Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2015 Microsoft Corporation. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Leonardo de Moura, Mario Carneiro | |
-/ | |
import data.fun_like.equiv | |
import data.option.basic | |
import data.prod.basic | |
import data.quot | |
import data.sigma.basic | |
import data.subtype | |
import data.sum.basic | |
import logic.function.conjugate | |
import logic.unique | |
import tactic.norm_cast | |
import tactic.simps | |
/-! | |
# Equivalence between types | |
In this file we define two types: | |
* `equiv α β` a.k.a. `α ≃ β`: a bijective map `α → β` bundled with its inverse map; we use this (and | |
not equality!) to express that various `Type`s or `Sort`s are equivalent. | |
* `equiv.perm α`: the group of permutations `α ≃ α`. More lemmas about `equiv.perm` can be found in | |
`group_theory/perm`. | |
Then we define | |
* canonical isomorphisms between various types: e.g., | |
- `equiv.refl α` is the identity map interpreted as `α ≃ α`; | |
- `equiv.sum_equiv_sigma_bool` is the canonical equivalence between the sum of two types `α ⊕ β` | |
and the sigma-type `Σ b : bool, cond b α β`; | |
- `equiv.prod_sum_distrib : α × (β ⊕ γ) ≃ (α × β) ⊕ (α × γ)` shows that type product and type sum | |
satisfy the distributive law up to a canonical equivalence; | |
* operations on equivalences: e.g., | |
- `equiv.symm e : β ≃ α` is the inverse of `e : α ≃ β`; | |
- `equiv.trans e₁ e₂ : α ≃ γ` is the composition of `e₁ : α ≃ β` and `e₂ : β ≃ γ` (note the order | |
of the arguments!); | |
- `equiv.prod_congr ea eb : α₁ × β₁ ≃ α₂ × β₂`: combine two equivalences `ea : α₁ ≃ α₂` and | |
`eb : β₁ ≃ β₂` using `prod.map`. | |
* definitions that transfer some instances along an equivalence. By convention, we transfer | |
instances from right to left. | |
- `equiv.inhabited` takes `e : α ≃ β` and `[inhabited β]` and returns `inhabited α`; | |
- `equiv.unique` takes `e : α ≃ β` and `[unique β]` and returns `unique α`; | |
- `equiv.decidable_eq` takes `e : α ≃ β` and `[decidable_eq β]` and returns `decidable_eq α`. | |
More definitions of this kind can be found in other files. E.g., `data/equiv/transfer_instance` | |
does it for many algebraic type classes like `group`, `module`, etc. | |
## Tags | |
equivalence, congruence, bijective map | |
-/ | |
open function | |
universes u v w z | |
variables {α : Sort u} {β : Sort v} {γ : Sort w} | |
/-- `α ≃ β` is the type of functions from `α → β` with a two-sided inverse. -/ | |
structure equiv (α : Sort*) (β : Sort*) := | |
(to_fun : α → β) | |
(inv_fun : β → α) | |
(left_inv : left_inverse inv_fun to_fun) | |
(right_inv : right_inverse inv_fun to_fun) | |
infix ` ≃ `:25 := equiv | |
instance {F} [equiv_like F α β] : has_coe_t F (α ≃ β) := | |
⟨λ f, { to_fun := f, inv_fun := equiv_like.inv f, left_inv := equiv_like.left_inv f, | |
right_inv := equiv_like.right_inv f }⟩ | |
/-- `perm α` is the type of bijections from `α` to itself. -/ | |
@[reducible] def equiv.perm (α : Sort*) := equiv α α | |
namespace equiv | |
instance : equiv_like (α ≃ β) α β := | |
{ coe := to_fun, inv := inv_fun, left_inv := left_inv, right_inv := right_inv, | |
coe_injective' := λ e₁ e₂ h₁ h₂, by { cases e₁, cases e₂, congr' } } | |
instance : has_coe_to_fun (α ≃ β) (λ _, α → β) := ⟨to_fun⟩ | |
@[simp] theorem coe_fn_mk (f : α → β) (g l r) : (equiv.mk f g l r : α → β) = f := | |
rfl | |
/-- The map `coe_fn : (r ≃ s) → (r → s)` is injective. -/ | |
theorem coe_fn_injective : @function.injective (α ≃ β) (α → β) coe_fn := fun_like.coe_injective | |
protected lemma coe_inj {e₁ e₂ : α ≃ β} : (e₁ : α → β) = e₂ ↔ e₁ = e₂ := fun_like.coe_fn_eq | |
@[ext] lemma ext {f g : equiv α β} (H : ∀ x, f x = g x) : f = g := fun_like.ext f g H | |
protected lemma congr_arg {f : equiv α β} {x x' : α} : x = x' → f x = f x' := fun_like.congr_arg f | |
protected lemma congr_fun {f g : equiv α β} (h : f = g) (x : α) : f x = g x := | |
fun_like.congr_fun h x | |
lemma ext_iff {f g : equiv α β} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff | |
@[ext] lemma perm.ext {σ τ : equiv.perm α} (H : ∀ x, σ x = τ x) : σ = τ := | |
equiv.ext H | |
protected lemma perm.congr_arg {f : equiv.perm α} {x x' : α} : x = x' → f x = f x' := | |
equiv.congr_arg | |
protected lemma perm.congr_fun {f g : equiv.perm α} (h : f = g) (x : α) : f x = g x := | |
equiv.congr_fun h x | |
lemma perm.ext_iff {σ τ : equiv.perm α} : σ = τ ↔ ∀ x, σ x = τ x := | |
ext_iff | |
/-- Any type is equivalent to itself. -/ | |
@[refl] protected def refl (α : Sort*) : α ≃ α := ⟨id, id, λ x, rfl, λ x, rfl⟩ | |
instance inhabited' : inhabited (α ≃ α) := ⟨equiv.refl α⟩ | |
/-- Inverse of an equivalence `e : α ≃ β`. -/ | |
@[symm] protected def symm (e : α ≃ β) : β ≃ α := ⟨e.inv_fun, e.to_fun, e.right_inv, e.left_inv⟩ | |
/-- See Note [custom simps projection] -/ | |
def simps.symm_apply (e : α ≃ β) : β → α := e.symm | |
initialize_simps_projections equiv (to_fun → apply, inv_fun → symm_apply) | |
/-- Composition of equivalences `e₁ : α ≃ β` and `e₂ : β ≃ γ`. -/ | |
@[trans] protected def trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : α ≃ γ := | |
⟨e₂ ∘ e₁, e₁.symm ∘ e₂.symm, e₂.left_inv.comp e₁.left_inv, e₂.right_inv.comp e₁.right_inv⟩ | |
@[simp] | |
lemma to_fun_as_coe (e : α ≃ β) : e.to_fun = e := rfl | |
@[simp] | |
lemma inv_fun_as_coe (e : α ≃ β) : e.inv_fun = e.symm := rfl | |
protected theorem injective (e : α ≃ β) : injective e := equiv_like.injective e | |
protected theorem surjective (e : α ≃ β) : surjective e := equiv_like.surjective e | |
protected theorem bijective (e : α ≃ β) : bijective e := equiv_like.bijective e | |
protected theorem subsingleton (e : α ≃ β) [subsingleton β] : subsingleton α := | |
e.injective.subsingleton | |
protected theorem subsingleton.symm (e : α ≃ β) [subsingleton α] : subsingleton β := | |
e.symm.injective.subsingleton | |
lemma subsingleton_congr (e : α ≃ β) : subsingleton α ↔ subsingleton β := | |
⟨λ h, by exactI e.symm.subsingleton, λ h, by exactI e.subsingleton⟩ | |
instance equiv_subsingleton_cod [subsingleton β] : | |
subsingleton (α ≃ β) := | |
⟨λ f g, equiv.ext $ λ x, subsingleton.elim _ _⟩ | |
instance equiv_subsingleton_dom [subsingleton α] : | |
subsingleton (α ≃ β) := | |
⟨λ f g, equiv.ext $ λ x, @subsingleton.elim _ (equiv.subsingleton.symm f) _ _⟩ | |
instance perm_unique [subsingleton α] : unique (perm α) := | |
unique_of_subsingleton (equiv.refl α) | |
lemma perm.subsingleton_eq_refl [subsingleton α] (e : perm α) : | |
e = equiv.refl α := subsingleton.elim _ _ | |
/-- Transfer `decidable_eq` across an equivalence. -/ | |
protected def decidable_eq (e : α ≃ β) [decidable_eq β] : decidable_eq α := | |
e.injective.decidable_eq | |
lemma nonempty_congr (e : α ≃ β) : nonempty α ↔ nonempty β := | |
nonempty.congr e e.symm | |
protected lemma nonempty (e : α ≃ β) [nonempty β] : nonempty α := | |
e.nonempty_congr.mpr ‹_› | |
/-- If `α ≃ β` and `β` is inhabited, then so is `α`. -/ | |
protected def inhabited [inhabited β] (e : α ≃ β) : inhabited α := | |
⟨e.symm default⟩ | |
/-- If `α ≃ β` and `β` is a singleton type, then so is `α`. -/ | |
protected def unique [unique β] (e : α ≃ β) : unique α := | |
e.symm.surjective.unique | |
/-- Equivalence between equal types. -/ | |
protected def cast {α β : Sort*} (h : α = β) : α ≃ β := | |
⟨cast h, cast h.symm, λ x, by { cases h, refl }, λ x, by { cases h, refl }⟩ | |
@[simp] theorem coe_fn_symm_mk (f : α → β) (g l r) : ((equiv.mk f g l r).symm : β → α) = g := | |
rfl | |
@[simp] theorem coe_refl : ⇑(equiv.refl α) = id := rfl | |
/-- This cannot be a `simp` lemmas as it incorrectly matches against `e : α ≃ synonym α`, when | |
`synonym α` is semireducible. This makes a mess of `multiplicative.of_add` etc. -/ | |
theorem perm.coe_subsingleton {α : Type*} [subsingleton α] (e : perm α) : ⇑(e) = id := | |
by rw [perm.subsingleton_eq_refl e, coe_refl] | |
theorem refl_apply (x : α) : equiv.refl α x = x := rfl | |
@[simp] theorem coe_trans (f : α ≃ β) (g : β ≃ γ) : ⇑(f.trans g) = g ∘ f := rfl | |
theorem trans_apply (f : α ≃ β) (g : β ≃ γ) (a : α) : (f.trans g) a = g (f a) := rfl | |
@[simp] theorem apply_symm_apply (e : α ≃ β) (x : β) : e (e.symm x) = x := | |
e.right_inv x | |
@[simp] theorem symm_apply_apply (e : α ≃ β) (x : α) : e.symm (e x) = x := | |
e.left_inv x | |
@[simp] theorem symm_comp_self (e : α ≃ β) : e.symm ∘ e = id := funext e.symm_apply_apply | |
@[simp] theorem self_comp_symm (e : α ≃ β) : e ∘ e.symm = id := funext e.apply_symm_apply | |
@[simp] lemma symm_trans_apply (f : α ≃ β) (g : β ≃ γ) (a : γ) : | |
(f.trans g).symm a = f.symm (g.symm a) := rfl | |
-- The `simp` attribute is needed to make this a `dsimp` lemma. | |
-- `simp` will always rewrite with `equiv.symm_symm` before this has a chance to fire. | |
@[simp, nolint simp_nf] theorem symm_symm_apply (f : α ≃ β) (b : α) : f.symm.symm b = f b := rfl | |
theorem apply_eq_iff_eq (f : α ≃ β) {x y : α} : f x = f y ↔ x = y := equiv_like.apply_eq_iff_eq f | |
theorem apply_eq_iff_eq_symm_apply {α β : Sort*} (f : α ≃ β) {x : α} {y : β} : | |
f x = y ↔ x = f.symm y := | |
begin | |
conv_lhs { rw ←apply_symm_apply f y, }, | |
rw apply_eq_iff_eq, | |
end | |
@[simp] theorem cast_apply {α β} (h : α = β) (x : α) : equiv.cast h x = cast h x := rfl | |
@[simp] theorem cast_symm {α β} (h : α = β) : (equiv.cast h).symm = equiv.cast h.symm := rfl | |
@[simp] theorem cast_refl {α} (h : α = α := rfl) : equiv.cast h = equiv.refl α := rfl | |
@[simp] theorem cast_trans {α β γ} (h : α = β) (h2 : β = γ) : | |
(equiv.cast h).trans (equiv.cast h2) = equiv.cast (h.trans h2) := | |
ext $ λ x, by { substs h h2, refl } | |
lemma cast_eq_iff_heq {α β} (h : α = β) {a : α} {b : β} : equiv.cast h a = b ↔ a == b := | |
by { subst h, simp } | |
lemma symm_apply_eq {α β} (e : α ≃ β) {x y} : e.symm x = y ↔ x = e y := | |
⟨λ H, by simp [H.symm], λ H, by simp [H]⟩ | |
lemma eq_symm_apply {α β} (e : α ≃ β) {x y} : y = e.symm x ↔ e y = x := | |
(eq_comm.trans e.symm_apply_eq).trans eq_comm | |
@[simp] theorem symm_symm (e : α ≃ β) : e.symm.symm = e := by { cases e, refl } | |
@[simp] theorem trans_refl (e : α ≃ β) : e.trans (equiv.refl β) = e := by { cases e, refl } | |
@[simp] theorem refl_symm : (equiv.refl α).symm = equiv.refl α := rfl | |
@[simp] theorem refl_trans (e : α ≃ β) : (equiv.refl α).trans e = e := by { cases e, refl } | |
@[simp] theorem symm_trans_self (e : α ≃ β) : e.symm.trans e = equiv.refl β := ext (by simp) | |
@[simp] theorem self_trans_symm (e : α ≃ β) : e.trans e.symm = equiv.refl α := ext (by simp) | |
lemma trans_assoc {δ} (ab : α ≃ β) (bc : β ≃ γ) (cd : γ ≃ δ) : | |
(ab.trans bc).trans cd = ab.trans (bc.trans cd) := | |
equiv.ext $ assume a, rfl | |
theorem left_inverse_symm (f : equiv α β) : left_inverse f.symm f := f.left_inv | |
theorem right_inverse_symm (f : equiv α β) : function.right_inverse f.symm f := f.right_inv | |
lemma injective_comp (e : α ≃ β) (f : β → γ) : injective (f ∘ e) ↔ injective f := | |
equiv_like.injective_comp e f | |
lemma comp_injective (f : α → β) (e : β ≃ γ) : injective (e ∘ f) ↔ injective f := | |
equiv_like.comp_injective f e | |
lemma surjective_comp (e : α ≃ β) (f : β → γ) : surjective (f ∘ e) ↔ surjective f := | |
equiv_like.surjective_comp e f | |
lemma comp_surjective (f : α → β) (e : β ≃ γ) : surjective (e ∘ f) ↔ surjective f := | |
equiv_like.comp_surjective f e | |
lemma bijective_comp (e : α ≃ β) (f : β → γ) : bijective (f ∘ e) ↔ bijective f := | |
equiv_like.bijective_comp e f | |
lemma comp_bijective (f : α → β) (e : β ≃ γ) : bijective (e ∘ f) ↔ bijective f := | |
equiv_like.comp_bijective f e | |
/-- If `α` is equivalent to `β` and `γ` is equivalent to `δ`, then the type of equivalences `α ≃ γ` | |
is equivalent to the type of equivalences `β ≃ δ`. -/ | |
def equiv_congr {δ} (ab : α ≃ β) (cd : γ ≃ δ) : (α ≃ γ) ≃ (β ≃ δ) := | |
⟨ λac, (ab.symm.trans ac).trans cd, λbd, ab.trans $ bd.trans $ cd.symm, | |
assume ac, by { ext x, simp }, assume ac, by { ext x, simp } ⟩ | |
@[simp] lemma equiv_congr_refl {α β} : | |
(equiv.refl α).equiv_congr (equiv.refl β) = equiv.refl (α ≃ β) := by { ext, refl } | |
@[simp] lemma equiv_congr_symm {δ} (ab : α ≃ β) (cd : γ ≃ δ) : | |
(ab.equiv_congr cd).symm = ab.symm.equiv_congr cd.symm := by { ext, refl } | |
@[simp] lemma equiv_congr_trans {δ ε ζ} (ab : α ≃ β) (de : δ ≃ ε) (bc : β ≃ γ) (ef : ε ≃ ζ) : | |
(ab.equiv_congr de).trans (bc.equiv_congr ef) = (ab.trans bc).equiv_congr (de.trans ef) := | |
by { ext, refl } | |
@[simp] lemma equiv_congr_refl_left {α β γ} (bg : β ≃ γ) (e : α ≃ β) : | |
(equiv.refl α).equiv_congr bg e = e.trans bg := rfl | |
@[simp] lemma equiv_congr_refl_right {α β} (ab e : α ≃ β) : | |
ab.equiv_congr (equiv.refl β) e = ab.symm.trans e := rfl | |
@[simp] lemma equiv_congr_apply_apply {δ} (ab : α ≃ β) (cd : γ ≃ δ) (e : α ≃ γ) (x) : | |
ab.equiv_congr cd e x = cd (e (ab.symm x)) := rfl | |
section perm_congr | |
variables {α' β' : Type*} (e : α' ≃ β') | |
/-- If `α` is equivalent to `β`, then `perm α` is equivalent to `perm β`. -/ | |
def perm_congr : perm α' ≃ perm β' := | |
equiv_congr e e | |
lemma perm_congr_def (p : equiv.perm α') : | |
e.perm_congr p = (e.symm.trans p).trans e := rfl | |
@[simp] lemma perm_congr_refl : | |
e.perm_congr (equiv.refl _) = equiv.refl _ := | |
by simp [perm_congr_def] | |
@[simp] lemma perm_congr_symm : | |
e.perm_congr.symm = e.symm.perm_congr := rfl | |
@[simp] lemma perm_congr_apply (p : equiv.perm α') (x) : | |
e.perm_congr p x = e (p (e.symm x)) := rfl | |
lemma perm_congr_symm_apply (p : equiv.perm β') (x) : | |
e.perm_congr.symm p x = e.symm (p (e x)) := rfl | |
lemma perm_congr_trans (p p' : equiv.perm α') : | |
(e.perm_congr p).trans (e.perm_congr p') = e.perm_congr (p.trans p') := | |
by { ext, simp } | |
end perm_congr | |
/-- Two empty types are equivalent. -/ | |
def equiv_of_is_empty (α β : Sort*) [is_empty α] [is_empty β] : α ≃ β := | |
⟨is_empty_elim, is_empty_elim, is_empty_elim, is_empty_elim⟩ | |
/-- If `α` is an empty type, then it is equivalent to the `empty` type. -/ | |
def equiv_empty (α : Sort u) [is_empty α] : α ≃ empty := | |
equiv_of_is_empty α _ | |
/-- If `α` is an empty type, then it is equivalent to the `pempty` type in any universe. -/ | |
def equiv_pempty (α : Sort v) [is_empty α] : α ≃ pempty.{u} := | |
equiv_of_is_empty α _ | |
/-- `α` is equivalent to an empty type iff `α` is empty. -/ | |
def equiv_empty_equiv (α : Sort u) : (α ≃ empty) ≃ is_empty α := | |
⟨λ e, function.is_empty e, @equiv_empty α, λ e, ext $ λ x, (e x).elim, λ p, rfl⟩ | |
/-- The `Sort` of proofs of a false proposition is equivalent to `pempty`. -/ | |
def prop_equiv_pempty {p : Prop} (h : ¬p) : p ≃ pempty := | |
@equiv_pempty p $ is_empty.prop_iff.2 h | |
/-- If both `α` and `β` have a unique element, then `α ≃ β`. -/ | |
def equiv_of_unique (α β : Sort*) [unique α] [unique β] : α ≃ β := | |
{ to_fun := default, | |
inv_fun := default, | |
left_inv := λ _, subsingleton.elim _ _, | |
right_inv := λ _, subsingleton.elim _ _ } | |
/-- If `α` has a unique element, then it is equivalent to any `punit`. -/ | |
def equiv_punit (α : Sort*) [unique α] : α ≃ punit.{v} := | |
equiv_of_unique α _ | |
/-- The `Sort` of proofs of a true proposition is equivalent to `punit`. -/ | |
def prop_equiv_punit {p : Prop} (h : p) : p ≃ punit := | |
@equiv_punit p $ unique_prop h | |
/-- `ulift α` is equivalent to `α`. -/ | |
@[simps apply symm_apply {fully_applied := ff}] | |
protected def ulift {α : Type v} : ulift.{u} α ≃ α := | |
⟨ulift.down, ulift.up, ulift.up_down, λ a, rfl⟩ | |
/-- `plift α` is equivalent to `α`. -/ | |
@[simps apply symm_apply {fully_applied := ff}] | |
protected def plift : plift α ≃ α := | |
⟨plift.down, plift.up, plift.up_down, plift.down_up⟩ | |
/-- `pprod α β` is equivalent to `α × β` -/ | |
@[simps apply symm_apply] | |
def pprod_equiv_prod {α β : Type*} : pprod α β ≃ α × β := | |
{ to_fun := λ x, (x.1, x.2), | |
inv_fun := λ x, ⟨x.1, x.2⟩, | |
left_inv := λ ⟨x, y⟩, rfl, | |
right_inv := λ ⟨x, y⟩, rfl } | |
/-- Product of two equivalences, in terms of `pprod`. If `α ≃ β` and `γ ≃ δ`, then | |
`pprod α γ ≃ pprod β δ`. -/ | |
@[congr, simps apply] | |
def pprod_congr {δ : Sort z} (e₁ : α ≃ β) (e₂ : γ ≃ δ) : pprod α γ ≃ pprod β δ := | |
{ to_fun := λ x, ⟨e₁ x.1, e₂ x.2⟩, | |
inv_fun := λ x, ⟨e₁.symm x.1, e₂.symm x.2⟩, | |
left_inv := λ ⟨x, y⟩, by simp, | |
right_inv := λ ⟨x, y⟩, by simp } | |
/-- Combine two equivalences using `pprod` in the domain and `prod` in the codomain. -/ | |
@[simps apply symm_apply] | |
def pprod_prod {α₁ β₁ : Sort*} {α₂ β₂ : Type*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : | |
pprod α₁ β₁ ≃ α₂ × β₂ := | |
(ea.pprod_congr eb).trans pprod_equiv_prod | |
/-- Combine two equivalences using `pprod` in the codomain and `prod` in the domain. -/ | |
@[simps apply symm_apply] | |
def prod_pprod {α₁ β₁ : Type*} {α₂ β₂ : Sort*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : | |
α₁ × β₁ ≃ pprod α₂ β₂ := | |
(ea.symm.pprod_prod eb.symm).symm | |
/-- `pprod α β` is equivalent to `plift α × plift β` -/ | |
@[simps apply symm_apply] | |
def pprod_equiv_prod_plift {α β : Sort*} : pprod α β ≃ plift α × plift β := | |
equiv.plift.symm.pprod_prod equiv.plift.symm | |
/-- equivalence of propositions is the same as iff -/ | |
def of_iff {P Q : Prop} (h : P ↔ Q) : P ≃ Q := | |
{ to_fun := h.mp, | |
inv_fun := h.mpr, | |
left_inv := λ x, rfl, | |
right_inv := λ y, rfl } | |
/-- If `α₁` is equivalent to `α₂` and `β₁` is equivalent to `β₂`, then the type of maps `α₁ → β₁` | |
is equivalent to the type of maps `α₂ → β₂`. -/ | |
@[congr, simps apply] def arrow_congr {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : | |
(α₁ → β₁) ≃ (α₂ → β₂) := | |
{ to_fun := λ f, e₂ ∘ f ∘ e₁.symm, | |
inv_fun := λ f, e₂.symm ∘ f ∘ e₁, | |
left_inv := λ f, funext $ λ x, by simp, | |
right_inv := λ f, funext $ λ x, by simp } | |
lemma arrow_congr_comp {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*} | |
(ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ → β₁) (g : β₁ → γ₁) : | |
arrow_congr ea ec (g ∘ f) = (arrow_congr eb ec g) ∘ (arrow_congr ea eb f) := | |
by { ext, simp only [comp, arrow_congr_apply, eb.symm_apply_apply] } | |
@[simp] lemma arrow_congr_refl {α β : Sort*} : | |
arrow_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl | |
@[simp] lemma arrow_congr_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Sort*} | |
(e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) : | |
arrow_congr (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr e₁ e₁').trans (arrow_congr e₂ e₂') := | |
rfl | |
@[simp] lemma arrow_congr_symm {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : | |
(arrow_congr e₁ e₂).symm = arrow_congr e₁.symm e₂.symm := | |
rfl | |
/-- | |
A version of `equiv.arrow_congr` in `Type`, rather than `Sort`. | |
The `equiv_rw` tactic is not able to use the default `Sort` level `equiv.arrow_congr`, | |
because Lean's universe rules will not unify `?l_1` with `imax (1 ?m_1)`. | |
-/ | |
@[congr, simps apply] | |
def arrow_congr' {α₁ β₁ α₂ β₂ : Type*} (hα : α₁ ≃ α₂) (hβ : β₁ ≃ β₂) : (α₁ → β₁) ≃ (α₂ → β₂) := | |
equiv.arrow_congr hα hβ | |
@[simp] lemma arrow_congr'_refl {α β : Type*} : | |
arrow_congr' (equiv.refl α) (equiv.refl β) = equiv.refl (α → β) := rfl | |
@[simp] lemma arrow_congr'_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Type*} | |
(e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) : | |
arrow_congr' (e₁.trans e₂) (e₁'.trans e₂') = (arrow_congr' e₁ e₁').trans (arrow_congr' e₂ e₂') := | |
rfl | |
@[simp] lemma arrow_congr'_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : | |
(arrow_congr' e₁ e₂).symm = arrow_congr' e₁.symm e₂.symm := | |
rfl | |
/-- Conjugate a map `f : α → α` by an equivalence `α ≃ β`. -/ | |
@[simps apply] | |
def conj (e : α ≃ β) : (α → α) ≃ (β → β) := arrow_congr e e | |
@[simp] lemma conj_refl : conj (equiv.refl α) = equiv.refl (α → α) := rfl | |
@[simp] lemma conj_symm (e : α ≃ β) : e.conj.symm = e.symm.conj := rfl | |
@[simp] lemma conj_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : | |
(e₁.trans e₂).conj = e₁.conj.trans e₂.conj := | |
rfl | |
-- This should not be a simp lemma as long as `(∘)` is reducible: | |
-- when `(∘)` is reducible, Lean can unify `f₁ ∘ f₂` with any `g` using | |
-- `f₁ := g` and `f₂ := λ x, x`. This causes nontermination. | |
lemma conj_comp (e : α ≃ β) (f₁ f₂ : α → α) : | |
e.conj (f₁ ∘ f₂) = (e.conj f₁) ∘ (e.conj f₂) := | |
by apply arrow_congr_comp | |
lemma eq_comp_symm {α β γ} (e : α ≃ β) (f : β → γ) (g : α → γ) : | |
f = g ∘ e.symm ↔ f ∘ e = g := | |
(e.arrow_congr (equiv.refl γ)).symm_apply_eq.symm | |
lemma comp_symm_eq {α β γ} (e : α ≃ β) (f : β → γ) (g : α → γ) : | |
g ∘ e.symm = f ↔ g = f ∘ e := | |
(e.arrow_congr (equiv.refl γ)).eq_symm_apply.symm | |
lemma eq_symm_comp {α β γ} (e : α ≃ β) (f : γ → α) (g : γ → β) : | |
f = e.symm ∘ g ↔ e ∘ f = g := | |
((equiv.refl γ).arrow_congr e).eq_symm_apply | |
lemma symm_comp_eq {α β γ} (e : α ≃ β) (f : γ → α) (g : γ → β) : | |
e.symm ∘ g = f ↔ g = e ∘ f := | |
((equiv.refl γ).arrow_congr e).symm_apply_eq | |
section binary_op | |
variables {α₁ β₁ : Type*} (e : α₁ ≃ β₁) (f : α₁ → α₁ → α₁) | |
lemma semiconj_conj (f : α₁ → α₁) : semiconj e f (e.conj f) := λ x, by simp | |
lemma semiconj₂_conj : semiconj₂ e f (e.arrow_congr e.conj f) := λ x y, by simp | |
instance [is_associative α₁ f] : | |
is_associative β₁ (e.arrow_congr (e.arrow_congr e) f) := | |
(e.semiconj₂_conj f).is_associative_right e.surjective | |
instance [is_idempotent α₁ f] : | |
is_idempotent β₁ (e.arrow_congr (e.arrow_congr e) f) := | |
(e.semiconj₂_conj f).is_idempotent_right e.surjective | |
instance [is_left_cancel α₁ f] : | |
is_left_cancel β₁ (e.arrow_congr (e.arrow_congr e) f) := | |
⟨e.surjective.forall₃.2 $ λ x y z, by simpa using @is_left_cancel.left_cancel _ f _ x y z⟩ | |
instance [is_right_cancel α₁ f] : | |
is_right_cancel β₁ (e.arrow_congr (e.arrow_congr e) f) := | |
⟨e.surjective.forall₃.2 $ λ x y z, by simpa using @is_right_cancel.right_cancel _ f _ x y z⟩ | |
end binary_op | |
/-- `punit` sorts in any two universes are equivalent. -/ | |
def punit_equiv_punit : punit.{v} ≃ punit.{w} := | |
⟨λ _, punit.star, λ _, punit.star, λ u, by { cases u, refl }, λ u, by { cases u, reflexivity }⟩ | |
section | |
/-- The sort of maps to `punit.{v}` is equivalent to `punit.{w}`. -/ | |
def arrow_punit_equiv_punit (α : Sort*) : (α → punit.{v}) ≃ punit.{w} := | |
⟨λ f, punit.star, λ u f, punit.star, | |
λ f, by { funext x, cases f x, refl }, λ u, by { cases u, reflexivity }⟩ | |
/-- If `α` is `subsingleton` and `a : α`, then the type of dependent functions `Π (i : α), β | |
i` is equivalent to `β i`. -/ | |
@[simps] | |
def Pi_subsingleton {α} (β : α → Sort*) [subsingleton α] (a : α) : (Π a', β a') ≃ β a := | |
{ to_fun := eval a, | |
inv_fun := λ x b, cast (congr_arg β $ subsingleton.elim a b) x, | |
left_inv := λ f, funext $ λ b, by { rw subsingleton.elim b a, reflexivity }, | |
right_inv := λ b, rfl } | |
/-- If `α` has a unique term, then the type of function `α → β` is equivalent to `β`. -/ | |
@[simps { fully_applied := ff }] def fun_unique (α β) [unique α] : (α → β) ≃ β := | |
Pi_subsingleton _ default | |
/-- The sort of maps from `punit` is equivalent to the codomain. -/ | |
def punit_arrow_equiv (α : Sort*) : (punit.{u} → α) ≃ α := | |
fun_unique _ _ | |
/-- The sort of maps from `true` is equivalent to the codomain. -/ | |
def true_arrow_equiv (α : Sort*) : (true → α) ≃ α := | |
fun_unique _ _ | |
/-- The sort of maps from a type that `is_empty` is equivalent to `punit`. -/ | |
def arrow_punit_of_is_empty (α β : Sort*) [is_empty α] : (α → β) ≃ punit.{u} := | |
⟨λ f, punit.star, λ u, is_empty_elim, λ f, funext is_empty_elim, λ u, by { cases u, refl }⟩ | |
/-- The sort of maps from `empty` is equivalent to `punit`. -/ | |
def empty_arrow_equiv_punit (α : Sort*) : (empty → α) ≃ punit.{u} := | |
arrow_punit_of_is_empty _ _ | |
/-- The sort of maps from `pempty` is equivalent to `punit`. -/ | |
def pempty_arrow_equiv_punit (α : Sort*) : (pempty → α) ≃ punit.{u} := | |
arrow_punit_of_is_empty _ _ | |
/-- The sort of maps from `false` is equivalent to `punit`. -/ | |
def false_arrow_equiv_punit (α : Sort*) : (false → α) ≃ punit.{u} := | |
arrow_punit_of_is_empty _ _ | |
end | |
/-- Product of two equivalences. If `α₁ ≃ α₂` and `β₁ ≃ β₂`, then `α₁ × β₁ ≃ α₂ × β₂`. This is | |
`prod.map` as an equivalence. -/ | |
@[congr, simps apply] | |
def prod_congr {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : α₁ × β₁ ≃ α₂ × β₂ := | |
⟨prod.map e₁ e₂, prod.map e₁.symm e₂.symm, λ ⟨a, b⟩, by simp, λ ⟨a, b⟩, by simp⟩ | |
@[simp] theorem prod_congr_symm {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) : | |
(prod_congr e₁ e₂).symm = prod_congr e₁.symm e₂.symm := | |
rfl | |
/-- Type product is commutative up to an equivalence: `α × β ≃ β × α`. This is `prod.swap` as an | |
equivalence.-/ | |
@[simps apply] def prod_comm (α β : Type*) : α × β ≃ β × α := | |
⟨prod.swap, prod.swap, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩ | |
@[simp] lemma prod_comm_symm (α β) : (prod_comm α β).symm = prod_comm β α := rfl | |
/-- Type product is associative up to an equivalence. -/ | |
@[simps] def prod_assoc (α β γ : Sort*) : (α × β) × γ ≃ α × (β × γ) := | |
⟨λ p, (p.1.1, p.1.2, p.2), λ p, ((p.1, p.2.1), p.2.2), λ ⟨⟨a, b⟩, c⟩, rfl, λ ⟨a, ⟨b, c⟩⟩, rfl⟩ | |
/-- Functions on `α × β` are equivalent to functions `α → β → γ`. -/ | |
@[simps {fully_applied := ff}] def curry (α β γ : Type*) : | |
(α × β → γ) ≃ (α → β → γ) := | |
{ to_fun := curry, | |
inv_fun := uncurry, | |
left_inv := uncurry_curry, | |
right_inv := curry_uncurry } | |
section | |
/-- `punit` is a right identity for type product up to an equivalence. -/ | |
@[simps] def prod_punit (α : Type*) : α × punit.{u+1} ≃ α := | |
⟨λ p, p.1, λ a, (a, punit.star), λ ⟨_, punit.star⟩, rfl, λ a, rfl⟩ | |
/-- `punit` is a left identity for type product up to an equivalence. -/ | |
@[simps] def punit_prod (α : Type*) : punit.{u+1} × α ≃ α := | |
calc punit × α ≃ α × punit : prod_comm _ _ | |
... ≃ α : prod_punit _ | |
/-- Any `unique` type is a right identity for type product up to equivalence. -/ | |
def prod_unique (α β : Type*) [unique β] : α × β ≃ α := | |
((equiv.refl α).prod_congr $ equiv_punit β).trans $ prod_punit α | |
/-- Any `unique` type is a left identity for type product up to equivalence. -/ | |
def unique_prod (α β : Type*) [unique β] : β × α ≃ α := | |
((equiv_punit β).prod_congr $ equiv.refl α).trans $ punit_prod α | |
/-- `empty` type is a right absorbing element for type product up to an equivalence. -/ | |
def prod_empty (α : Type*) : α × empty ≃ empty := | |
equiv_empty _ | |
/-- `empty` type is a left absorbing element for type product up to an equivalence. -/ | |
def empty_prod (α : Type*) : empty × α ≃ empty := | |
equiv_empty _ | |
/-- `pempty` type is a right absorbing element for type product up to an equivalence. -/ | |
def prod_pempty (α : Type*) : α × pempty ≃ pempty := | |
equiv_pempty _ | |
/-- `pempty` type is a left absorbing element for type product up to an equivalence. -/ | |
def pempty_prod (α : Type*) : pempty × α ≃ pempty := | |
equiv_pempty _ | |
end | |
section | |
open sum | |
/-- `psum` is equivalent to `sum`. -/ | |
def psum_equiv_sum (α β : Type*) : psum α β ≃ α ⊕ β := | |
{ to_fun := λ s, psum.cases_on s inl inr, | |
inv_fun := sum.elim psum.inl psum.inr, | |
left_inv := λ s, by cases s; refl, | |
right_inv := λ s, by cases s; refl } | |
/-- If `α ≃ α'` and `β ≃ β'`, then `α ⊕ β ≃ α' ⊕ β'`. This is `sum.map` as an equivalence. -/ | |
@[simps apply] | |
def sum_congr {α₁ β₁ α₂ β₂ : Type*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : α₁ ⊕ β₁ ≃ α₂ ⊕ β₂ := | |
⟨sum.map ea eb, sum.map ea.symm eb.symm, λ x, by simp, λ x, by simp⟩ | |
/-- If `α ≃ α'` and `β ≃ β'`, then `psum α β ≃ psum α' β'`. -/ | |
def psum_congr {δ : Sort z} (e₁ : α ≃ β) (e₂ : γ ≃ δ) : psum α γ ≃ psum β δ := | |
{ to_fun := λ x, psum.cases_on x (psum.inl ∘ e₁) (psum.inr ∘ e₂), | |
inv_fun := λ x, psum.cases_on x (psum.inl ∘ e₁.symm) (psum.inr ∘ e₂.symm), | |
left_inv := by rintro (x|x); simp, | |
right_inv := by rintro (x|x); simp } | |
/-- Combine two `equiv`s using `psum` in the domain and `sum` in the codomain. -/ | |
def psum_sum {α₁ β₁ : Sort*} {α₂ β₂ : Type*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : psum α₁ β₁ ≃ α₂ ⊕ β₂ := | |
(ea.psum_congr eb).trans (psum_equiv_sum _ _) | |
/-- Combine two `equiv`s using `sum` in the domain and `psum` in the codomain. -/ | |
def sum_psum {α₁ β₁ : Type*} {α₂ β₂ : Sort*} (ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) : α₁ ⊕ β₁ ≃ psum α₂ β₂ := | |
(ea.symm.psum_sum eb.symm).symm | |
@[simp] lemma sum_congr_trans {α₁ α₂ β₁ β₂ γ₁ γ₂ : Sort*} | |
(e : α₁ ≃ β₁) (f : α₂ ≃ β₂) (g : β₁ ≃ γ₁) (h : β₂ ≃ γ₂) : | |
(equiv.sum_congr e f).trans (equiv.sum_congr g h) = (equiv.sum_congr (e.trans g) (f.trans h)) := | |
by { ext i, cases i; refl } | |
@[simp] lemma sum_congr_symm {α β γ δ : Sort*} (e : α ≃ β) (f : γ ≃ δ) : | |
(equiv.sum_congr e f).symm = (equiv.sum_congr (e.symm) (f.symm)) := | |
rfl | |
@[simp] lemma sum_congr_refl {α β : Sort*} : | |
equiv.sum_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ⊕ β) := | |
by { ext i, cases i; refl } | |
namespace perm | |
/-- Combine a permutation of `α` and of `β` into a permutation of `α ⊕ β`. -/ | |
@[reducible] | |
def sum_congr {α β : Type*} (ea : equiv.perm α) (eb : equiv.perm β) : equiv.perm (α ⊕ β) := | |
equiv.sum_congr ea eb | |
@[simp] lemma sum_congr_apply {α β : Type*} (ea : equiv.perm α) (eb : equiv.perm β) (x : α ⊕ β) : | |
sum_congr ea eb x = sum.map ⇑ea ⇑eb x := equiv.sum_congr_apply ea eb x | |
@[simp] lemma sum_congr_trans {α β : Sort*} | |
(e : equiv.perm α) (f : equiv.perm β) (g : equiv.perm α) (h : equiv.perm β) : | |
(sum_congr e f).trans (sum_congr g h) = sum_congr (e.trans g) (f.trans h) := | |
equiv.sum_congr_trans e f g h | |
@[simp] lemma sum_congr_symm {α β : Sort*} (e : equiv.perm α) (f : equiv.perm β) : | |
(sum_congr e f).symm = sum_congr (e.symm) (f.symm) := | |
equiv.sum_congr_symm e f | |
@[simp] lemma sum_congr_refl {α β : Sort*} : | |
sum_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ⊕ β) := | |
equiv.sum_congr_refl | |
end perm | |
/-- `bool` is equivalent the sum of two `punit`s. -/ | |
def bool_equiv_punit_sum_punit : bool ≃ punit.{u+1} ⊕ punit.{v+1} := | |
⟨λ b, cond b (inr punit.star) (inl punit.star), | |
sum.elim (λ _, ff) (λ _, tt), | |
λ b, by cases b; refl, | |
λ s, by rcases s with ⟨⟨⟩⟩ | ⟨⟨⟩⟩; refl⟩ | |
/-- `Prop` is noncomputably equivalent to `bool`. -/ | |
noncomputable def Prop_equiv_bool : Prop ≃ bool := | |
⟨λ p, @to_bool p (classical.prop_decidable _), | |
λ b, b, λ p, by simp, λ b, by simp⟩ | |
/-- Sum of types is commutative up to an equivalence. This is `sum.swap` as an equivalence. -/ | |
@[simps apply {fully_applied := ff}] | |
def sum_comm (α β : Type*) : α ⊕ β ≃ β ⊕ α := | |
⟨sum.swap, sum.swap, sum.swap_swap, sum.swap_swap⟩ | |
@[simp] lemma sum_comm_symm (α β) : (sum_comm α β).symm = sum_comm β α := rfl | |
/-- Sum of types is associative up to an equivalence. -/ | |
def sum_assoc (α β γ : Type*) : (α ⊕ β) ⊕ γ ≃ α ⊕ (β ⊕ γ) := | |
⟨sum.elim (sum.elim sum.inl (sum.inr ∘ sum.inl)) (sum.inr ∘ sum.inr), | |
sum.elim (sum.inl ∘ sum.inl) $ sum.elim (sum.inl ∘ sum.inr) sum.inr, | |
by rintros (⟨_ | _⟩ | _); refl, | |
by rintros (_ | ⟨_ | _⟩); refl⟩ | |
@[simp] lemma sum_assoc_apply_inl_inl {α β γ} (a) : sum_assoc α β γ (inl (inl a)) = inl a := rfl | |
@[simp] lemma sum_assoc_apply_inl_inr {α β γ} (b) : sum_assoc α β γ (inl (inr b)) = inr (inl b) := | |
rfl | |
@[simp] lemma sum_assoc_apply_inr {α β γ} (c) : sum_assoc α β γ (inr c) = inr (inr c) := rfl | |
@[simp] lemma sum_assoc_symm_apply_inl {α β γ} (a) : (sum_assoc α β γ).symm (inl a) = inl (inl a) := | |
rfl | |
@[simp] lemma sum_assoc_symm_apply_inr_inl {α β γ} (b) : | |
(sum_assoc α β γ).symm (inr (inl b)) = inl (inr b) := rfl | |
@[simp] lemma sum_assoc_symm_apply_inr_inr {α β γ} (c) : | |
(sum_assoc α β γ).symm (inr (inr c)) = inr c := rfl | |
/-- Sum with `empty` is equivalent to the original type. -/ | |
@[simps symm_apply] def sum_empty (α β : Type*) [is_empty β] : α ⊕ β ≃ α := | |
⟨sum.elim id is_empty_elim, | |
inl, | |
λ s, by { rcases s with _ | x, refl, exact is_empty_elim x }, | |
λ a, rfl⟩ | |
@[simp] lemma sum_empty_apply_inl {α β : Type*} [is_empty β] (a : α) : | |
sum_empty α β (sum.inl a) = a := rfl | |
/-- The sum of `empty` with any `Sort*` is equivalent to the right summand. -/ | |
@[simps symm_apply] def empty_sum (α β : Type*) [is_empty α] : α ⊕ β ≃ β := | |
(sum_comm _ _).trans $ sum_empty _ _ | |
@[simp] lemma empty_sum_apply_inr {α β : Type*} [is_empty α] (b : β) : | |
empty_sum α β (sum.inr b) = b := rfl | |
/-- `option α` is equivalent to `α ⊕ punit` -/ | |
def option_equiv_sum_punit (α : Type*) : option α ≃ α ⊕ punit.{u+1} := | |
⟨λ o, o.elim (inr punit.star) inl, | |
λ s, s.elim some (λ _, none), | |
λ o, by cases o; refl, | |
λ s, by rcases s with _ | ⟨⟨⟩⟩; refl⟩ | |
@[simp] lemma option_equiv_sum_punit_none {α} : | |
option_equiv_sum_punit α none = sum.inr punit.star := rfl | |
@[simp] lemma option_equiv_sum_punit_some {α} (a) : | |
option_equiv_sum_punit α (some a) = sum.inl a := rfl | |
@[simp] lemma option_equiv_sum_punit_coe {α} (a : α) : | |
option_equiv_sum_punit α a = sum.inl a := rfl | |
@[simp] lemma option_equiv_sum_punit_symm_inl {α} (a) : | |
(option_equiv_sum_punit α).symm (sum.inl a) = a := | |
rfl | |
@[simp] lemma option_equiv_sum_punit_symm_inr {α} (a) : | |
(option_equiv_sum_punit α).symm (sum.inr a) = none := | |
rfl | |
/-- The set of `x : option α` such that `is_some x` is equivalent to `α`. -/ | |
@[simps] def option_is_some_equiv (α : Type*) : {x : option α // x.is_some} ≃ α := | |
{ to_fun := λ o, option.get o.2, | |
inv_fun := λ x, ⟨some x, dec_trivial⟩, | |
left_inv := λ o, subtype.eq $ option.some_get _, | |
right_inv := λ x, option.get_some _ _ } | |
/-- The product over `option α` of `β a` is the binary product of the | |
product over `α` of `β (some α)` and `β none` -/ | |
@[simps] def pi_option_equiv_prod {α : Type*} {β : option α → Type*} : | |
(Π a : option α, β a) ≃ (β none × Π a : α, β (some a)) := | |
{ to_fun := λ f, (f none, λ a, f (some a)), | |
inv_fun := λ x a, option.cases_on a x.fst x.snd, | |
left_inv := λ f, funext $ λ a, by cases a; refl, | |
right_inv := λ x, by simp } | |
/-- `α ⊕ β` is equivalent to a `sigma`-type over `bool`. Note that this definition assumes `α` and | |
`β` to be types from the same universe, so it cannot by used directly to transfer theorems about | |
sigma types to theorems about sum types. In many cases one can use `ulift` to work around this | |
difficulty. -/ | |
def sum_equiv_sigma_bool (α β : Type u) : α ⊕ β ≃ (Σ b: bool, cond b α β) := | |
⟨λ s, s.elim (λ x, ⟨tt, x⟩) (λ x, ⟨ff, x⟩), | |
λ s, match s with ⟨tt, a⟩ := inl a | ⟨ff, b⟩ := inr b end, | |
λ s, by cases s; refl, | |
λ s, by rcases s with ⟨_|_, _⟩; refl⟩ | |
/-- `sigma_fiber_equiv f` for `f : α → β` is the natural equivalence between | |
the type of all fibres of `f` and the total space `α`. -/ | |
-- See also `equiv.sigma_preimage_equiv`. | |
@[simps] | |
def sigma_fiber_equiv {α β : Type*} (f : α → β) : | |
(Σ y : β, {x // f x = y}) ≃ α := | |
⟨λ x, ↑x.2, λ x, ⟨f x, x, rfl⟩, λ ⟨y, x, rfl⟩, rfl, λ x, rfl⟩ | |
end | |
section sum_compl | |
/-- For any predicate `p` on `α`, | |
the sum of the two subtypes `{a // p a}` and its complement `{a // ¬ p a}` | |
is naturally equivalent to `α`. | |
See `subtype_or_equiv` for sum types over subtypes `{x // p x}` and `{x // q x}` | |
that are not necessarily `is_compl p q`. -/ | |
def sum_compl {α : Type*} (p : α → Prop) [decidable_pred p] : | |
{a // p a} ⊕ {a // ¬ p a} ≃ α := | |
{ to_fun := sum.elim coe coe, | |
inv_fun := λ a, if h : p a then sum.inl ⟨a, h⟩ else sum.inr ⟨a, h⟩, | |
left_inv := by { rintros (⟨x,hx⟩|⟨x,hx⟩); dsimp; [rw dif_pos, rw dif_neg], }, | |
right_inv := λ a, by { dsimp, split_ifs; refl } } | |
@[simp] lemma sum_compl_apply_inl {α : Type*} (p : α → Prop) [decidable_pred p] | |
(x : {a // p a}) : | |
sum_compl p (sum.inl x) = x := rfl | |
@[simp] lemma sum_compl_apply_inr {α : Type*} (p : α → Prop) [decidable_pred p] | |
(x : {a // ¬ p a}) : | |
sum_compl p (sum.inr x) = x := rfl | |
@[simp] lemma sum_compl_apply_symm_of_pos {α : Type*} (p : α → Prop) [decidable_pred p] | |
(a : α) (h : p a) : | |
(sum_compl p).symm a = sum.inl ⟨a, h⟩ := dif_pos h | |
@[simp] lemma sum_compl_apply_symm_of_neg {α : Type*} (p : α → Prop) [decidable_pred p] | |
(a : α) (h : ¬ p a) : | |
(sum_compl p).symm a = sum.inr ⟨a, h⟩ := dif_neg h | |
/-- Combines an `equiv` between two subtypes with an `equiv` between their complements to form a | |
permutation. -/ | |
def subtype_congr {α : Type*} {p q : α → Prop} [decidable_pred p] [decidable_pred q] | |
(e : {x // p x} ≃ {x // q x}) (f : {x // ¬p x} ≃ {x // ¬q x}) : perm α := | |
(sum_compl p).symm.trans ((sum_congr e f).trans | |
(sum_compl q)) | |
open equiv | |
variables {ε : Type*} {p : ε → Prop} [decidable_pred p] | |
variables (ep ep' : perm {a // p a}) (en en' : perm {a // ¬ p a}) | |
/-- Combining permutations on `ε` that permute only inside or outside the subtype | |
split induced by `p : ε → Prop` constructs a permutation on `ε`. -/ | |
def perm.subtype_congr : equiv.perm ε := | |
perm_congr (sum_compl p) (sum_congr ep en) | |
lemma perm.subtype_congr.apply (a : ε) : | |
ep.subtype_congr en a = if h : p a then ep ⟨a, h⟩ else en ⟨a, h⟩ := | |
by { by_cases h : p a; simp [perm.subtype_congr, h] } | |
@[simp] lemma perm.subtype_congr.left_apply {a : ε} (h : p a) : | |
ep.subtype_congr en a = ep ⟨a, h⟩ := | |
by simp [perm.subtype_congr.apply, h] | |
@[simp] lemma perm.subtype_congr.left_apply_subtype (a : {a // p a}) : | |
ep.subtype_congr en a = ep a := | |
by { convert perm.subtype_congr.left_apply _ _ a.property, simp } | |
@[simp] lemma perm.subtype_congr.right_apply {a : ε} (h : ¬ p a) : | |
ep.subtype_congr en a = en ⟨a, h⟩ := | |
by simp [perm.subtype_congr.apply, h] | |
@[simp] lemma perm.subtype_congr.right_apply_subtype (a : {a // ¬ p a}) : | |
ep.subtype_congr en a = en a := | |
by { convert perm.subtype_congr.right_apply _ _ a.property, simp } | |
@[simp] lemma perm.subtype_congr.refl : | |
perm.subtype_congr (equiv.refl {a // p a}) (equiv.refl {a // ¬ p a}) = equiv.refl ε := | |
by { ext x, by_cases h : p x; simp [h] } | |
@[simp] lemma perm.subtype_congr.symm : | |
(ep.subtype_congr en).symm = perm.subtype_congr ep.symm en.symm := | |
begin | |
ext x, | |
by_cases h : p x, | |
{ have : p (ep.symm ⟨x, h⟩) := subtype.property _, | |
simp [perm.subtype_congr.apply, h, symm_apply_eq, this] }, | |
{ have : ¬ p (en.symm ⟨x, h⟩) := subtype.property (en.symm _), | |
simp [perm.subtype_congr.apply, h, symm_apply_eq, this] } | |
end | |
@[simp] lemma perm.subtype_congr.trans : | |
(ep.subtype_congr en).trans (ep'.subtype_congr en') = | |
perm.subtype_congr (ep.trans ep') (en.trans en') := | |
begin | |
ext x, | |
by_cases h : p x, | |
{ have : p (ep ⟨x, h⟩) := subtype.property _, | |
simp [perm.subtype_congr.apply, h, this] }, | |
{ have : ¬ p (en ⟨x, h⟩) := subtype.property (en _), | |
simp [perm.subtype_congr.apply, h, symm_apply_eq, this] } | |
end | |
end sum_compl | |
section subtype_preimage | |
variables (p : α → Prop) [decidable_pred p] (x₀ : {a // p a} → β) | |
/-- For a fixed function `x₀ : {a // p a} → β` defined on a subtype of `α`, | |
the subtype of functions `x : α → β` that agree with `x₀` on the subtype `{a // p a}` | |
is naturally equivalent to the type of functions `{a // ¬ p a} → β`. -/ | |
@[simps] | |
def subtype_preimage : | |
{x : α → β // x ∘ coe = x₀} ≃ ({a // ¬ p a} → β) := | |
{ to_fun := λ (x : {x : α → β // x ∘ coe = x₀}) a, (x : α → β) a, | |
inv_fun := λ x, ⟨λ a, if h : p a then x₀ ⟨a, h⟩ else x ⟨a, h⟩, | |
funext $ λ ⟨a, h⟩, dif_pos h⟩, | |
left_inv := λ ⟨x, hx⟩, subtype.val_injective $ funext $ λ a, | |
(by { dsimp, split_ifs; [ rw ← hx, skip ]; refl }), | |
right_inv := λ x, funext $ λ ⟨a, h⟩, | |
show dite (p a) _ _ = _, by { dsimp, rw [dif_neg h] } } | |
lemma subtype_preimage_symm_apply_coe_pos (x : {a // ¬ p a} → β) (a : α) (h : p a) : | |
((subtype_preimage p x₀).symm x : α → β) a = x₀ ⟨a, h⟩ := | |
dif_pos h | |
lemma subtype_preimage_symm_apply_coe_neg (x : {a // ¬ p a} → β) (a : α) (h : ¬ p a) : | |
((subtype_preimage p x₀).symm x : α → β) a = x ⟨a, h⟩ := | |
dif_neg h | |
end subtype_preimage | |
section | |
/-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Π a, β₁ a` and | |
`Π a, β₂ a`. -/ | |
def Pi_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Π a, β₁ a) ≃ (Π a, β₂ a) := | |
⟨λ H a, F a (H a), λ H a, (F a).symm (H a), | |
λ H, funext $ by simp, λ H, funext $ by simp⟩ | |
/-- Given `φ : α → β → Sort*`, we have an equivalence between `Π a b, φ a b` and `Π b a, φ a b`. | |
This is `function.swap` as an `equiv`. -/ | |
@[simps apply] | |
def Pi_comm {α β} (φ : α → β → Sort*) : (Π a b, φ a b) ≃ (Π b a, φ a b) := | |
⟨swap, swap, λ x, rfl, λ y, rfl⟩ | |
@[simp] lemma Pi_comm_symm {α β} {φ : α → β → Sort*} : | |
(Pi_comm φ).symm = (Pi_comm $ swap φ) := | |
rfl | |
/-- Dependent `curry` equivalence: the type of dependent functions on `Σ i, β i` is equivalent | |
to the type of dependent functions of two arguments (i.e., functions to the space of functions). | |
This is `sigma.curry` and `sigma.uncurry` together as an equiv. -/ | |
def Pi_curry {α} {β : α → Sort*} (γ : Π a, β a → Sort*) : | |
(Π x : Σ i, β i, γ x.1 x.2) ≃ (Π a b, γ a b) := | |
{ to_fun := sigma.curry, | |
inv_fun := sigma.uncurry, | |
left_inv := sigma.uncurry_curry, | |
right_inv := sigma.curry_uncurry } | |
end | |
section | |
/-- A `psigma`-type is equivalent to the corresponding `sigma`-type. -/ | |
@[simps apply symm_apply] def psigma_equiv_sigma {α} (β : α → Type*) : (Σ' i, β i) ≃ Σ i, β i := | |
⟨λ a, ⟨a.1, a.2⟩, λ a, ⟨a.1, a.2⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩ | |
/-- A `psigma`-type is equivalent to the corresponding `sigma`-type. -/ | |
@[simps apply symm_apply] def psigma_equiv_sigma_plift {α} (β : α → Sort*) : | |
(Σ' i, β i) ≃ Σ i : plift α, plift (β i.down) := | |
⟨λ a, ⟨plift.up a.1, plift.up a.2⟩, λ a, ⟨a.1.down, a.2.down⟩, λ ⟨a, b⟩, rfl, λ ⟨⟨a⟩, ⟨b⟩⟩, rfl⟩ | |
/-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Σ' a, β₁ a` and | |
`Σ' a, β₂ a`. -/ | |
@[simps apply] | |
def psigma_congr_right {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : (Σ' a, β₁ a) ≃ Σ' a, β₂ a := | |
⟨λ a, ⟨a.1, F a.1 a.2⟩, λ a, ⟨a.1, (F a.1).symm a.2⟩, | |
λ ⟨a, b⟩, congr_arg (psigma.mk a) $ symm_apply_apply (F a) b, | |
λ ⟨a, b⟩, congr_arg (psigma.mk a) $ apply_symm_apply (F a) b⟩ | |
@[simp] lemma psigma_congr_right_trans {α} {β₁ β₂ β₃ : α → Sort*} | |
(F : Π a, β₁ a ≃ β₂ a) (G : Π a, β₂ a ≃ β₃ a) : | |
(psigma_congr_right F).trans (psigma_congr_right G) = | |
psigma_congr_right (λ a, (F a).trans (G a)) := | |
by { ext1 x, cases x, refl } | |
@[simp] lemma psigma_congr_right_symm {α} {β₁ β₂ : α → Sort*} (F : Π a, β₁ a ≃ β₂ a) : | |
(psigma_congr_right F).symm = psigma_congr_right (λ a, (F a).symm) := | |
by { ext1 x, cases x, refl } | |
@[simp] lemma psigma_congr_right_refl {α} {β : α → Sort*} : | |
(psigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ' a, β a) := | |
by { ext1 x, cases x, refl } | |
/-- A family of equivalences `Π a, β₁ a ≃ β₂ a` generates an equivalence between `Σ a, β₁ a` and | |
`Σ a, β₂ a`. -/ | |
@[simps apply] | |
def sigma_congr_right {α} {β₁ β₂ : α → Type*} (F : Π a, β₁ a ≃ β₂ a) : (Σ a, β₁ a) ≃ Σ a, β₂ a := | |
⟨λ a, ⟨a.1, F a.1 a.2⟩, λ a, ⟨a.1, (F a.1).symm a.2⟩, | |
λ ⟨a, b⟩, congr_arg (sigma.mk a) $ symm_apply_apply (F a) b, | |
λ ⟨a, b⟩, congr_arg (sigma.mk a) $ apply_symm_apply (F a) b⟩ | |
@[simp] lemma sigma_congr_right_trans {α} {β₁ β₂ β₃ : α → Type*} | |
(F : Π a, β₁ a ≃ β₂ a) (G : Π a, β₂ a ≃ β₃ a) : | |
(sigma_congr_right F).trans (sigma_congr_right G) = sigma_congr_right (λ a, (F a).trans (G a)) := | |
by { ext1 x, cases x, refl } | |
@[simp] lemma sigma_congr_right_symm {α} {β₁ β₂ : α → Type*} (F : Π a, β₁ a ≃ β₂ a) : | |
(sigma_congr_right F).symm = sigma_congr_right (λ a, (F a).symm) := | |
by { ext1 x, cases x, refl } | |
@[simp] lemma sigma_congr_right_refl {α} {β : α → Type*} : | |
(sigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ a, β a) := | |
by { ext1 x, cases x, refl } | |
/-- A `psigma` with `Prop` fibers is equivalent to the subtype. -/ | |
def psigma_equiv_subtype {α : Type v} (P : α → Prop) : | |
(Σ' i, P i) ≃ subtype P := | |
{ to_fun := λ x, ⟨x.1, x.2⟩, | |
inv_fun := λ x, ⟨x.1, x.2⟩, | |
left_inv := λ x, by { cases x, refl, }, | |
right_inv := λ x, by { cases x, refl, }, } | |
/-- A `sigma` with `plift` fibers is equivalent to the subtype. -/ | |
def sigma_plift_equiv_subtype {α : Type v} (P : α → Prop) : | |
(Σ i, plift (P i)) ≃ subtype P := | |
((psigma_equiv_sigma _).symm.trans (psigma_congr_right (λ a, equiv.plift))).trans | |
(psigma_equiv_subtype P) | |
/-- | |
A `sigma` with `λ i, ulift (plift (P i))` fibers is equivalent to `{ x // P x }`. | |
Variant of `sigma_plift_equiv_subtype`. | |
-/ | |
def sigma_ulift_plift_equiv_subtype {α : Type v} (P : α → Prop) : | |
(Σ i, ulift (plift (P i))) ≃ subtype P := | |
(sigma_congr_right (λ a, equiv.ulift)).trans (sigma_plift_equiv_subtype P) | |
namespace perm | |
/-- A family of permutations `Π a, perm (β a)` generates a permuation `perm (Σ a, β₁ a)`. -/ | |
@[reducible] | |
def sigma_congr_right {α} {β : α → Sort*} (F : Π a, perm (β a)) : perm (Σ a, β a) := | |
equiv.sigma_congr_right F | |
@[simp] lemma sigma_congr_right_trans {α} {β : α → Sort*} | |
(F : Π a, perm (β a)) (G : Π a, perm (β a)) : | |
(sigma_congr_right F).trans (sigma_congr_right G) = sigma_congr_right (λ a, (F a).trans (G a)) := | |
equiv.sigma_congr_right_trans F G | |
@[simp] lemma sigma_congr_right_symm {α} {β : α → Sort*} (F : Π a, perm (β a)) : | |
(sigma_congr_right F).symm = sigma_congr_right (λ a, (F a).symm) := | |
equiv.sigma_congr_right_symm F | |
@[simp] lemma sigma_congr_right_refl {α} {β : α → Sort*} : | |
(sigma_congr_right (λ a, equiv.refl (β a))) = equiv.refl (Σ a, β a) := | |
equiv.sigma_congr_right_refl | |
end perm | |
/-- An equivalence `f : α₁ ≃ α₂` generates an equivalence between `Σ a, β (f a)` and `Σ a, β a`. -/ | |
@[simps apply] | |
def sigma_congr_left {α₁ α₂} {β : α₂ → Sort*} (e : α₁ ≃ α₂) : (Σ a:α₁, β (e a)) ≃ (Σ a:α₂, β a) := | |
⟨λ a, ⟨e a.1, a.2⟩, λ a, ⟨e.symm a.1, @@eq.rec β a.2 (e.right_inv a.1).symm⟩, | |
λ ⟨a, b⟩, match e.symm (e a), e.left_inv a : ∀ a' (h : a' = a), | |
@sigma.mk _ (β ∘ e) _ (@@eq.rec β b (congr_arg e h.symm)) = ⟨a, b⟩ with | |
| _, rfl := rfl end, | |
λ ⟨a, b⟩, match e (e.symm a), _ : ∀ a' (h : a' = a), | |
sigma.mk a' (@@eq.rec β b h.symm) = ⟨a, b⟩ with | |
| _, rfl := rfl end⟩ | |
/-- Transporting a sigma type through an equivalence of the base -/ | |
def sigma_congr_left' {α₁ α₂} {β : α₁ → Sort*} (f : α₁ ≃ α₂) : | |
(Σ a:α₁, β a) ≃ (Σ a:α₂, β (f.symm a)) := | |
(sigma_congr_left f.symm).symm | |
/-- Transporting a sigma type through an equivalence of the base and a family of equivalences | |
of matching fibers -/ | |
def sigma_congr {α₁ α₂} {β₁ : α₁ → Sort*} {β₂ : α₂ → Sort*} (f : α₁ ≃ α₂) | |
(F : ∀ a, β₁ a ≃ β₂ (f a)) : | |
sigma β₁ ≃ sigma β₂ := | |
(sigma_congr_right F).trans (sigma_congr_left f) | |
/-- `sigma` type with a constant fiber is equivalent to the product. -/ | |
@[simps apply symm_apply] def sigma_equiv_prod (α β : Type*) : (Σ_:α, β) ≃ α × β := | |
⟨λ a, ⟨a.1, a.2⟩, λ a, ⟨a.1, a.2⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩ | |
/-- If each fiber of a `sigma` type is equivalent to a fixed type, then the sigma type | |
is equivalent to the product. -/ | |
def sigma_equiv_prod_of_equiv {α β} {β₁ : α → Sort*} (F : Π a, β₁ a ≃ β) : sigma β₁ ≃ α × β := | |
(sigma_congr_right F).trans (sigma_equiv_prod α β) | |
/-- Dependent product of types is associative up to an equivalence. -/ | |
def sigma_assoc {α : Type*} {β : α → Type*} (γ : Π (a : α), β a → Type*) : | |
(Σ (ab : Σ (a : α), β a), γ ab.1 ab.2) ≃ Σ (a : α), (Σ (b : β a), γ a b) := | |
{ to_fun := λ x, ⟨x.1.1, ⟨x.1.2, x.2⟩⟩, | |
inv_fun := λ x, ⟨⟨x.1, x.2.1⟩, x.2.2⟩, | |
left_inv := λ ⟨⟨a, b⟩, c⟩, rfl, | |
right_inv := λ ⟨a, ⟨b, c⟩⟩, rfl } | |
end | |
section prod_congr | |
variables {α₁ β₁ β₂ : Type*} (e : α₁ → β₁ ≃ β₂) | |
/-- A family of equivalences `Π (a : α₁), β₁ ≃ β₂` generates an equivalence | |
between `β₁ × α₁` and `β₂ × α₁`. -/ | |
def prod_congr_left : β₁ × α₁ ≃ β₂ × α₁ := | |
{ to_fun := λ ab, ⟨e ab.2 ab.1, ab.2⟩, | |
inv_fun := λ ab, ⟨(e ab.2).symm ab.1, ab.2⟩, | |
left_inv := by { rintros ⟨a, b⟩, simp }, | |
right_inv := by { rintros ⟨a, b⟩, simp } } | |
@[simp] lemma prod_congr_left_apply (b : β₁) (a : α₁) : | |
prod_congr_left e (b, a) = (e a b, a) := rfl | |
lemma prod_congr_refl_right (e : β₁ ≃ β₂) : | |
prod_congr e (equiv.refl α₁) = prod_congr_left (λ _, e) := | |
by { ext ⟨a, b⟩ : 1, simp } | |
/-- A family of equivalences `Π (a : α₁), β₁ ≃ β₂` generates an equivalence | |
between `α₁ × β₁` and `α₁ × β₂`. -/ | |
def prod_congr_right : α₁ × β₁ ≃ α₁ × β₂ := | |
{ to_fun := λ ab, ⟨ab.1, e ab.1 ab.2⟩, | |
inv_fun := λ ab, ⟨ab.1, (e ab.1).symm ab.2⟩, | |
left_inv := by { rintros ⟨a, b⟩, simp }, | |
right_inv := by { rintros ⟨a, b⟩, simp } } | |
@[simp] lemma prod_congr_right_apply (a : α₁) (b : β₁) : | |
prod_congr_right e (a, b) = (a, e a b) := rfl | |
lemma prod_congr_refl_left (e : β₁ ≃ β₂) : | |
prod_congr (equiv.refl α₁) e = prod_congr_right (λ _, e) := | |
by { ext ⟨a, b⟩ : 1, simp } | |
@[simp] lemma prod_congr_left_trans_prod_comm : | |
(prod_congr_left e).trans (prod_comm _ _) = (prod_comm _ _).trans (prod_congr_right e) := | |
by { ext ⟨a, b⟩ : 1, simp } | |
@[simp] lemma prod_congr_right_trans_prod_comm : | |
(prod_congr_right e).trans (prod_comm _ _) = (prod_comm _ _).trans (prod_congr_left e) := | |
by { ext ⟨a, b⟩ : 1, simp } | |
lemma sigma_congr_right_sigma_equiv_prod : | |
(sigma_congr_right e).trans (sigma_equiv_prod α₁ β₂) = | |
(sigma_equiv_prod α₁ β₁).trans (prod_congr_right e) := | |
by { ext ⟨a, b⟩ : 1, simp } | |
lemma sigma_equiv_prod_sigma_congr_right : | |
(sigma_equiv_prod α₁ β₁).symm.trans (sigma_congr_right e) = | |
(prod_congr_right e).trans (sigma_equiv_prod α₁ β₂).symm := | |
by { ext ⟨a, b⟩ : 1, simp } | |
/-- A family of equivalences between fibers gives an equivalence between domains. -/ | |
-- See also `equiv.of_preimage_equiv`. | |
@[simps] | |
def of_fiber_equiv {α β γ : Type*} {f : α → γ} {g : β → γ} | |
(e : Π c, {a // f a = c} ≃ {b // g b = c}) : | |
α ≃ β := | |
(sigma_fiber_equiv f).symm.trans $ (equiv.sigma_congr_right e).trans (sigma_fiber_equiv g) | |
lemma of_fiber_equiv_map {α β γ} {f : α → γ} {g : β → γ} | |
(e : Π c, {a // f a = c} ≃ {b // g b = c}) (a : α) : g (of_fiber_equiv e a) = f a := | |
(_ : {b // g b = _}).prop | |
/-- A variation on `equiv.prod_congr` where the equivalence in the second component can depend | |
on the first component. A typical example is a shear mapping, explaining the name of this | |
declaration. -/ | |
@[simps {fully_applied := ff}] | |
def prod_shear {α₁ β₁ α₂ β₂ : Type*} (e₁ : α₁ ≃ α₂) (e₂ : α₁ → β₁ ≃ β₂) : α₁ × β₁ ≃ α₂ × β₂ := | |
{ to_fun := λ x : α₁ × β₁, (e₁ x.1, e₂ x.1 x.2), | |
inv_fun := λ y : α₂ × β₂, (e₁.symm y.1, (e₂ $ e₁.symm y.1).symm y.2), | |
left_inv := by { rintro ⟨x₁, y₁⟩, simp only [symm_apply_apply] }, | |
right_inv := by { rintro ⟨x₁, y₁⟩, simp only [apply_symm_apply] } } | |
end prod_congr | |
namespace perm | |
variables {α₁ β₁ β₂ : Type*} [decidable_eq α₁] (a : α₁) (e : perm β₁) | |
/-- `prod_extend_right a e` extends `e : perm β` to `perm (α × β)` by sending `(a, b)` to | |
`(a, e b)` and keeping the other `(a', b)` fixed. -/ | |
def prod_extend_right : perm (α₁ × β₁) := | |
{ to_fun := λ ab, if ab.fst = a then (a, e ab.snd) else ab, | |
inv_fun := λ ab, if ab.fst = a then (a, e.symm ab.snd) else ab, | |
left_inv := by { rintros ⟨k', x⟩, dsimp only, split_ifs with h; simp [h] }, | |
right_inv := by { rintros ⟨k', x⟩, dsimp only, split_ifs with h; simp [h] } } | |
@[simp] lemma prod_extend_right_apply_eq (b : β₁) : | |
prod_extend_right a e (a, b) = (a, e b) := if_pos rfl | |
lemma prod_extend_right_apply_ne {a a' : α₁} (h : a' ≠ a) (b : β₁) : | |
prod_extend_right a e (a', b) = (a', b) := if_neg h | |
lemma eq_of_prod_extend_right_ne {e : perm β₁} {a a' : α₁} {b : β₁} | |
(h : prod_extend_right a e (a', b) ≠ (a', b)) : a' = a := | |
by { contrapose! h, exact prod_extend_right_apply_ne _ h _ } | |
@[simp] lemma fst_prod_extend_right (ab : α₁ × β₁) : | |
(prod_extend_right a e ab).fst = ab.fst := | |
begin | |
rw [prod_extend_right, coe_fn_mk], | |
split_ifs with h, | |
{ rw h }, | |
{ refl } | |
end | |
end perm | |
section | |
/-- The type of functions to a product `α × β` is equivalent to the type of pairs of functions | |
`γ → α` and `γ → β`. -/ | |
def arrow_prod_equiv_prod_arrow (α β γ : Type*) : (γ → α × β) ≃ (γ → α) × (γ → β) := | |
⟨λ f, (λ c, (f c).1, λ c, (f c).2), | |
λ p c, (p.1 c, p.2 c), | |
λ f, funext $ λ c, prod.mk.eta, | |
λ p, by { cases p, refl }⟩ | |
open sum | |
/-- The type of functions on a sum type `α ⊕ β` is equivalent to the type of pairs of functions | |
on `α` and on `β`. -/ | |
def sum_arrow_equiv_prod_arrow (α β γ : Type*) : ((α ⊕ β) → γ) ≃ (α → γ) × (β → γ) := | |
⟨λ f, (f ∘ inl, f ∘ inr), | |
λ p, sum.elim p.1 p.2, | |
λ f, by { ext ⟨⟩; refl }, | |
λ p, by { cases p, refl }⟩ | |
@[simp] lemma sum_arrow_equiv_prod_arrow_apply_fst {α β γ} (f : (α ⊕ β) → γ) (a : α) : | |
(sum_arrow_equiv_prod_arrow α β γ f).1 a = f (inl a) := rfl | |
@[simp] lemma sum_arrow_equiv_prod_arrow_apply_snd {α β γ} (f : (α ⊕ β) → γ) (b : β) : | |
(sum_arrow_equiv_prod_arrow α β γ f).2 b = f (inr b) := rfl | |
@[simp] lemma sum_arrow_equiv_prod_arrow_symm_apply_inl {α β γ} (f : α → γ) (g : β → γ) (a : α) : | |
((sum_arrow_equiv_prod_arrow α β γ).symm (f, g)) (inl a) = f a := rfl | |
@[simp] lemma sum_arrow_equiv_prod_arrow_symm_apply_inr {α β γ} (f : α → γ) (g : β → γ) (b : β) : | |
((sum_arrow_equiv_prod_arrow α β γ).symm (f, g)) (inr b) = g b := rfl | |
/-- Type product is right distributive with respect to type sum up to an equivalence. -/ | |
def sum_prod_distrib (α β γ : Sort*) : (α ⊕ β) × γ ≃ (α × γ) ⊕ (β × γ) := | |
⟨λ p, p.1.map (λ x, (x, p.2)) (λ x, (x, p.2)), | |
λ s, s.elim (prod.map inl id) (prod.map inr id), | |
by rintro ⟨_ | _, _⟩; refl, | |
by rintro (⟨_, _⟩ | ⟨_, _⟩); refl⟩ | |
@[simp] theorem sum_prod_distrib_apply_left {α β γ} (a : α) (c : γ) : | |
sum_prod_distrib α β γ (sum.inl a, c) = sum.inl (a, c) := rfl | |
@[simp] theorem sum_prod_distrib_apply_right {α β γ} (b : β) (c : γ) : | |
sum_prod_distrib α β γ (sum.inr b, c) = sum.inr (b, c) := rfl | |
@[simp] theorem sum_prod_distrib_symm_apply_left {α β γ} (a : α × γ) : | |
(sum_prod_distrib α β γ).symm (inl a) = (inl a.1, a.2) := rfl | |
@[simp] theorem sum_prod_distrib_symm_apply_right {α β γ} (b : β × γ) : | |
(sum_prod_distrib α β γ).symm (inr b) = (inr b.1, b.2) := rfl | |
/-- Type product is left distributive with respect to type sum up to an equivalence. -/ | |
def prod_sum_distrib (α β γ : Sort*) : α × (β ⊕ γ) ≃ (α × β) ⊕ (α × γ) := | |
calc α × (β ⊕ γ) ≃ (β ⊕ γ) × α : prod_comm _ _ | |
... ≃ (β × α) ⊕ (γ × α) : sum_prod_distrib _ _ _ | |
... ≃ (α × β) ⊕ (α × γ) : sum_congr (prod_comm _ _) (prod_comm _ _) | |
@[simp] theorem prod_sum_distrib_apply_left {α β γ} (a : α) (b : β) : | |
prod_sum_distrib α β γ (a, sum.inl b) = sum.inl (a, b) := rfl | |
@[simp] theorem prod_sum_distrib_apply_right {α β γ} (a : α) (c : γ) : | |
prod_sum_distrib α β γ (a, sum.inr c) = sum.inr (a, c) := rfl | |
@[simp] theorem prod_sum_distrib_symm_apply_left {α β γ} (a : α × β) : | |
(prod_sum_distrib α β γ).symm (inl a) = (a.1, inl a.2) := rfl | |
@[simp] theorem prod_sum_distrib_symm_apply_right {α β γ} (a : α × γ) : | |
(prod_sum_distrib α β γ).symm (inr a) = (a.1, inr a.2) := rfl | |
/-- An indexed sum of disjoint sums of types is equivalent to the sum of the indexed sums. -/ | |
@[simps] def sigma_sum_distrib {ι : Type*} (α β : ι → Type*) : | |
(Σ i, α i ⊕ β i) ≃ (Σ i, α i) ⊕ Σ i, β i := | |
⟨λ p, p.2.map (sigma.mk p.1) (sigma.mk p.1), | |
sum.elim (sigma.map id (λ _, sum.inl)) (sigma.map id (λ _, sum.inr)), | |
λ p, by { rcases p with ⟨i, (a | b)⟩; refl }, | |
λ p, by { rcases p with (⟨i, a⟩ | ⟨i, b⟩); refl }⟩ | |
/-- The product of an indexed sum of types (formally, a `sigma`-type `Σ i, α i`) by a type `β` is | |
equivalent to the sum of products `Σ i, (α i × β)`. -/ | |
def sigma_prod_distrib {ι : Type*} (α : ι → Type*) (β : Type*) : | |
((Σ i, α i) × β) ≃ (Σ i, (α i × β)) := | |
⟨λ p, ⟨p.1.1, (p.1.2, p.2)⟩, | |
λ p, (⟨p.1, p.2.1⟩, p.2.2), | |
λ p, by { rcases p with ⟨⟨_, _⟩, _⟩, refl }, | |
λ p, by { rcases p with ⟨_, ⟨_, _⟩⟩, refl }⟩ | |
/-- An equivalence that separates out the 0th fiber of `(Σ (n : ℕ), f n)`. -/ | |
def sigma_nat_succ (f : ℕ → Type u) : | |
(Σ n, f n) ≃ f 0 ⊕ Σ n, f (n + 1) := | |
⟨λ x, @sigma.cases_on ℕ f (λ _, f 0 ⊕ Σ n, f (n + 1)) x (λ n, @nat.cases_on (λ i, f i → (f 0 ⊕ | |
Σ (n : ℕ), f (n + 1))) n (λ (x : f 0), sum.inl x) (λ (n : ℕ) (x : f n.succ), sum.inr ⟨n, x⟩)), | |
sum.elim (sigma.mk 0) (sigma.map nat.succ (λ _, id)), | |
by { rintro ⟨(n | n), x⟩; refl }, by { rintro (x | ⟨n, x⟩); refl }⟩ | |
/-- The product `bool × α` is equivalent to `α ⊕ α`. -/ | |
@[simps] def bool_prod_equiv_sum (α : Type u) : bool × α ≃ α ⊕ α := | |
{ to_fun := λ p, cond p.1 (inr p.2) (inl p.2), | |
inv_fun := sum.elim (prod.mk ff) (prod.mk tt), | |
left_inv := by rintro ⟨(_|_), _⟩; refl, | |
right_inv := by rintro (_|_); refl } | |
/-- The function type `bool → α` is equivalent to `α × α`. -/ | |
@[simps] def bool_arrow_equiv_prod (α : Type u) : (bool → α) ≃ α × α := | |
{ to_fun := λ f, (f tt, f ff), | |
inv_fun := λ p b, cond b p.1 p.2, | |
left_inv := λ f, funext $ bool.forall_bool.2 ⟨rfl, rfl⟩, | |
right_inv := λ ⟨x, y⟩, rfl } | |
end | |
section | |
open sum nat | |
/-- The set of natural numbers is equivalent to `ℕ ⊕ punit`. -/ | |
def nat_equiv_nat_sum_punit : ℕ ≃ ℕ ⊕ punit.{u+1} := | |
{ to_fun := λ n, nat.cases_on n (inr punit.star) inl, | |
inv_fun := sum.elim nat.succ (λ _, 0), | |
left_inv := λ n, by cases n; refl, | |
right_inv := by rintro (_|_|_); refl } | |
/-- `ℕ ⊕ punit` is equivalent to `ℕ`. -/ | |
def nat_sum_punit_equiv_nat : ℕ ⊕ punit.{u+1} ≃ ℕ := | |
nat_equiv_nat_sum_punit.symm | |
/-- The type of integer numbers is equivalent to `ℕ ⊕ ℕ`. -/ | |
def int_equiv_nat_sum_nat : ℤ ≃ ℕ ⊕ ℕ := | |
{ to_fun := λ z, int.cases_on z inl inr, | |
inv_fun := sum.elim coe int.neg_succ_of_nat, | |
left_inv := by rintro (m|n); refl, | |
right_inv := by rintro (m|n); refl } | |
end | |
/-- An equivalence between `α` and `β` generates an equivalence between `list α` and `list β`. -/ | |
def list_equiv_of_equiv {α β : Type*} (e : α ≃ β) : list α ≃ list β := | |
{ to_fun := list.map e, | |
inv_fun := list.map e.symm, | |
left_inv := λ l, by rw [list.map_map, e.symm_comp_self, list.map_id], | |
right_inv := λ l, by rw [list.map_map, e.self_comp_symm, list.map_id] } | |
/-- If `α` is equivalent to `β`, then `unique α` is equivalent to `unique β`. -/ | |
def unique_congr (e : α ≃ β) : unique α ≃ unique β := | |
{ to_fun := λ h, @equiv.unique _ _ h e.symm, | |
inv_fun := λ h, @equiv.unique _ _ h e, | |
left_inv := λ _, subsingleton.elim _ _, | |
right_inv := λ _, subsingleton.elim _ _ } | |
/-- If `α` is equivalent to `β`, then `is_empty α` is equivalent to `is_empty β`. -/ | |
lemma is_empty_congr (e : α ≃ β) : is_empty α ↔ is_empty β := | |
⟨λ h, @function.is_empty _ _ h e.symm, λ h, @function.is_empty _ _ h e⟩ | |
protected lemma is_empty (e : α ≃ β) [is_empty β] : is_empty α := | |
e.is_empty_congr.mpr ‹_› | |
section | |
open subtype | |
/-- If `α` is equivalent to `β` and the predicates `p : α → Prop` and `q : β → Prop` are equivalent | |
at corresponding points, then `{a // p a}` is equivalent to `{b // q b}`. | |
For the statement where `α = β`, that is, `e : perm α`, see `perm.subtype_perm`. -/ | |
def subtype_equiv {p : α → Prop} {q : β → Prop} | |
(e : α ≃ β) (h : ∀ a, p a ↔ q (e a)) : {a : α // p a} ≃ {b : β // q b} := | |
{ to_fun := λ a, ⟨e a, (h _).mp a.prop⟩, | |
inv_fun := λ b, ⟨e.symm b, (h _).mpr ((e.apply_symm_apply b).symm ▸ b.prop)⟩, | |
left_inv := λ a, subtype.ext $ by simp, | |
right_inv := λ b, subtype.ext $ by simp } | |
@[simp] lemma subtype_equiv_refl {p : α → Prop} | |
(h : ∀ a, p a ↔ p (equiv.refl _ a) := λ a, iff.rfl) : | |
(equiv.refl α).subtype_equiv h = equiv.refl {a : α // p a} := | |
by { ext, refl } | |
@[simp] lemma subtype_equiv_symm {p : α → Prop} {q : β → Prop} (e : α ≃ β) | |
(h : ∀ (a : α), p a ↔ q (e a)) : | |
(e.subtype_equiv h).symm = e.symm.subtype_equiv (λ a, by | |
{ convert (h $ e.symm a).symm, | |
exact (e.apply_symm_apply a).symm }) := | |
rfl | |
@[simp] lemma subtype_equiv_trans {p : α → Prop} {q : β → Prop} {r : γ → Prop} | |
(e : α ≃ β) (f : β ≃ γ) | |
(h : ∀ (a : α), p a ↔ q (e a)) (h' : ∀ (b : β), q b ↔ r (f b)): | |
(e.subtype_equiv h).trans (f.subtype_equiv h') = | |
(e.trans f).subtype_equiv (λ a, (h a).trans (h' $ e a)) := | |
rfl | |
@[simp] lemma subtype_equiv_apply {p : α → Prop} {q : β → Prop} (e : α ≃ β) | |
(h : ∀ (a : α), p a ↔ q (e a)) (x : {x // p x}) : | |
e.subtype_equiv h x = ⟨e x, (h _).1 x.2⟩ := | |
rfl | |
/-- If two predicates `p` and `q` are pointwise equivalent, then `{x // p x}` is equivalent to | |
`{x // q x}`. -/ | |
@[simps] | |
def subtype_equiv_right {p q : α → Prop} (e : ∀x, p x ↔ q x) : {x // p x} ≃ {x // q x} := | |
subtype_equiv (equiv.refl _) e | |
/-- If `α ≃ β`, then for any predicate `p : β → Prop` the subtype `{a // p (e a)}` is equivalent | |
to the subtype `{b // p b}`. -/ | |
def subtype_equiv_of_subtype {p : β → Prop} (e : α ≃ β) : | |
{a : α // p (e a)} ≃ {b : β // p b} := | |
subtype_equiv e $ by simp | |
/-- If `α ≃ β`, then for any predicate `p : α → Prop` the subtype `{a // p a}` is equivalent | |
to the subtype `{b // p (e.symm b)}`. This version is used by `equiv_rw`. -/ | |
def subtype_equiv_of_subtype' {p : α → Prop} (e : α ≃ β) : | |
{a : α // p a} ≃ {b : β // p (e.symm b)} := | |
e.symm.subtype_equiv_of_subtype.symm | |
/-- If two predicates are equal, then the corresponding subtypes are equivalent. -/ | |
def subtype_equiv_prop {α : Type*} {p q : α → Prop} (h : p = q) : subtype p ≃ subtype q := | |
subtype_equiv (equiv.refl α) (assume a, h ▸ iff.rfl) | |
/-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. This | |
version allows the “inner” predicate to depend on `h : p a`. -/ | |
@[simps] | |
def subtype_subtype_equiv_subtype_exists {α : Type u} (p : α → Prop) (q : subtype p → Prop) : | |
subtype q ≃ {a : α // ∃h:p a, q ⟨a, h⟩ } := | |
⟨λ a, ⟨a, a.1.2, by { rcases a with ⟨⟨a, hap⟩, haq⟩, exact haq }⟩, | |
λ a, ⟨⟨a, a.2.fst⟩, a.2.snd⟩, | |
assume ⟨⟨a, ha⟩, h⟩, rfl, assume ⟨a, h₁, h₂⟩, rfl⟩ | |
/-- A subtype of a subtype is equivalent to the subtype of elements satisfying both predicates. -/ | |
@[simps] def subtype_subtype_equiv_subtype_inter {α : Type u} (p q : α → Prop) : | |
{x : subtype p // q x.1} ≃ subtype (λ x, p x ∧ q x) := | |
(subtype_subtype_equiv_subtype_exists p _).trans $ | |
subtype_equiv_right $ λ x, exists_prop | |
/-- If the outer subtype has more restrictive predicate than the inner one, | |
then we can drop the latter. -/ | |
@[simps] def subtype_subtype_equiv_subtype {α : Type u} {p q : α → Prop} (h : ∀ {x}, q x → p x) : | |
{x : subtype p // q x.1} ≃ subtype q := | |
(subtype_subtype_equiv_subtype_inter p _).trans $ | |
subtype_equiv_right $ λ x, and_iff_right_of_imp h | |
/-- If a proposition holds for all elements, then the subtype is | |
equivalent to the original type. -/ | |
@[simps apply symm_apply] | |
def subtype_univ_equiv {α : Type u} {p : α → Prop} (h : ∀ x, p x) : | |
subtype p ≃ α := | |
⟨λ x, x, λ x, ⟨x, h x⟩, λ x, subtype.eq rfl, λ x, rfl⟩ | |
/-- A subtype of a sigma-type is a sigma-type over a subtype. -/ | |
def subtype_sigma_equiv {α : Type u} (p : α → Type v) (q : α → Prop) : | |
{ y : sigma p // q y.1 } ≃ Σ(x : subtype q), p x.1 := | |
⟨λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, | |
λ x, ⟨⟨x.1.1, x.2⟩, x.1.2⟩, | |
λ ⟨⟨x, h⟩, y⟩, rfl, | |
λ ⟨⟨x, y⟩, h⟩, rfl⟩ | |
/-- A sigma type over a subtype is equivalent to the sigma set over the original type, | |
if the fiber is empty outside of the subset -/ | |
def sigma_subtype_equiv_of_subset {α : Type u} (p : α → Type v) (q : α → Prop) | |
(h : ∀ x, p x → q x) : | |
(Σ x : subtype q, p x) ≃ Σ x : α, p x := | |
(subtype_sigma_equiv p q).symm.trans $ subtype_univ_equiv $ λ x, h x.1 x.2 | |
/-- If a predicate `p : β → Prop` is true on the range of a map `f : α → β`, then | |
`Σ y : {y // p y}, {x // f x = y}` is equivalent to `α`. -/ | |
def sigma_subtype_fiber_equiv {α : Type u} {β : Type v} (f : α → β) (p : β → Prop) | |
(h : ∀ x, p (f x)) : | |
(Σ y : subtype p, {x : α // f x = y}) ≃ α := | |
calc _ ≃ Σ y : β, {x : α // f x = y} : sigma_subtype_equiv_of_subset _ p (λ y ⟨x, h'⟩, h' ▸ h x) | |
... ≃ α : sigma_fiber_equiv f | |
/-- If for each `x` we have `p x ↔ q (f x)`, then `Σ y : {y // q y}, f ⁻¹' {y}` is equivalent | |
to `{x // p x}`. -/ | |
def sigma_subtype_fiber_equiv_subtype {α : Type u} {β : Type v} (f : α → β) | |
{p : α → Prop} {q : β → Prop} (h : ∀ x, p x ↔ q (f x)) : | |
(Σ y : subtype q, {x : α // f x = y}) ≃ subtype p := | |
calc (Σ y : subtype q, {x : α // f x = y}) ≃ | |
Σ y : subtype q, {x : subtype p // subtype.mk (f x) ((h x).1 x.2) = y} : | |
begin | |
apply sigma_congr_right, | |
assume y, | |
symmetry, | |
refine (subtype_subtype_equiv_subtype_exists _ _).trans (subtype_equiv_right _), | |
assume x, | |
exact ⟨λ ⟨hp, h'⟩, congr_arg subtype.val h', λ h', ⟨(h x).2 (h'.symm ▸ y.2), subtype.eq h'⟩⟩ | |
end | |
... ≃ subtype p : sigma_fiber_equiv (λ x : subtype p, (⟨f x, (h x).1 x.property⟩ : subtype q)) | |
/-- A sigma type over an `option` is equivalent to the sigma set over the original type, | |
if the fiber is empty at none. -/ | |
def sigma_option_equiv_of_some {α : Type u} (p : option α → Type v) (h : p none → false) : | |
(Σ x : option α, p x) ≃ (Σ x : α, p (some x)) := | |
begin | |
have h' : ∀ x, p x → x.is_some, | |
{ intro x, | |
cases x, | |
{ intro n, exfalso, exact h n }, | |
{ intro s, exact rfl } }, | |
exact (sigma_subtype_equiv_of_subset _ _ h').symm.trans | |
(sigma_congr_left' (option_is_some_equiv α)), | |
end | |
/-- The `pi`-type `Π i, π i` is equivalent to the type of sections `f : ι → Σ i, π i` of the | |
`sigma` type such that for all `i` we have `(f i).fst = i`. -/ | |
def pi_equiv_subtype_sigma (ι : Type*) (π : ι → Type*) : | |
(Π i, π i) ≃ {f : ι → Σ i, π i // ∀ i, (f i).1 = i } := | |
⟨ λf, ⟨λi, ⟨i, f i⟩, assume i, rfl⟩, λf i, begin rw ← f.2 i, exact (f.1 i).2 end, | |
assume f, funext $ assume i, rfl, | |
assume ⟨f, hf⟩, subtype.eq $ funext $ assume i, sigma.eq (hf i).symm $ | |
eq_of_heq $ rec_heq_of_heq _ $ rec_heq_of_heq _ $ heq.refl _⟩ | |
/-- The set of functions `f : Π a, β a` such that for all `a` we have `p a (f a)` is equivalent | |
to the set of functions `Π a, {b : β a // p a b}`. -/ | |
def subtype_pi_equiv_pi {α : Sort u} {β : α → Sort v} {p : Πa, β a → Prop} : | |
{f : Πa, β a // ∀a, p a (f a) } ≃ Πa, { b : β a // p a b } := | |
⟨λf a, ⟨f.1 a, f.2 a⟩, λf, ⟨λa, (f a).1, λa, (f a).2⟩, | |
by { rintro ⟨f, h⟩, refl }, | |
by { rintro f, funext a, exact subtype.ext_val rfl }⟩ | |
/-- A subtype of a product defined by componentwise conditions | |
is equivalent to a product of subtypes. -/ | |
def subtype_prod_equiv_prod {α : Type u} {β : Type v} {p : α → Prop} {q : β → Prop} : | |
{c : α × β // p c.1 ∧ q c.2} ≃ ({a // p a} × {b // q b}) := | |
⟨λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩, | |
λ x, ⟨⟨x.1.1, x.2.1⟩, ⟨x.1.2, x.2.2⟩⟩, | |
λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl, | |
λ ⟨⟨_, _⟩, ⟨_, _⟩⟩, rfl⟩ | |
/-- A subtype of a `prod` is equivalent to a sigma type whose fibers are subtypes. -/ | |
def subtype_prod_equiv_sigma_subtype {α β : Type*} (p : α → β → Prop) : | |
{x : α × β // p x.1 x.2} ≃ Σ a, {b : β // p a b} := | |
{ to_fun := λ x, ⟨x.1.1, x.1.2, x.prop⟩, | |
inv_fun := λ x, ⟨⟨x.1, x.2⟩, x.2.prop⟩, | |
left_inv := λ x, by ext; refl, | |
right_inv := λ ⟨a, b, pab⟩, rfl } | |
/-- The type `Π (i : α), β i` can be split as a product by separating the indices in `α` | |
depending on whether they satisfy a predicate `p` or not. -/ | |
@[simps] def pi_equiv_pi_subtype_prod | |
{α : Type*} (p : α → Prop) (β : α → Type*) [decidable_pred p] : | |
(Π (i : α), β i) ≃ (Π (i : {x // p x}), β i) × (Π (i : {x // ¬ p x}), β i) := | |
{ to_fun := λ f, (λ x, f x, λ x, f x), | |
inv_fun := λ f x, if h : p x then f.1 ⟨x, h⟩ else f.2 ⟨x, h⟩, | |
right_inv := begin | |
rintros ⟨f, g⟩, | |
ext1; | |
{ ext y, | |
rcases y, | |
simp only [y_property, dif_pos, dif_neg, not_false_iff, subtype.coe_mk], | |
refl }, | |
end, | |
left_inv := λ f, begin | |
ext x, | |
by_cases h : p x; | |
{ simp only [h, dif_neg, dif_pos, not_false_iff], | |
refl }, | |
end } | |
end | |
section subtype_equiv_codomain | |
variables {X : Type*} {Y : Type*} [decidable_eq X] {x : X} | |
/-- The type of all functions `X → Y` with prescribed values for all `x' ≠ x` | |
is equivalent to the codomain `Y`. -/ | |
def subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) : {g : X → Y // g ∘ coe = f} ≃ Y := | |
(subtype_preimage _ f).trans $ | |
@fun_unique {x' // ¬ x' ≠ x} _ $ | |
show unique {x' // ¬ x' ≠ x}, from @equiv.unique _ _ | |
(show unique {x' // x' = x}, from | |
{ default := ⟨x, rfl⟩, uniq := λ ⟨x', h⟩, subtype.val_injective h }) | |
(subtype_equiv_right $ λ a, not_not) | |
@[simp] lemma coe_subtype_equiv_codomain (f : {x' // x' ≠ x} → Y) : | |
(subtype_equiv_codomain f : {g : X → Y // g ∘ coe = f} → Y) = λ g, (g : X → Y) x := rfl | |
@[simp] lemma subtype_equiv_codomain_apply (f : {x' // x' ≠ x} → Y) | |
(g : {g : X → Y // g ∘ coe = f}) : | |
subtype_equiv_codomain f g = (g : X → Y) x := rfl | |
lemma coe_subtype_equiv_codomain_symm (f : {x' // x' ≠ x} → Y) : | |
((subtype_equiv_codomain f).symm : Y → {g : X → Y // g ∘ coe = f}) = | |
λ y, ⟨λ x', if h : x' ≠ x then f ⟨x', h⟩ else y, | |
by { funext x', dsimp, erw [dif_pos x'.2, subtype.coe_eta] }⟩ := rfl | |
@[simp] lemma subtype_equiv_codomain_symm_apply (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) : | |
((subtype_equiv_codomain f).symm y : X → Y) x' = if h : x' ≠ x then f ⟨x', h⟩ else y := | |
rfl | |
@[simp] lemma subtype_equiv_codomain_symm_apply_eq (f : {x' // x' ≠ x} → Y) (y : Y) : | |
((subtype_equiv_codomain f).symm y : X → Y) x = y := | |
dif_neg (not_not.mpr rfl) | |
lemma subtype_equiv_codomain_symm_apply_ne (f : {x' // x' ≠ x} → Y) (y : Y) (x' : X) (h : x' ≠ x) : | |
((subtype_equiv_codomain f).symm y : X → Y) x' = f ⟨x', h⟩ := | |
dif_pos h | |
end subtype_equiv_codomain | |
/-- If `f` is a bijective function, then its domain is equivalent to its codomain. -/ | |
@[simps apply] | |
noncomputable def of_bijective (f : α → β) (hf : bijective f) : α ≃ β := | |
{ to_fun := f, | |
inv_fun := function.surj_inv hf.surjective, | |
left_inv := function.left_inverse_surj_inv hf, | |
right_inv := function.right_inverse_surj_inv _} | |
lemma of_bijective_apply_symm_apply (f : α → β) (hf : bijective f) (x : β) : | |
f ((of_bijective f hf).symm x) = x := | |
(of_bijective f hf).apply_symm_apply x | |
@[simp] lemma of_bijective_symm_apply_apply (f : α → β) (hf : bijective f) (x : α) : | |
(of_bijective f hf).symm (f x) = x := | |
(of_bijective f hf).symm_apply_apply x | |
instance : can_lift (α → β) (α ≃ β) := | |
{ coe := coe_fn, | |
cond := bijective, | |
prf := λ f hf, ⟨of_bijective f hf, rfl⟩ } | |
section | |
variables {α' β' : Type*} (e : perm α') {p : β' → Prop} [decidable_pred p] | |
(f : α' ≃ subtype p) | |
/-- | |
Extend the domain of `e : equiv.perm α` to one that is over `β` via `f : α → subtype p`, | |
where `p : β → Prop`, permuting only the `b : β` that satisfy `p b`. | |
This can be used to extend the domain across a function `f : α → β`, | |
keeping everything outside of `set.range f` fixed. For this use-case `equiv` given by `f` can | |
be constructed by `equiv.of_left_inverse'` or `equiv.of_left_inverse` when there is a known | |
inverse, or `equiv.of_injective` in the general case.`. | |
-/ | |
def perm.extend_domain : perm β' := | |
(perm_congr f e).subtype_congr (equiv.refl _) | |
@[simp] lemma perm.extend_domain_apply_image (a : α') : | |
e.extend_domain f (f a) = f (e a) := | |
by simp [perm.extend_domain] | |
lemma perm.extend_domain_apply_subtype {b : β'} (h : p b) : | |
e.extend_domain f b = f (e (f.symm ⟨b, h⟩)) := | |
by simp [perm.extend_domain, h] | |
lemma perm.extend_domain_apply_not_subtype {b : β'} (h : ¬ p b) : | |
e.extend_domain f b = b := | |
by simp [perm.extend_domain, h] | |
@[simp] lemma perm.extend_domain_refl : perm.extend_domain (equiv.refl _) f = equiv.refl _ := | |
by simp [perm.extend_domain] | |
@[simp] lemma perm.extend_domain_symm : | |
(e.extend_domain f).symm = perm.extend_domain e.symm f := rfl | |
lemma perm.extend_domain_trans (e e' : perm α') : | |
(e.extend_domain f).trans (e'.extend_domain f) = perm.extend_domain (e.trans e') f := | |
by simp [perm.extend_domain, perm_congr_trans] | |
end | |
/-- Subtype of the quotient is equivalent to the quotient of the subtype. Let `α` be a setoid with | |
equivalence relation `~`. Let `p₂` be a predicate on the quotient type `α/~`, and `p₁` be the lift | |
of this predicate to `α`: `p₁ a ↔ p₂ ⟦a⟧`. Let `~₂` be the restriction of `~` to `{x // p₁ x}`. | |
Then `{x // p₂ x}` is equivalent to the quotient of `{x // p₁ x}` by `~₂`. -/ | |
def subtype_quotient_equiv_quotient_subtype (p₁ : α → Prop) [s₁ : setoid α] | |
[s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) | |
(h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) : | |
{x // p₂ x} ≃ quotient s₂ := | |
{ to_fun := λ a, quotient.hrec_on a.1 (λ a h, ⟦⟨a, (hp₂ _).2 h⟩⟧) | |
(λ a b hab, hfunext (by rw quotient.sound hab) | |
(λ h₁ h₂ _, heq_of_eq (quotient.sound ((h _ _).2 hab)))) a.2, | |
inv_fun := λ a, quotient.lift_on a (λ a, (⟨⟦a.1⟧, (hp₂ _).1 a.2⟩ : {x // p₂ x})) | |
(λ a b hab, subtype.ext_val (quotient.sound ((h _ _).1 hab))), | |
left_inv := λ ⟨a, ha⟩, quotient.induction_on a (λ a ha, rfl) ha, | |
right_inv := λ a, quotient.induction_on a (λ ⟨a, ha⟩, rfl) } | |
@[simp] lemma subtype_quotient_equiv_quotient_subtype_mk (p₁ : α → Prop) [s₁ : setoid α] | |
[s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) | |
(h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) (x hx) : | |
subtype_quotient_equiv_quotient_subtype p₁ p₂ hp₂ h ⟨⟦x⟧, hx⟩ = ⟦⟨x, (hp₂ _).2 hx⟩⟧ := rfl | |
@[simp] lemma subtype_quotient_equiv_quotient_subtype_symm_mk (p₁ : α → Prop) [s₁ : setoid α] | |
[s₂ : setoid (subtype p₁)] (p₂ : quotient s₁ → Prop) (hp₂ : ∀ a, p₁ a ↔ p₂ ⟦a⟧) | |
(h : ∀ x y : subtype p₁, @setoid.r _ s₂ x y ↔ (x : α) ≈ y) (x) : | |
(subtype_quotient_equiv_quotient_subtype p₁ p₂ hp₂ h).symm ⟦x⟧ = ⟨⟦x⟧, (hp₂ _).1 x.prop⟩ := rfl | |
section swap | |
variable [decidable_eq α] | |
/-- A helper function for `equiv.swap`. -/ | |
def swap_core (a b r : α) : α := | |
if r = a then b | |
else if r = b then a | |
else r | |
theorem swap_core_self (r a : α) : swap_core a a r = r := | |
by { unfold swap_core, split_ifs; cc } | |
theorem swap_core_swap_core (r a b : α) : swap_core a b (swap_core a b r) = r := | |
by { unfold swap_core, split_ifs; cc } | |
theorem swap_core_comm (r a b : α) : swap_core a b r = swap_core b a r := | |
by { unfold swap_core, split_ifs; cc } | |
/-- `swap a b` is the permutation that swaps `a` and `b` and | |
leaves other values as is. -/ | |
def swap (a b : α) : perm α := | |
⟨swap_core a b, swap_core a b, λr, swap_core_swap_core r a b, λr, swap_core_swap_core r a b⟩ | |
@[simp] theorem swap_self (a : α) : swap a a = equiv.refl _ := | |
ext $ λ r, swap_core_self r a | |
theorem swap_comm (a b : α) : swap a b = swap b a := | |
ext $ λ r, swap_core_comm r _ _ | |
theorem swap_apply_def (a b x : α) : swap a b x = if x = a then b else if x = b then a else x := | |
rfl | |
@[simp] theorem swap_apply_left (a b : α) : swap a b a = b := | |
if_pos rfl | |
@[simp] theorem swap_apply_right (a b : α) : swap a b b = a := | |
by { by_cases h : b = a; simp [swap_apply_def, h], } | |
theorem swap_apply_of_ne_of_ne {a b x : α} : x ≠ a → x ≠ b → swap a b x = x := | |
by simp [swap_apply_def] {contextual := tt} | |
@[simp] theorem swap_swap (a b : α) : (swap a b).trans (swap a b) = equiv.refl _ := | |
ext $ λ x, swap_core_swap_core _ _ _ | |
@[simp] lemma symm_swap (a b : α) : (swap a b).symm = swap a b := rfl | |
@[simp] lemma swap_eq_refl_iff {x y : α} : swap x y = equiv.refl _ ↔ x = y := | |
begin | |
refine ⟨λ h, (equiv.refl _).injective _, λ h, h ▸ (swap_self _)⟩, | |
rw [←h, swap_apply_left, h, refl_apply] | |
end | |
theorem swap_comp_apply {a b x : α} (π : perm α) : | |
π.trans (swap a b) x = if π x = a then b else if π x = b then a else π x := | |
by { cases π, refl } | |
lemma swap_eq_update (i j : α) : | |
(equiv.swap i j : α → α) = update (update id j i) i j := | |
funext $ λ x, by rw [update_apply _ i j, update_apply _ j i, equiv.swap_apply_def, id.def] | |
lemma comp_swap_eq_update (i j : α) (f : α → β) : | |
f ∘ equiv.swap i j = update (update f j (f i)) i (f j) := | |
by rw [swap_eq_update, comp_update, comp_update, comp.right_id] | |
@[simp] lemma symm_trans_swap_trans [decidable_eq β] (a b : α) (e : α ≃ β) : | |
(e.symm.trans (swap a b)).trans e = swap (e a) (e b) := | |
equiv.ext (λ x, begin | |
have : ∀ a, e.symm x = a ↔ x = e a := | |
λ a, by { rw @eq_comm _ (e.symm x), split; intros; simp * at * }, | |
simp [swap_apply_def, this], | |
split_ifs; simp | |
end) | |
@[simp] lemma trans_swap_trans_symm [decidable_eq β] (a b : β) | |
(e : α ≃ β) : (e.trans (swap a b)).trans e.symm = swap (e.symm a) (e.symm b) := | |
symm_trans_swap_trans a b e.symm | |
@[simp] lemma swap_apply_self (i j a : α) : | |
swap i j (swap i j a) = a := | |
by rw [← equiv.trans_apply, equiv.swap_swap, equiv.refl_apply] | |
/-- A function is invariant to a swap if it is equal at both elements -/ | |
lemma apply_swap_eq_self {v : α → β} {i j : α} (hv : v i = v j) (k : α) : v (swap i j k) = v k := | |
begin | |
by_cases hi : k = i, { rw [hi, swap_apply_left, hv] }, | |
by_cases hj : k = j, { rw [hj, swap_apply_right, hv] }, | |
rw swap_apply_of_ne_of_ne hi hj, | |
end | |
lemma swap_apply_eq_iff {x y z w : α} : | |
swap x y z = w ↔ z = swap x y w := | |
by rw [apply_eq_iff_eq_symm_apply, symm_swap] | |
lemma swap_apply_ne_self_iff {a b x : α} : swap a b x ≠ x ↔ a ≠ b ∧ (x = a ∨ x = b) := | |
begin | |
by_cases hab : a = b, | |
{ simp [hab] }, | |
by_cases hax : x = a, | |
{ simp [hax, eq_comm] }, | |
by_cases hbx : x = b, | |
{ simp [hbx] }, | |
simp [hab, hax, hbx, swap_apply_of_ne_of_ne] | |
end | |
namespace perm | |
@[simp] lemma sum_congr_swap_refl {α β : Sort*} [decidable_eq α] [decidable_eq β] (i j : α) : | |
equiv.perm.sum_congr (equiv.swap i j) (equiv.refl β) = equiv.swap (sum.inl i) (sum.inl j) := | |
begin | |
ext x, | |
cases x, | |
{ simp [sum.map, swap_apply_def], | |
split_ifs; refl}, | |
{ simp [sum.map, swap_apply_of_ne_of_ne] }, | |
end | |
@[simp] lemma sum_congr_refl_swap {α β : Sort*} [decidable_eq α] [decidable_eq β] (i j : β) : | |
equiv.perm.sum_congr (equiv.refl α) (equiv.swap i j) = equiv.swap (sum.inr i) (sum.inr j) := | |
begin | |
ext x, | |
cases x, | |
{ simp [sum.map, swap_apply_of_ne_of_ne] }, | |
{ simp [sum.map, swap_apply_def], | |
split_ifs; refl}, | |
end | |
end perm | |
/-- Augment an equivalence with a prescribed mapping `f a = b` -/ | |
def set_value (f : α ≃ β) (a : α) (b : β) : α ≃ β := | |
(swap a (f.symm b)).trans f | |
@[simp] theorem set_value_eq (f : α ≃ β) (a : α) (b : β) : set_value f a b a = b := | |
by { dsimp [set_value], simp [swap_apply_left] } | |
end swap | |
end equiv | |
namespace function.involutive | |
/-- Convert an involutive function `f` to a permutation with `to_fun = inv_fun = f`. -/ | |
def to_perm (f : α → α) (h : involutive f) : equiv.perm α := | |
⟨f, f, h.left_inverse, h.right_inverse⟩ | |
@[simp] lemma coe_to_perm {f : α → α} (h : involutive f) : (h.to_perm f : α → α) = f := rfl | |
@[simp] lemma to_perm_symm {f : α → α} (h : involutive f) : (h.to_perm f).symm = h.to_perm f := rfl | |
lemma to_perm_involutive {f : α → α} (h : involutive f) : involutive (h.to_perm f) := h | |
end function.involutive | |
lemma plift.eq_up_iff_down_eq {x : plift α} {y : α} : x = plift.up y ↔ x.down = y := | |
equiv.plift.eq_symm_apply | |
lemma function.injective.map_swap {α β : Type*} [decidable_eq α] [decidable_eq β] | |
{f : α → β} (hf : function.injective f) (x y z : α) : | |
f (equiv.swap x y z) = equiv.swap (f x) (f y) (f z) := | |
begin | |
conv_rhs { rw equiv.swap_apply_def }, | |
split_ifs with h₁ h₂, | |
{ rw [hf h₁, equiv.swap_apply_left] }, | |
{ rw [hf h₂, equiv.swap_apply_right] }, | |
{ rw [equiv.swap_apply_of_ne_of_ne (mt (congr_arg f) h₁) (mt (congr_arg f) h₂)] } | |
end | |
namespace equiv | |
protected lemma exists_unique_congr {p : α → Prop} {q : β → Prop} (f : α ≃ β) | |
(h : ∀{x}, p x ↔ q (f x)) : (∃! x, p x) ↔ ∃! y, q y := | |
begin | |
split, | |
{ rintro ⟨a, ha₁, ha₂⟩, | |
exact ⟨f a, h.1 ha₁, λ b hb, f.symm_apply_eq.1 (ha₂ (f.symm b) (h.2 (by simpa using hb)))⟩ }, | |
{ rintro ⟨b, hb₁, hb₂⟩, | |
exact ⟨f.symm b, h.2 (by simpa using hb₁), λ y hy, (eq_symm_apply f).2 (hb₂ _ (h.1 hy))⟩ } | |
end | |
protected lemma exists_unique_congr_left' {p : α → Prop} (f : α ≃ β) : | |
(∃! x, p x) ↔ (∃! y, p (f.symm y)) := | |
equiv.exists_unique_congr f (λx, by simp) | |
protected lemma exists_unique_congr_left {p : β → Prop} (f : α ≃ β) : | |
(∃! x, p (f x)) ↔ (∃! y, p y) := | |
(equiv.exists_unique_congr_left' f.symm).symm | |
protected lemma forall_congr {p : α → Prop} {q : β → Prop} (f : α ≃ β) | |
(h : ∀{x}, p x ↔ q (f x)) : (∀x, p x) ↔ (∀y, q y) := | |
begin | |
split; intros h₂ x, | |
{ rw [←f.right_inv x], apply h.mp, apply h₂ }, | |
apply h.mpr, apply h₂ | |
end | |
protected lemma forall_congr' {p : α → Prop} {q : β → Prop} (f : α ≃ β) | |
(h : ∀{x}, p (f.symm x) ↔ q x) : (∀x, p x) ↔ (∀y, q y) := | |
(equiv.forall_congr f.symm (λ x, h.symm)).symm | |
-- We next build some higher arity versions of `equiv.forall_congr`. | |
-- Although they appear to just be repeated applications of `equiv.forall_congr`, | |
-- unification of metavariables works better with these versions. | |
-- In particular, they are necessary in `equiv_rw`. | |
-- (Stopping at ternary functions seems reasonable: at least in 1-categorical mathematics, | |
-- it's rare to have axioms involving more than 3 elements at once.) | |
universes ua1 ua2 ub1 ub2 ug1 ug2 | |
variables {α₁ : Sort ua1} {α₂ : Sort ua2} | |
{β₁ : Sort ub1} {β₂ : Sort ub2} | |
{γ₁ : Sort ug1} {γ₂ : Sort ug2} | |
protected lemma forall₂_congr {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂) | |
(eβ : β₁ ≃ β₂) (h : ∀{x y}, p x y ↔ q (eα x) (eβ y)) : | |
(∀x y, p x y) ↔ (∀x y, q x y) := | |
begin | |
apply equiv.forall_congr, | |
intros, | |
apply equiv.forall_congr, | |
intros, | |
apply h, | |
end | |
protected lemma forall₂_congr' {p : α₁ → β₁ → Prop} {q : α₂ → β₂ → Prop} (eα : α₁ ≃ α₂) | |
(eβ : β₁ ≃ β₂) (h : ∀{x y}, p (eα.symm x) (eβ.symm y) ↔ q x y) : | |
(∀x y, p x y) ↔ (∀x y, q x y) := | |
(equiv.forall₂_congr eα.symm eβ.symm (λ x y, h.symm)).symm | |
protected lemma forall₃_congr {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop} | |
(eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂) | |
(h : ∀{x y z}, p x y z ↔ q (eα x) (eβ y) (eγ z)) : (∀x y z, p x y z) ↔ (∀x y z, q x y z) := | |
begin | |
apply equiv.forall₂_congr, | |
intros, | |
apply equiv.forall_congr, | |
intros, | |
apply h, | |
end | |
protected lemma forall₃_congr' {p : α₁ → β₁ → γ₁ → Prop} {q : α₂ → β₂ → γ₂ → Prop} | |
(eα : α₁ ≃ α₂) (eβ : β₁ ≃ β₂) (eγ : γ₁ ≃ γ₂) | |
(h : ∀{x y z}, p (eα.symm x) (eβ.symm y) (eγ.symm z) ↔ q x y z) : | |
(∀x y z, p x y z) ↔ (∀x y z, q x y z) := | |
(equiv.forall₃_congr eα.symm eβ.symm eγ.symm (λ x y z, h.symm)).symm | |
protected lemma forall_congr_left' {p : α → Prop} (f : α ≃ β) : | |
(∀x, p x) ↔ (∀y, p (f.symm y)) := | |
equiv.forall_congr f (λx, by simp) | |
protected lemma forall_congr_left {p : β → Prop} (f : α ≃ β) : | |
(∀x, p (f x)) ↔ (∀y, p y) := | |
(equiv.forall_congr_left' f.symm).symm | |
protected lemma exists_congr_left {α β} (f : α ≃ β) {p : α → Prop} : | |
(∃ a, p a) ↔ (∃ b, p (f.symm b)) := | |
⟨λ ⟨a, h⟩, ⟨f a, by simpa using h⟩, λ ⟨b, h⟩, ⟨_, h⟩⟩ | |
section | |
variables (P : α → Sort w) (e : α ≃ β) | |
/-- | |
Transport dependent functions through an equivalence of the base space. | |
-/ | |
@[simps] def Pi_congr_left' : (Π a, P a) ≃ (Π b, P (e.symm b)) := | |
{ to_fun := λ f x, f (e.symm x), | |
inv_fun := λ f x, begin rw [← e.symm_apply_apply x], exact f (e x) end, | |
left_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans | |
(by { dsimp, rw e.symm_apply_apply })), | |
right_inv := λ f, funext $ λ x, eq_of_heq ((eq_rec_heq _ _).trans | |
(by { rw e.apply_symm_apply })) } | |
end | |
section | |
variables (P : β → Sort w) (e : α ≃ β) | |
/-- | |
Transporting dependent functions through an equivalence of the base, | |
expressed as a "simplification". | |
-/ | |
def Pi_congr_left : (Π a, P (e a)) ≃ (Π b, P b) := | |
(Pi_congr_left' P e.symm).symm | |
end | |
section | |
variables | |
{W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π a : α, (W a ≃ Z (h₁ a))) | |
/-- | |
Transport dependent functions through | |
an equivalence of the base spaces and a family | |
of equivalences of the matching fibers. | |
-/ | |
def Pi_congr : (Π a, W a) ≃ (Π b, Z b) := | |
(equiv.Pi_congr_right h₂).trans (equiv.Pi_congr_left _ h₁) | |
@[simp] lemma coe_Pi_congr_symm : | |
((h₁.Pi_congr h₂).symm : (Π b, Z b) → (Π a, W a)) = λ f a, (h₂ a).symm (f (h₁ a)) := | |
rfl | |
lemma Pi_congr_symm_apply (f : Π b, Z b) : | |
(h₁.Pi_congr h₂).symm f = λ a, (h₂ a).symm (f (h₁ a)) := | |
rfl | |
@[simp] lemma Pi_congr_apply_apply (f : Π a, W a) (a : α) : | |
h₁.Pi_congr h₂ f (h₁ a) = h₂ a (f a) := | |
begin | |
change cast _ ((h₂ (h₁.symm (h₁ a))) (f (h₁.symm (h₁ a)))) = (h₂ a) (f a), | |
generalize_proofs hZa, | |
revert hZa, | |
rw h₁.symm_apply_apply a, | |
simp, | |
end | |
end | |
section | |
variables | |
{W : α → Sort w} {Z : β → Sort z} (h₁ : α ≃ β) (h₂ : Π b : β, (W (h₁.symm b) ≃ Z b)) | |
/-- | |
Transport dependent functions through | |
an equivalence of the base spaces and a family | |
of equivalences of the matching fibres. | |
-/ | |
def Pi_congr' : (Π a, W a) ≃ (Π b, Z b) := | |
(Pi_congr h₁.symm (λ b, (h₂ b).symm)).symm | |
@[simp] lemma coe_Pi_congr' : | |
(h₁.Pi_congr' h₂ : (Π a, W a) → (Π b, Z b)) = λ f b, h₂ b $ f $ h₁.symm b := | |
rfl | |
lemma Pi_congr'_apply (f : Π a, W a) : | |
h₁.Pi_congr' h₂ f = λ b, h₂ b $ f $ h₁.symm b := | |
rfl | |
@[simp] lemma Pi_congr'_symm_apply_symm_apply (f : Π b, Z b) (b : β) : | |
(h₁.Pi_congr' h₂).symm f (h₁.symm b) = (h₂ b).symm (f b) := | |
begin | |
change cast _ ((h₂ (h₁ (h₁.symm b))).symm (f (h₁ (h₁.symm b)))) = (h₂ b).symm (f b), | |
generalize_proofs hWb, | |
revert hWb, | |
generalize hb : h₁ (h₁.symm b) = b', | |
rw h₁.apply_symm_apply b at hb, | |
subst hb, | |
simp, | |
end | |
end | |
end equiv | |
lemma function.injective.swap_apply [decidable_eq α] [decidable_eq β] {f : α → β} | |
(hf : function.injective f) (x y z : α) : | |
equiv.swap (f x) (f y) (f z) = f (equiv.swap x y z) := | |
begin | |
by_cases hx : z = x, by simp [hx], | |
by_cases hy : z = y, by simp [hy], | |
rw [equiv.swap_apply_of_ne_of_ne hx hy, equiv.swap_apply_of_ne_of_ne (hf.ne hx) (hf.ne hy)] | |
end | |
lemma function.injective.swap_comp [decidable_eq α] [decidable_eq β] {f : α → β} | |
(hf : function.injective f) (x y : α) : | |
equiv.swap (f x) (f y) ∘ f = f ∘ equiv.swap x y := | |
funext $ λ z, hf.swap_apply _ _ _ | |
/-- If `α` is a subsingleton, then it is equivalent to `α × α`. -/ | |
def subsingleton_prod_self_equiv {α : Type*} [subsingleton α] : α × α ≃ α := | |
{ to_fun := λ p, p.1, | |
inv_fun := λ a, (a, a), | |
left_inv := λ p, subsingleton.elim _ _, | |
right_inv := λ p, subsingleton.elim _ _, } | |
/-- To give an equivalence between two subsingleton types, it is sufficient to give any two | |
functions between them. -/ | |
def equiv_of_subsingleton_of_subsingleton [subsingleton α] [subsingleton β] | |
(f : α → β) (g : β → α) : α ≃ β := | |
{ to_fun := f, | |
inv_fun := g, | |
left_inv := λ _, subsingleton.elim _ _, | |
right_inv := λ _, subsingleton.elim _ _ } | |
/-- A nonempty subsingleton type is (noncomputably) equivalent to `punit`. -/ | |
noncomputable | |
def equiv.punit_of_nonempty_of_subsingleton {α : Sort*} [h : nonempty α] [subsingleton α] : | |
α ≃ punit.{v} := | |
equiv_of_subsingleton_of_subsingleton | |
(λ _, punit.star) (λ _, h.some) | |
/-- `unique (unique α)` is equivalent to `unique α`. -/ | |
def unique_unique_equiv : unique (unique α) ≃ unique α := | |
equiv_of_subsingleton_of_subsingleton (λ h, h.default) | |
(λ h, { default := h, uniq := λ _, subsingleton.elim _ _ }) | |
namespace quot | |
/-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces, | |
if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/ | |
protected def congr {ra : α → α → Prop} {rb : β → β → Prop} (e : α ≃ β) | |
(eq : ∀a₁ a₂, ra a₁ a₂ ↔ rb (e a₁) (e a₂)) : | |
quot ra ≃ quot rb := | |
{ to_fun := quot.map e (assume a₁ a₂, (eq a₁ a₂).1), | |
inv_fun := quot.map e.symm | |
(assume b₁ b₂ h, | |
(eq (e.symm b₁) (e.symm b₂)).2 | |
((e.apply_symm_apply b₁).symm ▸ (e.apply_symm_apply b₂).symm ▸ h)), | |
left_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.symm_apply_apply] }, | |
right_inv := by { rintros ⟨a⟩, dunfold quot.map, simp only [equiv.apply_symm_apply] } } | |
@[simp] | |
lemma congr_mk {ra : α → α → Prop} {rb : β → β → Prop} (e : α ≃ β) | |
(eq : ∀ (a₁ a₂ : α), ra a₁ a₂ ↔ rb (e a₁) (e a₂)) (a : α) : | |
quot.congr e eq (quot.mk ra a) = quot.mk rb (e a) := rfl | |
/-- Quotients are congruent on equivalences under equality of their relation. | |
An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/ | |
protected def congr_right {r r' : α → α → Prop} (eq : ∀a₁ a₂, r a₁ a₂ ↔ r' a₁ a₂) : | |
quot r ≃ quot r' := | |
quot.congr (equiv.refl α) eq | |
/-- An equivalence `e : α ≃ β` generates an equivalence between the quotient space of `α` | |
by a relation `ra` and the quotient space of `β` by the image of this relation under `e`. -/ | |
protected def congr_left {r : α → α → Prop} (e : α ≃ β) : | |
quot r ≃ quot (λ b b', r (e.symm b) (e.symm b')) := | |
@quot.congr α β r (λ b b', r (e.symm b) (e.symm b')) e (λ a₁ a₂, by simp only [e.symm_apply_apply]) | |
end quot | |
namespace quotient | |
/-- An equivalence `e : α ≃ β` generates an equivalence between quotient spaces, | |
if `ra a₁ a₂ ↔ rb (e a₁) (e a₂). -/ | |
protected def congr {ra : setoid α} {rb : setoid β} (e : α ≃ β) | |
(eq : ∀a₁ a₂, @setoid.r α ra a₁ a₂ ↔ @setoid.r β rb (e a₁) (e a₂)) : | |
quotient ra ≃ quotient rb := | |
quot.congr e eq | |
@[simp] | |
lemma congr_mk {ra : setoid α} {rb : setoid β} (e : α ≃ β) | |
(eq : ∀ (a₁ a₂ : α), setoid.r a₁ a₂ ↔ setoid.r (e a₁) (e a₂)) (a : α): | |
quotient.congr e eq (quotient.mk a) = quotient.mk (e a) := | |
rfl | |
/-- Quotients are congruent on equivalences under equality of their relation. | |
An alternative is just to use rewriting with `eq`, but then computational proofs get stuck. -/ | |
protected def congr_right {r r' : setoid α} | |
(eq : ∀a₁ a₂, @setoid.r α r a₁ a₂ ↔ @setoid.r α r' a₁ a₂) : quotient r ≃ quotient r' := | |
quot.congr_right eq | |
end quotient | |
namespace function | |
lemma update_comp_equiv {α β α' : Sort*} [decidable_eq α'] [decidable_eq α] (f : α → β) (g : α' ≃ α) | |
(a : α) (v : β) : | |
update f a v ∘ g = update (f ∘ g) (g.symm a) v := | |
by rw [← update_comp_eq_of_injective _ g.injective, g.apply_symm_apply] | |
lemma update_apply_equiv_apply {α β α' : Sort*} [decidable_eq α'] [decidable_eq α] | |
(f : α → β) (g : α' ≃ α) (a : α) (v : β) (a' : α') : | |
update f a v (g a') = update (f ∘ g) (g.symm a) v a' := | |
congr_fun (update_comp_equiv f g a v) a' | |
lemma Pi_congr_left'_update [decidable_eq α] [decidable_eq β] | |
(P : α → Sort*) (e : α ≃ β) (f : Π a, P a) (b : β) (x : P (e.symm b)) : | |
e.Pi_congr_left' P (update f (e.symm b) x) = update (e.Pi_congr_left' P f) b x := | |
begin | |
ext b', | |
rcases eq_or_ne b' b with rfl | h, | |
{ simp, }, | |
{ simp [h], }, | |
end | |
lemma Pi_congr_left'_symm_update [decidable_eq α] [decidable_eq β] | |
(P : α → Sort*) (e : α ≃ β) (f : Π b, P (e.symm b)) (b : β) (x : P (e.symm b)) : | |
(e.Pi_congr_left' P).symm (update f b x) = update ((e.Pi_congr_left' P).symm f) (e.symm b) x := | |
by simp [(e.Pi_congr_left' P).symm_apply_eq, Pi_congr_left'_update] | |
end function | |