactic as needed. | |
In the other direction, when `decidable` instances do appear in the type signature, | |
it is better to use explicitly introduced ones rather than allowing Lean to automatically infer | |
classical ones, as these may cause instance mismatch errors later. | |
-/ | |
library_note "decidable arguments" | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_not [decidable a] : ¬¬a ↔ a := | |
iff.intro decidable.by_contradiction not_not_intro | |
/-- The Double Negation Theorem: `¬ ¬ P` is equivalent to `P`. | |
The left-to-right direction, double negation elimination (DNE), | |
is classically true but not constructively. -/ | |
@[simp] theorem not_not : ¬¬a ↔ a := decidable.not_not | |
theorem of_not_not : ¬¬a → a := by_contra | |
lemma not_ne_iff {α : Sort*} {a b : α} : ¬ a ≠ b ↔ a = b := not_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.of_not_imp [decidable a] (h : ¬ (a → b)) : a := | |
decidable.by_contradiction (not_not_of_not_imp h) | |
theorem of_not_imp : ¬ (a → b) → a := decidable.of_not_imp | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_imp_symm [decidable a] (h : ¬a → b) (hb : ¬b) : a := | |
decidable.by_contradiction $ hb ∘ h | |
theorem not.decidable_imp_symm [decidable a] : (¬a → b) → ¬b → a := decidable.not_imp_symm | |
theorem not.imp_symm : (¬a → b) → ¬b → a := not.decidable_imp_symm | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_imp_comm [decidable a] [decidable b] : (¬a → b) ↔ (¬b → a) := | |
⟨not.decidable_imp_symm, not.decidable_imp_symm⟩ | |
theorem not_imp_comm : (¬a → b) ↔ (¬b → a) := decidable.not_imp_comm | |
@[simp] theorem imp_not_self : (a → ¬a) ↔ ¬a := ⟨λ h ha, h ha ha, λ h _, h⟩ | |
theorem decidable.not_imp_self [decidable a] : (¬a → a) ↔ a := | |
by { have := @imp_not_self (¬a), rwa decidable.not_not at this } | |
@[simp] theorem not_imp_self : (¬a → a) ↔ a := decidable.not_imp_self | |
theorem imp.swap : (a → b → c) ↔ (b → a → c) := | |
⟨swap, swap⟩ | |
theorem imp_not_comm : (a → ¬b) ↔ (b → ¬a) := | |
imp.swap | |
lemma iff.not (h : a ↔ b) : ¬ a ↔ ¬ b := not_congr h | |
lemma iff.not_left (h : a ↔ ¬ b) : ¬ a ↔ b := h.not.trans not_not | |
lemma iff.not_right (h : ¬ a ↔ b) : a ↔ ¬ b := not_not.symm.trans h.not | |
/-! ### Declarations about `xor` -/ | |
@[simp] theorem xor_true : xor true = not := funext $ λ a, by simp [xor] | |
@[simp] theorem xor_false : xor false = id := funext $ λ a, by simp [xor] | |
theorem xor_comm (a b) : xor a b = xor b a := by simp [xor, and_comm, or_comm] | |
instance : is_commutative Prop xor := ⟨xor_comm⟩ | |
@[simp] theorem xor_self (a : Prop) : xor a a = false := by simp [xor] | |
/-! ### Declarations about `and` -/ | |
lemma iff.and (h₁ : a ↔ b) (h₂ : c ↔ d) : a ∧ c ↔ b ∧ d := and_congr h₁ h₂ | |
theorem and_congr_left (h : c → (a ↔ b)) : a ∧ c ↔ b ∧ c := | |
and.comm.trans $ (and_congr_right h).trans and.comm | |
theorem and_congr_left' (h : a ↔ b) : a ∧ c ↔ b ∧ c := h.and iff.rfl | |
theorem and_congr_right' (h : b ↔ c) : a ∧ b ↔ a ∧ c := iff.rfl.and h | |
theorem not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) := | |
mt and.left | |
theorem not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) := | |
mt and.right | |
theorem and.imp_left (h : a → b) : a ∧ c → b ∧ c := | |
and.imp h id | |
theorem and.imp_right (h : a → b) : c ∧ a → c ∧ b := | |
and.imp id h | |
lemma and.right_comm : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := | |
by simp only [and.left_comm, and.comm] | |
lemma and_and_and_comm (a b c d : Prop) : (a ∧ b) ∧ c ∧ d ↔ (a ∧ c) ∧ b ∧ d := | |
by rw [←and_assoc, @and.right_comm a, and_assoc] | |
lemma and_and_distrib_left (a b c : Prop) : a ∧ (b ∧ c) ↔ (a ∧ b) ∧ (a ∧ c) := | |
by rw [and_and_and_comm, and_self] | |
lemma and_and_distrib_right (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ (b ∧ c) := | |
by rw [and_and_and_comm, and_self] | |
lemma and_rotate : a ∧ b ∧ c ↔ b ∧ c ∧ a := by simp only [and.left_comm, and.comm] | |
lemma and.rotate : a ∧ b ∧ c → b ∧ c ∧ a := and_rotate.1 | |
theorem and_not_self_iff (a : Prop) : a ∧ ¬ a ↔ false := | |
iff.intro (assume h, (h.right) (h.left)) (assume h, h.elim) | |
theorem not_and_self_iff (a : Prop) : ¬ a ∧ a ↔ false := | |
iff.intro (assume ⟨hna, ha⟩, hna ha) false.elim | |
theorem and_iff_left_of_imp {a b : Prop} (h : a → b) : (a ∧ b) ↔ a := | |
iff.intro and.left (λ ha, ⟨ha, h ha⟩) | |
theorem and_iff_right_of_imp {a b : Prop} (h : b → a) : (a ∧ b) ↔ b := | |
iff.intro and.right (λ hb, ⟨h hb, hb⟩) | |
@[simp] theorem and_iff_left_iff_imp {a b : Prop} : ((a ∧ b) ↔ a) ↔ (a → b) := | |
⟨λ h ha, (h.2 ha).2, and_iff_left_of_imp⟩ | |
@[simp] theorem and_iff_right_iff_imp {a b : Prop} : ((a ∧ b) ↔ b) ↔ (b → a) := | |
⟨λ h ha, (h.2 ha).1, and_iff_right_of_imp⟩ | |
@[simp] lemma iff_self_and {p q : Prop} : (p ↔ p ∧ q) ↔ (p → q) := | |
by rw [@iff.comm p, and_iff_left_iff_imp] | |
@[simp] lemma iff_and_self {p q : Prop} : (p ↔ q ∧ p) ↔ (p → q) := | |
by rw [and_comm, iff_self_and] | |
@[simp] lemma and.congr_right_iff : (a ∧ b ↔ a ∧ c) ↔ (a → (b ↔ c)) := | |
⟨λ h ha, by simp [ha] at h; exact h, and_congr_right⟩ | |
@[simp] lemma and.congr_left_iff : (a ∧ c ↔ b ∧ c) ↔ c → (a ↔ b) := | |
by simp only [and.comm, ← and.congr_right_iff] | |
@[simp] lemma and_self_left : a ∧ a ∧ b ↔ a ∧ b := | |
⟨λ h, ⟨h.1, h.2.2⟩, λ h, ⟨h.1, h.1, h.2⟩⟩ | |
@[simp] lemma and_self_right : (a ∧ b) ∧ b ↔ a ∧ b := | |
⟨λ h, ⟨h.1.1, h.2⟩, λ h, ⟨⟨h.1, h.2⟩, h.2⟩⟩ | |
/-! ### Declarations about `or` -/ | |
lemma iff.or (h₁ : a ↔ b) (h₂ : c ↔ d) : a ∨ c ↔ b ∨ d := or_congr h₁ h₂ | |
lemma or_congr_left' (h : a ↔ b) : a ∨ c ↔ b ∨ c := h.or iff.rfl | |
lemma or_congr_right' (h : b ↔ c) : a ∨ b ↔ a ∨ c := iff.rfl.or h | |
theorem or.right_comm : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := by rw [or_assoc, or_assoc, or_comm b] | |
lemma or_or_or_comm (a b c d : Prop) : (a ∨ b) ∨ c ∨ d ↔ (a ∨ c) ∨ b ∨ d := | |
by rw [←or_assoc, @or.right_comm a, or_assoc] | |
lemma or_or_distrib_left (a b c : Prop) : a ∨ (b ∨ c) ↔ (a ∨ b) ∨ (a ∨ c) := | |
by rw [or_or_or_comm, or_self] | |
lemma or_or_distrib_right (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ (b ∨ c) := | |
by rw [or_or_or_comm, or_self] | |
lemma or_rotate : a ∨ b ∨ c ↔ b ∨ c ∨ a := by simp only [or.left_comm, or.comm] | |
lemma or.rotate : a ∨ b ∨ c → b ∨ c ∨ a := or_rotate.1 | |
theorem or_of_or_of_imp_of_imp (h₁ : a ∨ b) (h₂ : a → c) (h₃ : b → d) : c ∨ d := | |
or.imp h₂ h₃ h₁ | |
theorem or_of_or_of_imp_left (h₁ : a ∨ c) (h : a → b) : b ∨ c := | |
or.imp_left h h₁ | |
theorem or_of_or_of_imp_right (h₁ : c ∨ a) (h : a → b) : c ∨ b := | |
or.imp_right h h₁ | |
theorem or.elim3 (h : a ∨ b ∨ c) (ha : a → d) (hb : b → d) (hc : c → d) : d := | |
or.elim h ha (assume h₂, or.elim h₂ hb hc) | |
lemma or.imp3 (had : a → d) (hbe : b → e) (hcf : c → f) : a ∨ b ∨ c → d ∨ e ∨ f := | |
or.imp had $ or.imp hbe hcf | |
theorem or_imp_distrib : (a ∨ b → c) ↔ (a → c) ∧ (b → c) := | |
⟨assume h, ⟨assume ha, h (or.inl ha), assume hb, h (or.inr hb)⟩, | |
assume ⟨ha, hb⟩, or.rec ha hb⟩ | |
-- See Note [decidable namespace] | |
protected theorem decidable.or_iff_not_imp_left [decidable a] : a ∨ b ↔ (¬ a → b) := | |
⟨or.resolve_left, λ h, dite _ or.inl (or.inr ∘ h)⟩ | |
theorem or_iff_not_imp_left : a ∨ b ↔ (¬ a → b) := decidable.or_iff_not_imp_left | |
-- See Note [decidable namespace] | |
protected theorem decidable.or_iff_not_imp_right [decidable b] : a ∨ b ↔ (¬ b → a) := | |
or.comm.trans decidable.or_iff_not_imp_left | |
theorem or_iff_not_imp_right : a ∨ b ↔ (¬ b → a) := decidable.or_iff_not_imp_right | |
-- See Note [decidable namespace] | |
protected lemma decidable.not_or_of_imp [decidable a] (h : a → b) : ¬ a ∨ b := | |
dite _ (or.inr ∘ h) or.inl | |
lemma not_or_of_imp : (a → b) → ¬ a ∨ b := decidable.not_or_of_imp | |
-- See Note [decidable namespace] | |
protected lemma decidable.or_not_of_imp [decidable a] (h : a → b) : b ∨ ¬ a := | |
dite _ (or.inl ∘ h) or.inr | |
lemma or_not_of_imp : (a → b) → b ∨ ¬ a := decidable.or_not_of_imp | |
-- See Note [decidable namespace] | |
protected lemma decidable.imp_iff_not_or [decidable a] : a → b ↔ ¬ a ∨ b := | |
⟨decidable.not_or_of_imp, or.neg_resolve_left⟩ | |
lemma imp_iff_not_or : a → b ↔ ¬ a ∨ b := decidable.imp_iff_not_or | |
-- See Note [decidable namespace] | |
protected lemma decidable.imp_iff_or_not [decidable b] : b → a ↔ a ∨ ¬ b := | |
decidable.imp_iff_not_or.trans or.comm | |
lemma imp_iff_or_not : b → a ↔ a ∨ ¬ b := decidable.imp_iff_or_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_imp_not [decidable a] : (¬ a → ¬ b) ↔ (b → a) := | |
⟨assume h hb, decidable.by_contradiction $ assume na, h na hb, mt⟩ | |
theorem not_imp_not : (¬ a → ¬ b) ↔ (b → a) := decidable.not_imp_not | |
-- See Note [decidable namespace] | |
protected lemma decidable.or_congr_left [decidable c] (h : ¬ c → (a ↔ b)) : a ∨ c ↔ b ∨ c := | |
by { rw [decidable.or_iff_not_imp_right, decidable.or_iff_not_imp_right], exact imp_congr_right h } | |
lemma or_congr_left (h : ¬ c → (a ↔ b)) : a ∨ c ↔ b ∨ c := | |
decidable.or_congr_left h | |
-- See Note [decidable namespace] | |
protected lemma decidable.or_congr_right [decidable a] (h : ¬ a → (b ↔ c)) : a ∨ b ↔ a ∨ c := | |
by { rw [decidable.or_iff_not_imp_left, decidable.or_iff_not_imp_left], exact imp_congr_right h } | |
lemma or_congr_right (h : ¬ a → (b ↔ c)) : a ∨ b ↔ a ∨ c := | |
decidable.or_congr_right h | |
@[simp] theorem or_iff_left_iff_imp : (a ∨ b ↔ a) ↔ (b → a) := | |
⟨λ h hb, h.1 (or.inr hb), or_iff_left_of_imp⟩ | |
@[simp] theorem or_iff_right_iff_imp : (a ∨ b ↔ b) ↔ (a → b) := | |
by rw [or_comm, or_iff_left_iff_imp] | |
lemma or_iff_left (hb : ¬ b) : a ∨ b ↔ a := ⟨λ h, h.resolve_right hb, or.inl⟩ | |
lemma or_iff_right (ha : ¬ a) : a ∨ b ↔ b := ⟨λ h, h.resolve_left ha, or.inr⟩ | |
/-! ### Declarations about distributivity -/ | |
/-- `∧` distributes over `∨` (on the left). -/ | |
theorem and_or_distrib_left : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) := | |
⟨λ ⟨ha, hbc⟩, hbc.imp (and.intro ha) (and.intro ha), | |
or.rec (and.imp_right or.inl) (and.imp_right or.inr)⟩ | |
/-- `∧` distributes over `∨` (on the right). -/ | |
theorem or_and_distrib_right : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) := | |
(and.comm.trans and_or_distrib_left).trans (and.comm.or and.comm) | |
/-- `∨` distributes over `∧` (on the left). -/ | |
theorem or_and_distrib_left : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) := | |
⟨or.rec (λha, and.intro (or.inl ha) (or.inl ha)) (and.imp or.inr or.inr), | |
and.rec $ or.rec (imp_intro ∘ or.inl) (or.imp_right ∘ and.intro)⟩ | |
/-- `∨` distributes over `∧` (on the right). -/ | |
theorem and_or_distrib_right : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) := | |
(or.comm.trans or_and_distrib_left).trans (or.comm.and or.comm) | |
@[simp] lemma or_self_left : a ∨ a ∨ b ↔ a ∨ b := | |
⟨λ h, h.elim or.inl id, λ h, h.elim or.inl (or.inr ∘ or.inr)⟩ | |
@[simp] lemma or_self_right : (a ∨ b) ∨ b ↔ a ∨ b := | |
⟨λ h, h.elim id or.inr, λ h, h.elim (or.inl ∘ or.inl) or.inr⟩ | |
/-! Declarations about `iff` -/ | |
lemma iff.iff (h₁ : a ↔ b) (h₂ : c ↔ d) : (a ↔ c) ↔ (b ↔ d) := iff_congr h₁ h₂ | |
theorem iff_of_true (ha : a) (hb : b) : a ↔ b := | |
⟨λ_, hb, λ _, ha⟩ | |
theorem iff_of_false (ha : ¬a) (hb : ¬b) : a ↔ b := | |
⟨ha.elim, hb.elim⟩ | |
theorem iff_true_left (ha : a) : (a ↔ b) ↔ b := | |
⟨λ h, h.1 ha, iff_of_true ha⟩ | |
theorem iff_true_right (ha : a) : (b ↔ a) ↔ b := | |
iff.comm.trans (iff_true_left ha) | |
theorem iff_false_left (ha : ¬a) : (a ↔ b) ↔ ¬b := | |
⟨λ h, mt h.2 ha, iff_of_false ha⟩ | |
theorem iff_false_right (ha : ¬a) : (b ↔ a) ↔ ¬b := | |
iff.comm.trans (iff_false_left ha) | |
@[simp] | |
lemma iff_mpr_iff_true_intro {P : Prop} (h : P) : iff.mpr (iff_true_intro h) true.intro = h := rfl | |
-- See Note [decidable namespace] | |
protected theorem decidable.imp_or_distrib [decidable a] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := | |
by simp [decidable.imp_iff_not_or, or.comm, or.left_comm] | |
theorem imp_or_distrib : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := decidable.imp_or_distrib | |
-- See Note [decidable namespace] | |
protected theorem decidable.imp_or_distrib' [decidable b] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := | |
by by_cases b; simp [h, or_iff_right_of_imp ((∘) false.elim)] | |
theorem imp_or_distrib' : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := decidable.imp_or_distrib' | |
theorem not_imp_of_and_not : a ∧ ¬ b → ¬ (a → b) | |
| ⟨ha, hb⟩ h := hb $ h ha | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_imp [decidable a] : ¬(a → b) ↔ a ∧ ¬b := | |
⟨λ h, ⟨decidable.of_not_imp h, not_of_not_imp h⟩, not_imp_of_and_not⟩ | |
theorem not_imp : ¬(a → b) ↔ a ∧ ¬b := decidable.not_imp | |
-- for monotonicity | |
lemma imp_imp_imp (h₀ : c → a) (h₁ : b → d) : (a → b) → (c → d) := | |
assume (h₂ : a → b), h₁ ∘ h₂ ∘ h₀ | |
-- See Note [decidable namespace] | |
protected theorem decidable.peirce (a b : Prop) [decidable a] : ((a → b) → a) → a := | |
if ha : a then λ h, ha else λ h, h ha.elim | |
theorem peirce (a b : Prop) : ((a → b) → a) → a := decidable.peirce _ _ | |
theorem peirce' {a : Prop} (H : ∀ b : Prop, (a → b) → a) : a := H _ id | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_iff_not [decidable a] [decidable b] : (¬ a ↔ ¬ b) ↔ (a ↔ b) := | |
by rw [@iff_def (¬ a), @iff_def' a]; exact decidable.not_imp_not.and decidable.not_imp_not | |
theorem not_iff_not : (¬ a ↔ ¬ b) ↔ (a ↔ b) := decidable.not_iff_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_iff_comm [decidable a] [decidable b] : (¬ a ↔ b) ↔ (¬ b ↔ a) := | |
by rw [@iff_def (¬ a), @iff_def (¬ b)]; exact decidable.not_imp_comm.and imp_not_comm | |
theorem not_iff_comm : (¬ a ↔ b) ↔ (¬ b ↔ a) := decidable.not_iff_comm | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_iff : ∀ [decidable b], ¬ (a ↔ b) ↔ (¬ a ↔ b) := | |
by intro h; cases h; simp only [h, iff_true, iff_false] | |
theorem not_iff : ¬ (a ↔ b) ↔ (¬ a ↔ b) := decidable.not_iff | |
-- See Note [decidable namespace] | |
protected theorem decidable.iff_not_comm [decidable a] [decidable b] : (a ↔ ¬ b) ↔ (b ↔ ¬ a) := | |
by rw [@iff_def a, @iff_def b]; exact imp_not_comm.and decidable.not_imp_comm | |
theorem iff_not_comm : (a ↔ ¬ b) ↔ (b ↔ ¬ a) := decidable.iff_not_comm | |
-- See Note [decidable namespace] | |
protected theorem decidable.iff_iff_and_or_not_and_not [decidable b] : | |
(a ↔ b) ↔ (a ∧ b) ∨ (¬ a ∧ ¬ b) := | |
by { split; intro h, | |
{ rw h; by_cases b; [left,right]; split; assumption }, | |
{ cases h with h h; cases h; split; intro; { contradiction <|> assumption } } } | |
theorem iff_iff_and_or_not_and_not : (a ↔ b) ↔ (a ∧ b) ∨ (¬ a ∧ ¬ b) := | |
decidable.iff_iff_and_or_not_and_not | |
lemma decidable.iff_iff_not_or_and_or_not [decidable a] [decidable b] : | |
(a ↔ b) ↔ ((¬a ∨ b) ∧ (a ∨ ¬b)) := | |
begin | |
rw [iff_iff_implies_and_implies a b], | |
simp only [decidable.imp_iff_not_or, or.comm] | |
end | |
lemma iff_iff_not_or_and_or_not : (a ↔ b) ↔ ((¬a ∨ b) ∧ (a ∨ ¬b)) := | |
decidable.iff_iff_not_or_and_or_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_and_not_right [decidable b] : ¬(a ∧ ¬b) ↔ (a → b) := | |
⟨λ h ha, h.decidable_imp_symm $ and.intro ha, λ h ⟨ha, hb⟩, hb $ h ha⟩ | |
theorem not_and_not_right : ¬(a ∧ ¬b) ↔ (a → b) := decidable.not_and_not_right | |
/-- Transfer decidability of `a` to decidability of `b`, if the propositions are equivalent. | |
**Important**: this function should be used instead of `rw` on `decidable b`, because the | |
kernel will get stuck reducing the usage of `propext` otherwise, | |
and `dec_trivial` will not work. -/ | |
@[inline] def decidable_of_iff (a : Prop) (h : a ↔ b) [D : decidable a] : decidable b := | |
decidable_of_decidable_of_iff D h | |
/-- Transfer decidability of `b` to decidability of `a`, if the propositions are equivalent. | |
This is the same as `decidable_of_iff` but the iff is flipped. -/ | |
@[inline] def decidable_of_iff' (b : Prop) (h : a ↔ b) [D : decidable b] : decidable a := | |
decidable_of_decidable_of_iff D h.symm | |
/-- Prove that `a` is decidable by constructing a boolean `b` and a proof that `b ↔ a`. | |
(This is sometimes taken as an alternate definition of decidability.) -/ | |
def decidable_of_bool : ∀ (b : bool) (h : b ↔ a), decidable a | |
| tt h := is_true (h.1 rfl) | |
| ff h := is_false (mt h.2 bool.ff_ne_tt) | |
/-! ### De Morgan's laws -/ | |
theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b) | |
| ⟨ha, hb⟩ := or.elim h (absurd ha) (absurd hb) | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_and_distrib [decidable a] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := | |
⟨λ h, if ha : a then or.inr (λ hb, h ⟨ha, hb⟩) else or.inl ha, not_and_of_not_or_not⟩ | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_and_distrib' [decidable b] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := | |
⟨λ h, if hb : b then or.inl (λ ha, h ⟨ha, hb⟩) else or.inr hb, not_and_of_not_or_not⟩ | |
/-- One of de Morgan's laws: the negation of a conjunction is logically equivalent to the | |
disjunction of the negations. -/ | |
theorem not_and_distrib : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := decidable.not_and_distrib | |
@[simp] theorem not_and : ¬ (a ∧ b) ↔ (a → ¬ b) := and_imp | |
theorem not_and' : ¬ (a ∧ b) ↔ b → ¬a := | |
not_and.trans imp_not_comm | |
/-- One of de Morgan's laws: the negation of a disjunction is logically equivalent to the | |
conjunction of the negations. -/ | |
theorem not_or_distrib : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b := | |
⟨λ h, ⟨λ ha, h (or.inl ha), λ hb, h (or.inr hb)⟩, | |
λ ⟨h₁, h₂⟩ h, or.elim h h₁ h₂⟩ | |
-- See Note [decidable namespace] | |
protected theorem decidable.or_iff_not_and_not [decidable a] [decidable b] : a ∨ b ↔ ¬ (¬a ∧ ¬b) := | |
by rw [← not_or_distrib, decidable.not_not] | |
theorem or_iff_not_and_not : a ∨ b ↔ ¬ (¬a ∧ ¬b) := decidable.or_iff_not_and_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.and_iff_not_or_not [decidable a] [decidable b] : | |
a ∧ b ↔ ¬ (¬ a ∨ ¬ b) := | |
by rw [← decidable.not_and_distrib, decidable.not_not] | |
theorem and_iff_not_or_not : a ∧ b ↔ ¬ (¬ a ∨ ¬ b) := decidable.and_iff_not_or_not | |
@[simp] theorem not_xor (P Q : Prop) : ¬ xor P Q ↔ (P ↔ Q) := | |
by simp only [not_and, xor, not_or_distrib, not_not, ← iff_iff_implies_and_implies] | |
theorem xor_iff_not_iff (P Q : Prop) : xor P Q ↔ ¬ (P ↔ Q) := | |
by rw [iff_not_comm, not_xor] | |
end propositional | |
/-! ### Declarations about equality -/ | |
section mem | |
variables {α β : Type*} [has_mem α β] {s t : β} {a b : α} | |
lemma ne_of_mem_of_not_mem (h : a ∈ s) : b ∉ s → a ≠ b := mt $ λ e, e ▸ h | |
lemma ne_of_mem_of_not_mem' (h : a ∈ s) : a ∉ t → s ≠ t := mt $ λ e, e ▸ h | |
/-- **Alias** of `ne_of_mem_of_not_mem`. -/ | |
lemma has_mem.mem.ne_of_not_mem : a ∈ s → b ∉ s → a ≠ b := ne_of_mem_of_not_mem | |
/-- **Alias** of `ne_of_mem_of_not_mem'`. -/ | |
lemma has_mem.mem.ne_of_not_mem' : a ∈ s → a ∉ t → s ≠ t := ne_of_mem_of_not_mem' | |
end mem | |
section equality | |
variables {α : Sort*} {a b : α} | |
@[simp] theorem heq_iff_eq : a == b ↔ a = b := | |
⟨eq_of_heq, heq_of_eq⟩ | |
theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : hp == hq := | |
have p = q, from propext ⟨λ _, hq, λ _, hp⟩, | |
by subst q; refl | |
-- todo: change name | |
lemma ball_cond_comm {α} {s : α → Prop} {p : α → α → Prop} : | |
(∀ a, s a → ∀ b, s b → p a b) ↔ (∀ a b, s a → s b → p a b) := | |
⟨λ h a b ha hb, h a ha b hb, λ h a ha b hb, h a b ha hb⟩ | |
lemma ball_mem_comm {α β} [has_mem α β] {s : β} {p : α → α → Prop} : | |
(∀ a b ∈ s, p a b) ↔ (∀ a b, a ∈ s → b ∈ s → p a b) := | |
ball_cond_comm | |
lemma ne_of_apply_ne {α β : Sort*} (f : α → β) {x y : α} (h : f x ≠ f y) : x ≠ y := | |
λ (w : x = y), h (congr_arg f w) | |
theorem eq_equivalence : equivalence (@eq α) := | |
⟨eq.refl, @eq.symm _, @eq.trans _⟩ | |
/-- Transport through trivial families is the identity. -/ | |
@[simp] | |
lemma eq_rec_constant {α : Sort*} {a a' : α} {β : Sort*} (y : β) (h : a = a') : | |
(@eq.rec α a (λ a, β) y a' h) = y := | |
by { cases h, refl, } | |
@[simp] | |
lemma eq_mp_eq_cast {α β : Sort*} (h : α = β) : eq.mp h = cast h := rfl | |
@[simp] | |
lemma eq_mpr_eq_cast {α β : Sort*} (h : α = β) : eq.mpr h = cast h.symm := rfl | |
@[simp] | |
lemma cast_cast : ∀ {α β γ : Sort*} (ha : α = β) (hb : β = γ) (a : α), | |
cast hb (cast ha a) = cast (ha.trans hb) a | |
| _ _ _ rfl rfl a := rfl | |
@[simp] lemma congr_refl_left {α β : Sort*} (f : α → β) {a b : α} (h : a = b) : | |
congr (eq.refl f) h = congr_arg f h := | |
rfl | |
@[simp] lemma congr_refl_right {α β : Sort*} {f g : α → β} (h : f = g) (a : α) : | |
congr h (eq.refl a) = congr_fun h a := | |
rfl | |
@[simp] lemma congr_arg_refl {α β : Sort*} (f : α → β) (a : α) : | |
congr_arg f (eq.refl a) = eq.refl (f a) := | |
rfl | |
@[simp] lemma congr_fun_rfl {α β : Sort*} (f : α → β) (a : α) : | |
congr_fun (eq.refl f) a = eq.refl (f a) := | |
rfl | |
@[simp] lemma congr_fun_congr_arg {α β γ : Sort*} (f : α → β → γ) {a a' : α} (p : a = a') (b : β) : | |
congr_fun (congr_arg f p) b = congr_arg (λ a, f a b) p := | |
rfl | |
lemma heq_of_cast_eq : | |
∀ {α β : Sort*} {a : α} {a' : β} (e : α = β) (h₂ : cast e a = a'), a == a' | |
| α ._ a a' rfl h := eq.rec_on h (heq.refl _) | |
lemma cast_eq_iff_heq {α β : Sort*} {a : α} {a' : β} {e : α = β} : cast e a = a' ↔ a == a' := | |
⟨heq_of_cast_eq _, λ h, by cases h; refl⟩ | |
lemma rec_heq_of_heq {β} {C : α → Sort*} {x : C a} {y : β} (eq : a = b) (h : x == y) : | |
@eq.rec α a C x b eq == y := | |
by subst eq; exact h | |
protected lemma eq.congr {x₁ x₂ y₁ y₂ : α} (h₁ : x₁ = y₁) (h₂ : x₂ = y₂) : | |
(x₁ = x₂) ↔ (y₁ = y₂) := | |
by { subst h₁, subst h₂ } | |
lemma eq.congr_left {x y z : α} (h : x = y) : x = z ↔ y = z := by rw [h] | |
lemma eq.congr_right {x y z : α} (h : x = y) : z = x ↔ z = y := by rw [h] | |
lemma congr_arg2 {α β γ : Sort*} (f : α → β → γ) {x x' : α} {y y' : β} | |
(hx : x = x') (hy : y = y') : f x y = f x' y' := | |
by { subst hx, subst hy } | |
variables {β : α → Sort*} {γ : Π a, β a → Sort*} {δ : Π a b, γ a b → Sort*} | |
lemma congr_fun₂ {f g : Π a b, γ a b} (h : f = g) (a : α) (b : β a) : f a b = g a b := | |
congr_fun (congr_fun h _) _ | |
lemma congr_fun₃ {f g : Π a b c, δ a b c} (h : f = g) (a : α) (b : β a) (c : γ a b) : | |
f a b c = g a b c := | |
congr_fun₂ (congr_fun h _) _ _ | |
lemma funext₂ {f g : Π a, β a → Prop} (h : ∀ a b, f a b = g a b) : f = g := | |
funext $ λ _, funext $ h _ | |
lemma funext₃ {f g : Π a b, γ a b → Prop} (h : ∀ a b c, f a b c = g a b c) : f = g := | |
funext $ λ _, funext₂ $ h _ | |
end equality | |
/-! ### Declarations about quantifiers -/ | |
section quantifiers | |
variables {α : Sort*} | |
section dependent | |
variables {β : α → Sort*} {γ : Π a, β a → Sort*} {δ : Π a b, γ a b → Sort*} | |
{ε : Π a b c, δ a b c → Sort*} | |
lemma pi_congr {β' : α → Sort*} (h : ∀ a, β a = β' a) : (Π a, β a) = Π a, β' a := | |
(funext h : β = β') ▸ rfl | |
lemma forall₂_congr {p q : Π a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) : | |
(∀ a b, p a b) ↔ ∀ a b, q a b := | |
forall_congr $ λ a, forall_congr $ h a | |
lemma forall₃_congr {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) : | |
(∀ a b c, p a b c) ↔ ∀ a b c, q a b c := | |
forall_congr $ λ a, forall₂_congr $ h a | |
lemma forall₄_congr {p q : Π a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) : | |
(∀ a b c d, p a b c d) ↔ ∀ a b c d, q a b c d := | |
forall_congr $ λ a, forall₃_congr $ h a | |
lemma forall₅_congr {p q : Π a b c d, ε a b c d → Prop} | |
(h : ∀ a b c d e, p a b c d e ↔ q a b c d e) : | |
(∀ a b c d e, p a b c d e) ↔ ∀ a b c d e, q a b c d e := | |
forall_congr $ λ a, forall₄_congr $ h a | |
lemma exists₂_congr {p q : Π a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) : | |
(∃ a b, p a b) ↔ ∃ a b, q a b := | |
exists_congr $ λ a, exists_congr $ h a | |
lemma exists₃_congr {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) : | |
(∃ a b c, p a b c) ↔ ∃ a b c, q a b c := | |
exists_congr $ λ a, exists₂_congr $ h a | |
lemma exists₄_congr {p q : Π a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) : | |
(∃ a b c d, p a b c d) ↔ ∃ a b c d, q a b c d := | |
exists_congr $ λ a, exists₃_congr $ h a | |
lemma exists₅_congr {p q : Π a b c d, ε a b c d → Prop} | |
(h : ∀ a b c d e, p a b c d e ↔ q a b c d e) : | |
(∃ a b c d e, p a b c d e) ↔ ∃ a b c d e, q a b c d e := | |
exists_congr $ λ a, exists₄_congr $ h a | |
lemma forall_imp {p q : α → Prop} (h : ∀ a, p a → q a) : (∀ a, p a) → ∀ a, q a := λ h' a, h a (h' a) | |
lemma forall₂_imp {p q : Π a, β a → Prop} (h : ∀ a b, p a b → q a b) : | |
(∀ a b, p a b) → ∀ a b, q a b := | |
forall_imp $ λ i, forall_imp $ h i | |
lemma forall₃_imp {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c → q a b c) : | |
(∀ a b c, p a b c) → ∀ a b c, q a b c := | |
forall_imp $ λ a, forall₂_imp $ h a | |
lemma Exists.imp {p q : α → Prop} (h : ∀ a, (p a → q a)) : (∃ a, p a) → ∃ a, q a := | |
exists_imp_exists h | |
lemma Exists₂.imp {p q : Π a, β a → Prop} (h : ∀ a b, p a b → q a b) : | |
(∃ a b, p a b) → ∃ a b, q a b := | |
Exists.imp $ λ a, Exists.imp $ h a | |
lemma Exists₃.imp {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c → q a b c) : | |
(∃ a b c, p a b c) → ∃ a b c, q a b c := | |
Exists.imp $ λ a, Exists₂.imp $ h a | |
end dependent | |
variables {ι β : Sort*} {κ : ι → Sort*} {p q : α → Prop} {b : Prop} | |
lemma exists_imp_exists' {p : α → Prop} {q : β → Prop} (f : α → β) (hpq : ∀ a, p a → q (f a)) | |
(hp : ∃ a, p a) : ∃ b, q b := | |
exists.elim hp (λ a hp', ⟨_, hpq _ hp'⟩) | |
theorem forall_swap {p : α → β → Prop} : (∀ x y, p x y) ↔ ∀ y x, p x y := | |
⟨swap, swap⟩ | |
lemma forall₂_swap {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*} | |
{p : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Prop} : | |
(∀ i₁ j₁ i₂ j₂, p i₁ j₁ i₂ j₂) ↔ ∀ i₂ j₂ i₁ j₁, p i₁ j₁ i₂ j₂ := | |
⟨swap₂, swap₂⟩ | |
/-- We intentionally restrict the type of `α` in this lemma so that this is a safer to use in simp | |
than `forall_swap`. -/ | |
lemma imp_forall_iff {α : Type*} {p : Prop} {q : α → Prop} : (p → ∀ x, q x) ↔ (∀ x, p → q x) := | |
forall_swap | |
theorem exists_swap {p : α → β → Prop} : (∃ x y, p x y) ↔ ∃ y x, p x y := | |
⟨λ ⟨x, y, h⟩, ⟨y, x, h⟩, λ ⟨y, x, h⟩, ⟨x, y, h⟩⟩ | |
@[simp] theorem forall_exists_index {q : (∃ x, p x) → Prop} : | |
(∀ h, q h) ↔ ∀ x (h : p x), q ⟨x, h⟩ := | |
⟨λ h x hpx, h ⟨x, hpx⟩, λ h ⟨x, hpx⟩, h x hpx⟩ | |
theorem exists_imp_distrib : ((∃ x, p x) → b) ↔ ∀ x, p x → b := | |
forall_exists_index | |
/-- | |
Extract an element from a existential statement, using `classical.some`. | |
-/ | |
-- This enables projection notation. | |
@[reducible] noncomputable def Exists.some {p : α → Prop} (P : ∃ a, p a) : α := classical.some P | |
/-- | |
Show that an element extracted from `P : ∃ a, p a` using `P.some` satisfies `p`. | |
-/ | |
lemma Exists.some_spec {p : α → Prop} (P : ∃ a, p a) : p (P.some) := classical.some_spec P | |
--theorem forall_not_of_not_exists (h : ¬ ∃ x, p x) : ∀ x, ¬ p x := | |
--forall_imp_of_exists_imp h | |
theorem not_exists_of_forall_not (h : ∀ x, ¬ p x) : ¬ ∃ x, p x := | |
exists_imp_distrib.2 h | |
@[simp] theorem not_exists : (¬ ∃ x, p x) ↔ ∀ x, ¬ p x := | |
exists_imp_distrib | |
theorem not_forall_of_exists_not : (∃ x, ¬ p x) → ¬ ∀ x, p x | |
| ⟨x, hn⟩ h := hn (h x) | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_forall {p : α → Prop} | |
[decidable (∃ x, ¬ p x)] [∀ x, decidable (p x)] : (¬ ∀ x, p x) ↔ ∃ x, ¬ p x := | |
⟨not.decidable_imp_symm $ λ nx x, nx.decidable_imp_symm $ λ h, ⟨x, h⟩, | |
not_forall_of_exists_not⟩ | |
@[simp] theorem not_forall {p : α → Prop} : (¬ ∀ x, p x) ↔ ∃ x, ¬ p x := decidable.not_forall | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_forall_not [decidable (∃ x, p x)] : | |
(¬ ∀ x, ¬ p x) ↔ ∃ x, p x := | |
(@decidable.not_iff_comm _ _ _ (decidable_of_iff (¬ ∃ x, p x) not_exists)).1 not_exists | |
theorem not_forall_not : (¬ ∀ x, ¬ p x) ↔ ∃ x, p x := decidable.not_forall_not | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_exists_not [∀ x, decidable (p x)] : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x := | |
by simp [decidable.not_not] | |
@[simp] theorem not_exists_not : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x := decidable.not_exists_not | |
theorem forall_imp_iff_exists_imp [ha : nonempty α] : ((∀ x, p x) → b) ↔ ∃ x, p x → b := | |
let ⟨a⟩ := ha in | |
⟨λ h, not_forall_not.1 $ λ h', classical.by_cases (λ hb : b, h' a $ λ _, hb) | |
(λ hb, hb $ h $ λ x, (not_imp.1 (h' x)).1), λ ⟨x, hx⟩ h, hx (h x)⟩ | |
-- TODO: duplicate of a lemma in core | |
theorem forall_true_iff : (α → true) ↔ true := | |
implies_true_iff α | |
-- Unfortunately this causes simp to loop sometimes, so we | |
-- add the 2 and 3 cases as simp lemmas instead | |
theorem forall_true_iff' (h : ∀ a, p a ↔ true) : (∀ a, p a) ↔ true := | |
iff_true_intro (λ _, of_iff_true (h _)) | |
@[simp] theorem forall_2_true_iff {β : α → Sort*} : (∀ a, β a → true) ↔ true := | |
forall_true_iff' $ λ _, forall_true_iff | |
@[simp] theorem forall_3_true_iff {β : α → Sort*} {γ : Π a, β a → Sort*} : | |
(∀ a (b : β a), γ a b → true) ↔ true := | |
forall_true_iff' $ λ _, forall_2_true_iff | |
lemma exists_unique.exists {α : Sort*} {p : α → Prop} (h : ∃! x, p x) : ∃ x, p x := | |
exists.elim h (λ x hx, ⟨x, and.left hx⟩) | |
@[simp] lemma exists_unique_iff_exists {α : Sort*} [subsingleton α] {p : α → Prop} : | |
(∃! x, p x) ↔ ∃ x, p x := | |
⟨λ h, h.exists, Exists.imp $ λ x hx, ⟨hx, λ y _, subsingleton.elim y x⟩⟩ | |
@[simp] theorem forall_const (α : Sort*) [i : nonempty α] : (α → b) ↔ b := | |
⟨i.elim, λ hb x, hb⟩ | |
/-- For some reason simp doesn't use `forall_const` to simplify in this case. -/ | |
@[simp] lemma forall_forall_const {α β : Type*} (p : β → Prop) [nonempty α] : | |
(∀ x, α → p x) ↔ ∀ x, p x := | |
forall_congr $ λ x, forall_const α | |
@[simp] theorem exists_const (α : Sort*) [i : nonempty α] : (∃ x : α, b) ↔ b := | |
⟨λ ⟨x, h⟩, h, i.elim exists.intro⟩ | |
theorem exists_unique_const (α : Sort*) [i : nonempty α] [subsingleton α] : | |
(∃! x : α, b) ↔ b := | |
by simp | |
theorem forall_and_distrib : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := | |
⟨λ h, ⟨λ x, (h x).left, λ x, (h x).right⟩, λ ⟨h₁, h₂⟩ x, ⟨h₁ x, h₂ x⟩⟩ | |
theorem exists_or_distrib : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := | |
⟨λ ⟨x, hpq⟩, hpq.elim (λ hpx, or.inl ⟨x, hpx⟩) (λ hqx, or.inr ⟨x, hqx⟩), | |
λ hepq, hepq.elim (λ ⟨x, hpx⟩, ⟨x, or.inl hpx⟩) (λ ⟨x, hqx⟩, ⟨x, or.inr hqx⟩)⟩ | |
@[simp] theorem exists_and_distrib_left {q : Prop} {p : α → Prop} : | |
(∃x, q ∧ p x) ↔ q ∧ (∃x, p x) := | |
⟨λ ⟨x, hq, hp⟩, ⟨hq, x, hp⟩, λ ⟨hq, x, hp⟩, ⟨x, hq, hp⟩⟩ | |
@[simp] theorem exists_and_distrib_right {q : Prop} {p : α → Prop} : | |
(∃x, p x ∧ q) ↔ (∃x, p x) ∧ q := | |
by simp [and_comm] | |
@[simp] theorem forall_eq {a' : α} : (∀a, a = a' → p a) ↔ p a' := | |
⟨λ h, h a' rfl, λ h a e, e.symm ▸ h⟩ | |
@[simp] theorem forall_eq' {a' : α} : (∀a, a' = a → p a) ↔ p a' := | |
by simp [@eq_comm _ a'] | |
theorem and_forall_ne (a : α) : (p a ∧ ∀ b ≠ a, p b) ↔ ∀ b, p b := | |
by simp only [← @forall_eq _ p a, ← forall_and_distrib, ← or_imp_distrib, classical.em, | |
forall_const] | |
-- this lemma is needed to simplify the output of `list.mem_cons_iff` | |
@[simp] theorem forall_eq_or_imp {a' : α} : (∀ a, a = a' ∨ q a → p a) ↔ p a' ∧ ∀ a, q a → p a := | |
by simp only [or_imp_distrib, forall_and_distrib, forall_eq] | |
theorem exists_eq {a' : α} : ∃ a, a = a' := ⟨_, rfl⟩ | |
@[simp] theorem exists_eq' {a' : α} : ∃ a, a' = a := ⟨_, rfl⟩ | |
@[simp] theorem exists_unique_eq {a' : α} : ∃! a, a = a' := | |
by simp only [eq_comm, exists_unique, and_self, forall_eq', exists_eq'] | |
@[simp] theorem exists_unique_eq' {a' : α} : ∃! a, a' = a := | |
by simp only [exists_unique, and_self, forall_eq', exists_eq'] | |
@[simp] theorem exists_eq_left {a' : α} : (∃ a, a = a' ∧ p a) ↔ p a' := | |
⟨λ ⟨a, e, h⟩, e ▸ h, λ h, ⟨_, rfl, h⟩⟩ | |
@[simp] theorem exists_eq_right {a' : α} : (∃ a, p a ∧ a = a') ↔ p a' := | |
(exists_congr $ by exact λ a, and.comm).trans exists_eq_left | |
@[simp] theorem exists_eq_right_right {a' : α} : | |
(∃ (a : α), p a ∧ q a ∧ a = a') ↔ p a' ∧ q a' := | |
⟨λ ⟨_, hp, hq, rfl⟩, ⟨hp, hq⟩, λ ⟨hp, hq⟩, ⟨a', hp, hq, rfl⟩⟩ | |
@[simp] theorem exists_eq_right_right' {a' : α} : | |
(∃ (a : α), p a ∧ q a ∧ a' = a) ↔ p a' ∧ q a' := | |
⟨λ ⟨_, hp, hq, rfl⟩, ⟨hp, hq⟩, λ ⟨hp, hq⟩, ⟨a', hp, hq, rfl⟩⟩ | |
@[simp] theorem exists_apply_eq_apply (f : α → β) (a' : α) : ∃ a, f a = f a' := ⟨a', rfl⟩ | |
@[simp] theorem exists_apply_eq_apply' (f : α → β) (a' : α) : ∃ a, f a' = f a := ⟨a', rfl⟩ | |
@[simp] theorem exists_exists_and_eq_and {f : α → β} {p : α → Prop} {q : β → Prop} : | |
(∃ b, (∃ a, p a ∧ f a = b) ∧ q b) ↔ ∃ a, p a ∧ q (f a) := | |
⟨λ ⟨b, ⟨a, ha, hab⟩, hb⟩, ⟨a, ha, hab.symm ▸ hb⟩, λ ⟨a, hp, hq⟩, ⟨f a, ⟨a, hp, rfl⟩, hq⟩⟩ | |
@[simp] theorem exists_exists_eq_and {f : α → β} {p : β → Prop} : | |
(∃ b, (∃ a, f a = b) ∧ p b) ↔ ∃ a, p (f a) := | |
⟨λ ⟨b, ⟨a, ha⟩, hb⟩, ⟨a, ha.symm ▸ hb⟩, λ ⟨a, ha⟩, ⟨f a, ⟨a, rfl⟩, ha⟩⟩ | |
@[simp] lemma exists_or_eq_left (y : α) (p : α → Prop) : ∃ (x : α), x = y ∨ p x := | |
⟨y, or.inl rfl⟩ | |
@[simp] lemma exists_or_eq_right (y : α) (p : α → Prop) : ∃ (x : α), p x ∨ x = y := | |
⟨y, or.inr rfl⟩ | |
@[simp] lemma exists_or_eq_left' (y : α) (p : α → Prop) : ∃ (x : α), y = x ∨ p x := | |
⟨y, or.inl rfl⟩ | |
@[simp] lemma exists_or_eq_right' (y : α) (p : α → Prop) : ∃ (x : α), p x ∨ y = x := | |
⟨y, or.inr rfl⟩ | |
@[simp] theorem forall_apply_eq_imp_iff {f : α → β} {p : β → Prop} : | |
(∀ a, ∀ b, f a = b → p b) ↔ (∀ a, p (f a)) := | |
⟨λ h a, h a (f a) rfl, λ h a b hab, hab ▸ h a⟩ | |
@[simp] theorem forall_apply_eq_imp_iff' {f : α → β} {p : β → Prop} : | |
(∀ b, ∀ a, f a = b → p b) ↔ (∀ a, p (f a)) := | |
by { rw forall_swap, simp } | |
@[simp] theorem forall_eq_apply_imp_iff {f : α → β} {p : β → Prop} : | |
(∀ a, ∀ b, b = f a → p b) ↔ (∀ a, p (f a)) := | |
by simp [@eq_comm _ _ (f _)] | |
@[simp] theorem forall_eq_apply_imp_iff' {f : α → β} {p : β → Prop} : | |
(∀ b, ∀ a, b = f a → p b) ↔ (∀ a, p (f a)) := | |
by { rw forall_swap, simp } | |
@[simp] theorem forall_apply_eq_imp_iff₂ {f : α → β} {p : α → Prop} {q : β → Prop} : | |
(∀ b, ∀ a, p a → f a = b → q b) ↔ ∀ a, p a → q (f a) := | |
⟨λ h a ha, h (f a) a ha rfl, λ h b a ha hb, hb ▸ h a ha⟩ | |
@[simp] theorem exists_eq_left' {a' : α} : (∃ a, a' = a ∧ p a) ↔ p a' := | |
by simp [@eq_comm _ a'] | |
@[simp] theorem exists_eq_right' {a' : α} : (∃ a, p a ∧ a' = a) ↔ p a' := | |
by simp [@eq_comm _ a'] | |
theorem exists_comm {p : α → β → Prop} : (∃ a b, p a b) ↔ ∃ b a, p a b := | |
⟨λ ⟨a, b, h⟩, ⟨b, a, h⟩, λ ⟨b, a, h⟩, ⟨a, b, h⟩⟩ | |
lemma exists₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*} | |
{p : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Prop} : | |
(∃ i₁ j₁ i₂ j₂, p i₁ j₁ i₂ j₂) ↔ ∃ i₂ j₂ i₁ j₁, p i₁ j₁ i₂ j₂ := | |
by simp only [@exists_comm (κ₁ _), @exists_comm ι₁] | |
theorem and.exists {p q : Prop} {f : p ∧ q → Prop} : (∃ h, f h) ↔ ∃ hp hq, f ⟨hp, hq⟩ := | |
⟨λ ⟨h, H⟩, ⟨h.1, h.2, H⟩, λ ⟨hp, hq, H⟩, ⟨⟨hp, hq⟩, H⟩⟩ | |
theorem forall_or_of_or_forall (h : b ∨ ∀x, p x) (x) : b ∨ p x := | |
h.imp_right $ λ h₂, h₂ x | |
-- See Note [decidable namespace] | |
protected theorem decidable.forall_or_distrib_left {q : Prop} {p : α → Prop} [decidable q] : | |
(∀x, q ∨ p x) ↔ q ∨ (∀x, p x) := | |
⟨λ h, if hq : q then or.inl hq else or.inr $ λ x, (h x).resolve_left hq, | |
forall_or_of_or_forall⟩ | |
theorem forall_or_distrib_left {q : Prop} {p : α → Prop} : | |
(∀x, q ∨ p x) ↔ q ∨ (∀x, p x) := decidable.forall_or_distrib_left | |
-- See Note [decidable namespace] | |
protected theorem decidable.forall_or_distrib_right {q : Prop} {p : α → Prop} [decidable q] : | |
(∀x, p x ∨ q) ↔ (∀x, p x) ∨ q := | |
by simp [or_comm, decidable.forall_or_distrib_left] | |
theorem forall_or_distrib_right {q : Prop} {p : α → Prop} : | |
(∀x, p x ∨ q) ↔ (∀x, p x) ∨ q := decidable.forall_or_distrib_right | |
@[simp] theorem exists_prop {p q : Prop} : (∃ h : p, q) ↔ p ∧ q := | |
⟨λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩⟩ | |
theorem exists_unique_prop {p q : Prop} : (∃! h : p, q) ↔ p ∧ q := | |
by simp | |
@[simp] theorem exists_false : ¬ (∃a:α, false) := assume ⟨a, h⟩, h | |
@[simp] lemma exists_unique_false : ¬ (∃! (a : α), false) := assume ⟨a, h, h'⟩, h | |
theorem Exists.fst {p : b → Prop} : Exists p → b | |
| ⟨h, _⟩ := h | |
theorem Exists.snd {p : b → Prop} : ∀ h : Exists p, p h.fst | |
| ⟨_, h⟩ := h | |
theorem forall_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∀ h' : p, q h') ↔ q h := | |
@forall_const (q h) p ⟨h⟩ | |
theorem exists_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∃ h' : p, q h') ↔ q h := | |
@exists_const (q h) p ⟨h⟩ | |
lemma exists_iff_of_forall {p : Prop} {q : p → Prop} (h : ∀ h, q h) : (∃ h, q h) ↔ p := | |
⟨Exists.fst, λ H, ⟨H, h H⟩⟩ | |
theorem exists_unique_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∃! h' : p, q h') ↔ q h := | |
@exists_unique_const (q h) p ⟨h⟩ _ | |
theorem forall_prop_of_false {p : Prop} {q : p → Prop} (hn : ¬ p) : | |
(∀ h' : p, q h') ↔ true := | |
iff_true_intro $ λ h, hn.elim h | |
theorem exists_prop_of_false {p : Prop} {q : p → Prop} : ¬ p → ¬ (∃ h' : p, q h') := | |
mt Exists.fst | |
@[congr] lemma exists_prop_congr {p p' : Prop} {q q' : p → Prop} | |
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : Exists q ↔ ∃ h : p', q' (hp.2 h) := | |
⟨λ ⟨_, _⟩, ⟨hp.1 ‹_›, (hq _).1 ‹_›⟩, λ ⟨_, _⟩, ⟨_, (hq _).2 ‹_›⟩⟩ | |
@[congr] lemma exists_prop_congr' {p p' : Prop} {q q' : p → Prop} | |
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : Exists q = ∃ h : p', q' (hp.2 h) := | |
propext (exists_prop_congr hq _) | |
/-- See `is_empty.exists_iff` for the `false` version. -/ | |
@[simp] lemma exists_true_left (p : true → Prop) : (∃ x, p x) ↔ p true.intro := | |
exists_prop_of_true _ | |
lemma exists_unique.unique {α : Sort*} {p : α → Prop} (h : ∃! x, p x) | |
{y₁ y₂ : α} (py₁ : p y₁) (py₂ : p y₂) : y₁ = y₂ := | |
unique_of_exists_unique h py₁ py₂ | |
@[congr] lemma forall_prop_congr {p p' : Prop} {q q' : p → Prop} | |
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : (∀ h, q h) ↔ ∀ h : p', q' (hp.2 h) := | |
⟨λ h1 h2, (hq _).1 (h1 (hp.2 _)), λ h1 h2, (hq _).2 (h1 (hp.1 h2))⟩ | |
@[congr] lemma forall_prop_congr' {p p' : Prop} {q q' : p → Prop} | |
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : (∀ h, q h) = ∀ h : p', q' (hp.2 h) := | |
propext (forall_prop_congr hq _) | |
/-- See `is_empty.forall_iff` for the `false` version. -/ | |
@[simp] lemma forall_true_left (p : true → Prop) : (∀ x, p x) ↔ p true.intro := | |
forall_prop_of_true _ | |
lemma exists_unique.elim2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)] | |
{q : Π x (h : p x), Prop} {b : Prop} (h₂ : ∃! x (h : p x), q x h) | |
(h₁ : ∀ x (h : p x), q x h → (∀ y (hy : p y), q y hy → y = x) → b) : b := | |
begin | |
simp only [exists_unique_iff_exists] at h₂, | |
apply h₂.elim, | |
exact λ x ⟨hxp, hxq⟩ H, h₁ x hxp hxq (λ y hyp hyq, H y ⟨hyp, hyq⟩) | |
end | |
lemma exists_unique.intro2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)] | |
{q : Π (x : α) (h : p x), Prop} (w : α) (hp : p w) (hq : q w hp) | |
(H : ∀ y (hy : p y), q y hy → y = w) : | |
∃! x (hx : p x), q x hx := | |
begin | |
simp only [exists_unique_iff_exists], | |
exact exists_unique.intro w ⟨hp, hq⟩ (λ y ⟨hyp, hyq⟩, H y hyp hyq) | |
end | |
lemma exists_unique.exists2 {α : Sort*} {p : α → Sort*} {q : Π (x : α) (h : p x), Prop} | |
(h : ∃! x (hx : p x), q x hx) : | |
∃ x (hx : p x), q x hx := | |
h.exists.imp (λ x hx, hx.exists) | |
lemma exists_unique.unique2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)] | |
{q : Π (x : α) (hx : p x), Prop} (h : ∃! x (hx : p x), q x hx) | |
{y₁ y₂ : α} (hpy₁ : p y₁) (hqy₁ : q y₁ hpy₁) | |
(hpy₂ : p y₂) (hqy₂ : q y₂ hpy₂) : y₁ = y₂ := | |
begin | |
simp only [exists_unique_iff_exists] at h, | |
exact h.unique ⟨hpy₁, hqy₁⟩ ⟨hpy₂, hqy₂⟩ | |
end | |
end quantifiers | |
/-! ### Classical lemmas -/ | |
namespace classical | |
variables {α : Sort*} {p : α → Prop} | |
theorem cases {p : Prop → Prop} (h1 : p true) (h2 : p false) : ∀a, p a := | |
assume a, cases_on a h1 h2 | |
/- use shortened names to avoid conflict when classical namespace is open. -/ | |
/-- Any prop `p` is decidable classically. A shorthand for `classical.prop_decidable`. -/ | |
noncomputable def dec (p : Prop) : decidable p := | |
by apply_instance | |
/-- Any predicate `p` is decidable classically. -/ | |
noncomputable def dec_pred (p : α → Prop) : decidable_pred p := | |
by apply_instance | |
/-- Any relation `p` is decidable classically. -/ | |
noncomputable def dec_rel (p : α → α → Prop) : decidable_rel p := | |
by apply_instance | |
/-- Any type `α` has decidable equality classically. -/ | |
noncomputable def dec_eq (α : Sort*) : decidable_eq α := | |
by apply_instance | |
/-- Construct a function from a default value `H0`, and a function to use if there exists a value | |
satisfying the predicate. -/ | |
@[elab_as_eliminator] | |
noncomputable def {u} exists_cases {C : Sort u} (H0 : C) (H : ∀ a, p a → C) : C := | |
if h : ∃ a, p a then H (classical.some h) (classical.some_spec h) else H0 | |
lemma some_spec2 {α : Sort*} {p : α → Prop} {h : ∃a, p a} | |
(q : α → Prop) (hpq : ∀a, p a → q a) : q (some h) := | |
hpq _ $ some_spec _ | |
/-- A version of classical.indefinite_description which is definitionally equal to a pair -/ | |
noncomputable def subtype_of_exists {α : Type*} {P : α → Prop} (h : ∃ x, P x) : {x // P x} := | |
⟨classical.some h, classical.some_spec h⟩ | |
/-- A version of `by_contradiction` that uses types instead of propositions. -/ | |
protected noncomputable def by_contradiction' {α : Sort*} (H : ¬ (α → false)) : α := | |
classical.choice $ peirce _ false $ λ h, (H $ λ a, h ⟨a⟩).elim | |
/-- `classical.by_contradiction'` is equivalent to lean's axiom `classical.choice`. -/ | |
def choice_of_by_contradiction' {α : Sort*} (contra : ¬ (α → false) → α) : nonempty α → α := | |
λ H, contra H.elim | |
end classical | |
/-- This function has the same type as `exists.rec_on`, and can be used to case on an equality, | |
but `exists.rec_on` can only eliminate into Prop, while this version eliminates into any universe | |
using the axiom of choice. -/ | |
@[elab_as_eliminator] | |
noncomputable def {u} exists.classical_rec_on | |
{α} {p : α → Prop} (h : ∃ a, p a) {C : Sort u} (H : ∀ a, p a → C) : C := | |
H (classical.some h) (classical.some_spec h) | |
/-! ### Declarations about bounded quantifiers -/ | |
section bounded_quantifiers | |
variables {α : Sort*} {r p q : α → Prop} {P Q : ∀ x, p x → Prop} {b : Prop} | |
theorem bex_def : (∃ x (h : p x), q x) ↔ ∃ x, p x ∧ q x := | |
⟨λ ⟨x, px, qx⟩, ⟨x, px, qx⟩, λ ⟨x, px, qx⟩, ⟨x, px, qx⟩⟩ | |
theorem bex.elim {b : Prop} : (∃ x h, P x h) → (∀ a h, P a h → b) → b | |
| ⟨a, h₁, h₂⟩ h' := h' a h₁ h₂ | |
theorem bex.intro (a : α) (h₁ : p a) (h₂ : P a h₁) : ∃ x (h : p x), P x h := | |
⟨a, h₁, h₂⟩ | |
theorem ball_congr (H : ∀ x h, P x h ↔ Q x h) : | |
(∀ x h, P x h) ↔ (∀ x h, Q x h) := | |
forall_congr $ λ x, forall_congr (H x) | |
theorem bex_congr (H : ∀ x h, P x h ↔ Q x h) : | |
(∃ x h, P x h) ↔ (∃ x h, Q x h) := | |
exists_congr $ λ x, exists_congr (H x) | |
theorem bex_eq_left {a : α} : (∃ x (_ : x = a), p x) ↔ p a := | |
by simp only [exists_prop, exists_eq_left] | |
theorem ball.imp_right (H : ∀ x h, (P x h → Q x h)) | |
(h₁ : ∀ x h, P x h) (x h) : Q x h := | |
H _ _ $ h₁ _ _ | |
theorem bex.imp_right (H : ∀ x h, (P x h → Q x h)) : | |
(∃ x h, P x h) → ∃ x h, Q x h | |
| ⟨x, h, h'⟩ := ⟨_, _, H _ _ h'⟩ | |
theorem ball.imp_left (H : ∀ x, p x → q x) | |
(h₁ : ∀ x, q x → r x) (x) (h : p x) : r x := | |
h₁ _ $ H _ h | |
theorem bex.imp_left (H : ∀ x, p x → q x) : | |
(∃ x (_ : p x), r x) → ∃ x (_ : q x), r x | |
| ⟨x, hp, hr⟩ := ⟨x, H _ hp, hr⟩ | |
theorem ball_of_forall (h : ∀ x, p x) (x) : p x := | |
h x | |
theorem forall_of_ball (H : ∀ x, p x) (h : ∀ x, p x → q x) (x) : q x := | |
h x $ H x | |
theorem bex_of_exists (H : ∀ x, p x) : (∃ x, q x) → ∃ x (_ : p x), q x | |
| ⟨x, hq⟩ := ⟨x, H x, hq⟩ | |
theorem exists_of_bex : (∃ x (_ : p x), q x) → ∃ x, q x | |
| ⟨x, _, hq⟩ := ⟨x, hq⟩ | |
@[simp] theorem bex_imp_distrib : ((∃ x h, P x h) → b) ↔ (∀ x h, P x h → b) := | |
by simp | |
theorem not_bex : (¬ ∃ x h, P x h) ↔ ∀ x h, ¬ P x h := | |
bex_imp_distrib | |
theorem not_ball_of_bex_not : (∃ x h, ¬ P x h) → ¬ ∀ x h, P x h | |
| ⟨x, h, hp⟩ al := hp $ al x h | |
-- See Note [decidable namespace] | |
protected theorem decidable.not_ball [decidable (∃ x h, ¬ P x h)] [∀ x h, decidable (P x h)] : | |
(¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := | |
⟨not.decidable_imp_symm $ λ nx x h, nx.decidable_imp_symm $ λ h', ⟨x, h, h'⟩, | |
not_ball_of_bex_not⟩ | |
theorem not_ball : (¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := decidable.not_ball | |
theorem ball_true_iff (p : α → Prop) : (∀ x, p x → true) ↔ true := | |
iff_true_intro (λ h hrx, trivial) | |
theorem ball_and_distrib : (∀ x h, P x h ∧ Q x h) ↔ (∀ x h, P x h) ∧ (∀ x h, Q x h) := | |
iff.trans (forall_congr $ λ x, forall_and_distrib) forall_and_distrib | |
theorem bex_or_distrib : (∃ x h, P x h ∨ Q x h) ↔ (∃ x h, P x h) ∨ (∃ x h, Q x h) := | |
iff.trans (exists_congr $ λ x, exists_or_distrib) exists_or_distrib | |
theorem ball_or_left_distrib : (∀ x, p x ∨ q x → r x) ↔ (∀ x, p x → r x) ∧ (∀ x, q x → r x) := | |
iff.trans (forall_congr $ λ x, or_imp_distrib) forall_and_distrib | |
theorem bex_or_left_distrib : | |
(∃ x (_ : p x ∨ q x), r x) ↔ (∃ x (_ : p x), r x) ∨ (∃ x (_ : q x), r x) := | |
by simp only [exists_prop]; exact | |
iff.trans (exists_congr $ λ x, or_and_distrib_right) exists_or_distrib | |
end bounded_quantifiers | |
namespace classical | |
local attribute [instance] prop_decidable | |
theorem not_ball {α : Sort*} {p : α → Prop} {P : Π (x : α), p x → Prop} : | |
(¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := _root_.not_ball | |
end classical | |
section ite | |
variables {α β γ : Sort*} {σ : α → Sort*} (f : α → β) {P Q : Prop} [decidable P] [decidable Q] | |
{a b c : α} {A : P → α} {B : ¬ P → α} | |
lemma dite_eq_iff : dite P A B = c ↔ (∃ h, A h = c) ∨ ∃ h, B h = c := | |
by by_cases P; simp [*, exists_prop_of_false not_false] | |
lemma ite_eq_iff : ite P a b = c ↔ P ∧ a = c ∨ ¬ P ∧ b = c := | |
dite_eq_iff.trans $ by rw [exists_prop, exists_prop] | |
@[simp] lemma dite_eq_left_iff : dite P (λ _, a) B = a ↔ ∀ h, B h = a := | |
by by_cases P; simp [*, forall_prop_of_false not_false] | |
@[simp] lemma dite_eq_right_iff : dite P A (λ _, b) = b ↔ ∀ h, A h = b := | |
by by_cases P; simp [*, forall_prop_of_false not_false] | |
@[simp] lemma ite_eq_left_iff : ite P a b = a ↔ (¬ P → b = a) := dite_eq_left_iff | |
@[simp] lemma ite_eq_right_iff : ite P a b = b ↔ (P → a = b) := dite_eq_right_iff | |
lemma dite_ne_left_iff : dite P (λ _, a) B ≠ a ↔ ∃ h, a ≠ B h := | |
by { rw [ne.def, dite_eq_left_iff, not_forall], exact exists_congr (λ h, by rw ne_comm) } | |
lemma dite_ne_right_iff : dite P A (λ _, b) ≠ b ↔ ∃ h, A h ≠ b := | |
by simp only [ne.def, dite_eq_right_iff, not_forall] | |
lemma ite_ne_left_iff : ite P a b ≠ a ↔ ¬ P ∧ a ≠ b := dite_ne_left_iff.trans $ by rw exists_prop | |
lemma ite_ne_right_iff : ite P a b ≠ b ↔ P ∧ a ≠ b := dite_ne_right_iff.trans $ by rw exists_prop | |
protected lemma ne.dite_eq_left_iff (h : ∀ h, a ≠ B h) : dite P (λ _, a) B = a ↔ P := | |
dite_eq_left_iff.trans $ ⟨λ H, of_not_not $ λ h', h h' (H h').symm, λ h H, (H h).elim⟩ | |
protected lemma ne.dite_eq_right_iff (h : ∀ h, A h ≠ b) : dite P A (λ _, b) = b ↔ ¬ P := | |
dite_eq_right_iff.trans $ ⟨λ H h', h h' (H h'), λ h' H, (h' H).elim⟩ | |
protected lemma ne.ite_eq_left_iff (h : a ≠ b) : ite P a b = a ↔ P := ne.dite_eq_left_iff $ λ _, h | |
protected lemma ne.ite_eq_right_iff (h : a ≠ b) : ite P a b = b ↔ ¬ P := | |
ne.dite_eq_right_iff $ λ _, h | |
protected lemma ne.dite_ne_left_iff (h : ∀ h, a ≠ B h) : dite P (λ _, a) B ≠ a ↔ ¬ P := | |
dite_ne_left_iff.trans $ exists_iff_of_forall h | |
protected lemma ne.dite_ne_right_iff (h : ∀ h, A h ≠ b) : dite P A (λ _, b) ≠ b ↔ P := | |
dite_ne_right_iff.trans $ exists_iff_of_forall h | |
protected lemma ne.ite_ne_left_iff (h : a ≠ b) : ite P a b ≠ a ↔ ¬ P := ne.dite_ne_left_iff $ λ _, h | |
protected lemma ne.ite_ne_right_iff (h : a ≠ b) : ite P a b ≠ b ↔ P := ne.dite_ne_right_iff $ λ _, h | |
variables (P Q) (a b) | |
/-- A `dite` whose results do not actually depend on the condition may be reduced to an `ite`. -/ | |
@[simp] lemma dite_eq_ite : dite P (λ h, a) (λ h, b) = ite P a b := rfl | |
lemma dite_eq_or_eq : (∃ h, dite P A B = A h) ∨ ∃ h, dite P A B = B h := | |
decidable.by_cases (λ h, or.inl ⟨h, dif_pos h⟩) (λ h, or.inr ⟨h, dif_neg h⟩) | |
lemma ite_eq_or_eq : ite P a b = a ∨ ite P a b = b := | |
decidable.by_cases (λ h, or.inl (if_pos h)) (λ h, or.inr (if_neg h)) | |
/-- A function applied to a `dite` is a `dite` of that function applied to each of the branches. -/ | |
lemma apply_dite (x : P → α) (y : ¬P → α) : f (dite P x y) = dite P (λ h, f (x h)) (λ h, f (y h)) := | |
by by_cases h : P; simp [h] | |
/-- A function applied to a `ite` is a `ite` of that function applied to each of the branches. -/ | |
lemma apply_ite : f (ite P a b) = ite P (f a) (f b) := apply_dite f P (λ _, a) (λ _, b) | |
/-- A two-argument function applied to two `dite`s is a `dite` of that two-argument function | |
applied to each of the branches. -/ | |
lemma apply_dite2 (f : α → β → γ) (P : Prop) [decidable P] (a : P → α) (b : ¬P → α) (c : P → β) | |
(d : ¬P → β) : | |
f (dite P a b) (dite P c d) = dite P (λ h, f (a h) (c h)) (λ h, f (b h) (d h)) := | |
by by_cases h : P; simp [h] | |
/-- A two-argument function applied to two `ite`s is a `ite` of that two-argument function | |
applied to each of the branches. -/ | |
lemma apply_ite2 (f : α → β → γ) (P : Prop) [decidable P] (a b : α) (c d : β) : | |
f (ite P a b) (ite P c d) = ite P (f a c) (f b d) := | |
apply_dite2 f P (λ _, a) (λ _, b) (λ _, c) (λ _, d) | |
/-- A 'dite' producing a `Pi` type `Π a, σ a`, applied to a value `a : α` is a `dite` that applies | |
either branch to `a`. -/ | |
lemma dite_apply (f : P → Π a, σ a) (g : ¬ P → Π a, σ a) (a : α) : | |
(dite P f g) a = dite P (λ h, f h a) (λ h, g h a) := | |
by by_cases h : P; simp [h] | |
/-- A 'ite' producing a `Pi` type `Π a, σ a`, applied to a value `a : α` is a `ite` that applies | |
either branch to `a`. -/ | |
lemma ite_apply (f g : Π a, σ a) (a : α) : (ite P f g) a = ite P (f a) (g a) := | |
dite_apply P (λ _, f) (λ _, g) a | |
/-- Negation of the condition `P : Prop` in a `dite` is the same as swapping the branches. -/ | |
@[simp] lemma dite_not (x : ¬ P → α) (y : ¬¬ P → α) : | |
dite (¬ P) x y = dite P (λ h, y (not_not_intro h)) x := | |
by by_cases h : P; simp [h] | |
/-- Negation of the condition `P : Prop` in a `ite` is the same as swapping the branches. -/ | |
@[simp] lemma ite_not : ite (¬ P) a b = ite P b a := dite_not P (λ _, a) (λ _, b) | |
lemma ite_and : ite (P ∧ Q) a b = ite P (ite Q a b) b := | |
by by_cases hp : P; by_cases hq : Q; simp [hp, hq] | |
end ite | |