Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Chris Hughes. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Chris Hughes | |
-/ | |
import ring_theory.adjoin.basic | |
import linear_algebra.linear_independent | |
import ring_theory.mv_polynomial.basic | |
import data.mv_polynomial.supported | |
import ring_theory.algebraic | |
import data.mv_polynomial.equiv | |
/-! | |
# Algebraic Independence | |
This file defines algebraic independence of a family of element of an `R` algebra | |
## Main definitions | |
* `algebraic_independent` - `algebraic_independent R x` states the family of elements `x` | |
is algebraically independent over `R`, meaning that the canonical map out of the multivariable | |
polynomial ring is injective. | |
* `algebraic_independent.repr` - The canonical map from the subalgebra generated by an | |
algebraic independent family into the polynomial ring. | |
## References | |
* [Stacks: Transcendence](https://stacks.math.columbia.edu/tag/030D) | |
## TODO | |
Prove that a ring is an algebraic extension of the subalgebra generated by a transcendence basis. | |
## Tags | |
transcendence basis, transcendence degree, transcendence | |
-/ | |
noncomputable theory | |
open function set subalgebra mv_polynomial algebra | |
open_locale classical big_operators | |
universes x u v w | |
variables {ι : Type*} {ι' : Type*} (R : Type*) {K : Type*} | |
variables {A : Type*} {A' A'' : Type*} {V : Type u} {V' : Type*} | |
variables (x : ι → A) | |
variables [comm_ring R] [comm_ring A] [comm_ring A'] [comm_ring A''] | |
variables [algebra R A] [algebra R A'] [algebra R A''] | |
variables {a b : R} | |
/-- `algebraic_independent R x` states the family of elements `x` | |
is algebraically independent over `R`, meaning that the canonical | |
map out of the multivariable polynomial ring is injective. -/ | |
def algebraic_independent : Prop := | |
injective (mv_polynomial.aeval x : mv_polynomial ι R →ₐ[R] A) | |
variables {R} {x} | |
theorem algebraic_independent_iff_ker_eq_bot : algebraic_independent R x ↔ | |
(mv_polynomial.aeval x : mv_polynomial ι R →ₐ[R] A).to_ring_hom.ker = ⊥ := | |
ring_hom.injective_iff_ker_eq_bot _ | |
theorem algebraic_independent_iff : algebraic_independent R x ↔ | |
∀p : mv_polynomial ι R, mv_polynomial.aeval (x : ι → A) p = 0 → p = 0 := | |
injective_iff_map_eq_zero _ | |
theorem algebraic_independent.eq_zero_of_aeval_eq_zero (h : algebraic_independent R x) : | |
∀p : mv_polynomial ι R, mv_polynomial.aeval (x : ι → A) p = 0 → p = 0 := | |
algebraic_independent_iff.1 h | |
theorem algebraic_independent_iff_injective_aeval : | |
algebraic_independent R x ↔ injective (mv_polynomial.aeval x : mv_polynomial ι R →ₐ[R] A) := | |
iff.rfl | |
@[simp] lemma algebraic_independent_empty_type_iff [is_empty ι] : | |
algebraic_independent R x ↔ injective (algebra_map R A) := | |
have aeval x = (algebra.of_id R A).comp (@is_empty_alg_equiv R ι _ _).to_alg_hom, | |
by { ext i, exact is_empty.elim' ‹is_empty ι› i }, | |
begin | |
rw [algebraic_independent, this, | |
← injective.of_comp_iff' _ (@is_empty_alg_equiv R ι _ _).bijective], | |
refl | |
end | |
namespace algebraic_independent | |
variables (hx : algebraic_independent R x) | |
include hx | |
lemma algebra_map_injective : injective (algebra_map R A) := | |
by simpa [← mv_polynomial.algebra_map_eq, function.comp] using | |
(injective.of_comp_iff | |
(algebraic_independent_iff_injective_aeval.1 hx) (mv_polynomial.C)).2 | |
(mv_polynomial.C_injective _ _) | |
lemma linear_independent : linear_independent R x := | |
begin | |
rw [linear_independent_iff_injective_total], | |
have : finsupp.total ι A R x = | |
(mv_polynomial.aeval x).to_linear_map.comp (finsupp.total ι _ R X), | |
{ ext, simp }, | |
rw this, | |
refine hx.comp _, | |
rw [← linear_independent_iff_injective_total], | |
exact linear_independent_X _ _ | |
end | |
protected lemma injective [nontrivial R] : injective x := | |
hx.linear_independent.injective | |
lemma ne_zero [nontrivial R] (i : ι) : x i ≠ 0 := | |
hx.linear_independent.ne_zero i | |
lemma comp (f : ι' → ι) (hf : function.injective f) : algebraic_independent R (x ∘ f) := | |
λ p q, by simpa [aeval_rename, (rename_injective f hf).eq_iff] using @hx (rename f p) (rename f q) | |
lemma coe_range : algebraic_independent R (coe : range x → A) := | |
by simpa using hx.comp _ (range_splitting_injective x) | |
lemma map {f : A →ₐ[R] A'} (hf_inj : set.inj_on f (adjoin R (range x))) : | |
algebraic_independent R (f ∘ x) := | |
have aeval (f ∘ x) = f.comp (aeval x), by ext; simp, | |
have h : ∀ p : mv_polynomial ι R, aeval x p ∈ (@aeval R _ _ _ _ _ (coe : range x → A)).range, | |
{ intro p, | |
rw [alg_hom.mem_range], | |
refine ⟨mv_polynomial.rename (cod_restrict x (range x) (mem_range_self)) p, _⟩, | |
simp [function.comp, aeval_rename] }, | |
begin | |
intros x y hxy, | |
rw [this] at hxy, | |
rw [adjoin_eq_range] at hf_inj, | |
exact hx (hf_inj (h x) (h y) hxy) | |
end | |
lemma map' {f : A →ₐ[R] A'} (hf_inj : injective f) : algebraic_independent R (f ∘ x) := | |
hx.map (inj_on_of_injective hf_inj _) | |
omit hx | |
lemma of_comp (f : A →ₐ[R] A') (hfv : algebraic_independent R (f ∘ x)) : | |
algebraic_independent R x := | |
have aeval (f ∘ x) = f.comp (aeval x), by ext; simp, | |
by rw [algebraic_independent, this] at hfv; exact hfv.of_comp | |
end algebraic_independent | |
open algebraic_independent | |
lemma alg_hom.algebraic_independent_iff (f : A →ₐ[R] A') (hf : injective f) : | |
algebraic_independent R (f ∘ x) ↔ algebraic_independent R x := | |
⟨λ h, h.of_comp f, λ h, h.map (inj_on_of_injective hf _)⟩ | |
@[nontriviality] | |
lemma algebraic_independent_of_subsingleton [subsingleton R] : algebraic_independent R x := | |
by haveI := @mv_polynomial.unique R ι; | |
exact algebraic_independent_iff.2 (λ l hl, subsingleton.elim _ _) | |
theorem algebraic_independent_equiv (e : ι ≃ ι') {f : ι' → A} : | |
algebraic_independent R (f ∘ e) ↔ algebraic_independent R f := | |
⟨λ h, function.comp.right_id f ▸ e.self_comp_symm ▸ h.comp _ e.symm.injective, | |
λ h, h.comp _ e.injective⟩ | |
theorem algebraic_independent_equiv' (e : ι ≃ ι') {f : ι' → A} {g : ι → A} (h : f ∘ e = g) : | |
algebraic_independent R g ↔ algebraic_independent R f := | |
h ▸ algebraic_independent_equiv e | |
theorem algebraic_independent_subtype_range {ι} {f : ι → A} (hf : injective f) : | |
algebraic_independent R (coe : range f → A) ↔ algebraic_independent R f := | |
iff.symm $ algebraic_independent_equiv' (equiv.of_injective f hf) rfl | |
alias algebraic_independent_subtype_range ↔ algebraic_independent.of_subtype_range _ | |
theorem algebraic_independent_image {ι} {s : set ι} {f : ι → A} (hf : set.inj_on f s) : | |
algebraic_independent R (λ x : s, f x) ↔ algebraic_independent R (λ x : f '' s, (x : A)) := | |
algebraic_independent_equiv' (equiv.set.image_of_inj_on _ _ hf) rfl | |
lemma algebraic_independent_adjoin (hs : algebraic_independent R x) : | |
@algebraic_independent ι R (adjoin R (range x)) | |
(λ i : ι, ⟨x i, subset_adjoin (mem_range_self i)⟩) _ _ _ := | |
algebraic_independent.of_comp (adjoin R (range x)).val hs | |
/-- A set of algebraically independent elements in an algebra `A` over a ring `K` is also | |
algebraically independent over a subring `R` of `K`. -/ | |
lemma algebraic_independent.restrict_scalars {K : Type*} [comm_ring K] [algebra R K] | |
[algebra K A] [is_scalar_tower R K A] | |
(hinj : function.injective (algebra_map R K)) (ai : algebraic_independent K x) : | |
algebraic_independent R x := | |
have (aeval x : mv_polynomial ι K →ₐ[K] A).to_ring_hom.comp | |
(mv_polynomial.map (algebra_map R K)) = | |
(aeval x : mv_polynomial ι R →ₐ[R] A).to_ring_hom, | |
by { ext; simp [algebra_map_eq_smul_one] }, | |
begin | |
show injective (aeval x).to_ring_hom, | |
rw [← this], | |
exact injective.comp ai (mv_polynomial.map_injective _ hinj) | |
end | |
/-- Every finite subset of an algebraically independent set is algebraically independent. -/ | |
lemma algebraic_independent_finset_map_embedding_subtype | |
(s : set A) (li : algebraic_independent R (coe : s → A)) (t : finset s) : | |
algebraic_independent R (coe : (finset.map (embedding.subtype s) t) → A) := | |
begin | |
let f : t.map (embedding.subtype s) → s := λ x, ⟨x.1, begin | |
obtain ⟨x, h⟩ := x, | |
rw [finset.mem_map] at h, | |
obtain ⟨a, ha, rfl⟩ := h, | |
simp only [subtype.coe_prop, embedding.coe_subtype], | |
end⟩, | |
convert algebraic_independent.comp li f _, | |
rintros ⟨x, hx⟩ ⟨y, hy⟩, | |
rw [finset.mem_map] at hx hy, | |
obtain ⟨a, ha, rfl⟩ := hx, | |
obtain ⟨b, hb, rfl⟩ := hy, | |
simp only [imp_self, subtype.mk_eq_mk], | |
end | |
/-- | |
If every finite set of algebraically independent element has cardinality at most `n`, | |
then the same is true for arbitrary sets of algebraically independent elements. | |
-/ | |
lemma algebraic_independent_bounded_of_finset_algebraic_independent_bounded {n : ℕ} | |
(H : ∀ s : finset A, algebraic_independent R (λ i : s, (i : A)) → s.card ≤ n) : | |
∀ s : set A, algebraic_independent R (coe : s → A) → cardinal.mk s ≤ n := | |
begin | |
intros s li, | |
apply cardinal.card_le_of, | |
intro t, | |
rw ← finset.card_map (embedding.subtype s), | |
apply H, | |
apply algebraic_independent_finset_map_embedding_subtype _ li, | |
end | |
section subtype | |
lemma algebraic_independent.restrict_of_comp_subtype {s : set ι} | |
(hs : algebraic_independent R (x ∘ coe : s → A)) : | |
algebraic_independent R (s.restrict x) := | |
hs | |
variables (R A) | |
lemma algebraic_independent_empty_iff : algebraic_independent R (λ x, x : (∅ : set A) → A) ↔ | |
injective (algebra_map R A) := | |
by simp | |
variables {R A} | |
lemma algebraic_independent.mono {t s : set A} (h : t ⊆ s) | |
(hx : algebraic_independent R (λ x, x : s → A)) : algebraic_independent R (λ x, x : t → A) := | |
by simpa [function.comp] using hx.comp (inclusion h) (inclusion_injective h) | |
end subtype | |
theorem algebraic_independent.to_subtype_range {ι} {f : ι → A} (hf : algebraic_independent R f) : | |
algebraic_independent R (coe : range f → A) := | |
begin | |
nontriviality R, | |
{ rwa algebraic_independent_subtype_range hf.injective } | |
end | |
theorem algebraic_independent.to_subtype_range' {ι} {f : ι → A} (hf : algebraic_independent R f) | |
{t} (ht : range f = t) : | |
algebraic_independent R (coe : t → A) := | |
ht ▸ hf.to_subtype_range | |
theorem algebraic_independent_comp_subtype {s : set ι} : | |
algebraic_independent R (x ∘ coe : s → A) ↔ | |
∀ p ∈ (mv_polynomial.supported R s), aeval x p = 0 → p = 0 := | |
have (aeval (x ∘ coe : s → A) : _ →ₐ[R] _) = | |
(aeval x).comp (rename coe), by ext; simp, | |
have ∀ p : mv_polynomial s R, rename (coe : s → ι) p = 0 ↔ p = 0, | |
from (injective_iff_map_eq_zero' (rename (coe : s → ι) : mv_polynomial s R →ₐ[R] _).to_ring_hom).1 | |
(rename_injective _ subtype.val_injective), | |
by simp [algebraic_independent_iff, supported_eq_range_rename, *] | |
theorem algebraic_independent_subtype {s : set A} : | |
algebraic_independent R (λ x, x : s → A) ↔ | |
∀ (p : mv_polynomial A R), p ∈ mv_polynomial.supported R s → aeval id p = 0 → p = 0 := | |
by apply @algebraic_independent_comp_subtype _ _ _ id | |
lemma algebraic_independent_of_finite (s : set A) | |
(H : ∀ t ⊆ s, t.finite → algebraic_independent R (λ x, x : t → A)) : | |
algebraic_independent R (λ x, x : s → A) := | |
algebraic_independent_subtype.2 $ | |
λ p hp, algebraic_independent_subtype.1 (H _ (mem_supported.1 hp) (finset.finite_to_set _)) _ | |
(by simp) | |
theorem algebraic_independent.image_of_comp {ι ι'} (s : set ι) (f : ι → ι') (g : ι' → A) | |
(hs : algebraic_independent R (λ x : s, g (f x))) : | |
algebraic_independent R (λ x : f '' s, g x) := | |
begin | |
nontriviality R, | |
have : inj_on f s, from inj_on_iff_injective.2 hs.injective.of_comp, | |
exact (algebraic_independent_equiv' (equiv.set.image_of_inj_on f s this) rfl).1 hs | |
end | |
theorem algebraic_independent.image {ι} {s : set ι} {f : ι → A} | |
(hs : algebraic_independent R (λ x : s, f x)) : algebraic_independent R (λ x : f '' s, (x : A)) := | |
by convert algebraic_independent.image_of_comp s f id hs | |
lemma algebraic_independent_Union_of_directed {η : Type*} [nonempty η] | |
{s : η → set A} (hs : directed (⊆) s) | |
(h : ∀ i, algebraic_independent R (λ x, x : s i → A)) : | |
algebraic_independent R (λ x, x : (⋃ i, s i) → A) := | |
begin | |
refine algebraic_independent_of_finite (⋃ i, s i) (λ t ht ft, _), | |
rcases finite_subset_Union ft ht with ⟨I, fi, hI⟩, | |
rcases hs.finset_le fi.to_finset with ⟨i, hi⟩, | |
exact (h i).mono (subset.trans hI $ Union₂_subset $ | |
λ j hj, hi j (fi.mem_to_finset.2 hj)) | |
end | |
lemma algebraic_independent_sUnion_of_directed {s : set (set A)} | |
(hsn : s.nonempty) | |
(hs : directed_on (⊆) s) | |
(h : ∀ a ∈ s, algebraic_independent R (λ x, x : (a : set A) → A)) : | |
algebraic_independent R (λ x, x : (⋃₀ s) → A) := | |
by letI : nonempty s := nonempty.to_subtype hsn; | |
rw sUnion_eq_Union; exact | |
algebraic_independent_Union_of_directed hs.directed_coe (by simpa using h) | |
lemma exists_maximal_algebraic_independent | |
(s t : set A) (hst : s ⊆ t) | |
(hs : algebraic_independent R (coe : s → A)) : | |
∃ u : set A, algebraic_independent R (coe : u → A) ∧ s ⊆ u ∧ u ⊆ t ∧ | |
∀ x : set A, algebraic_independent R (coe : x → A) → | |
u ⊆ x → x ⊆ t → x = u := | |
begin | |
rcases zorn_subset_nonempty | |
{ u : set A | algebraic_independent R (coe : u → A) ∧ s ⊆ u ∧ u ⊆ t } | |
(λ c hc chainc hcn, ⟨⋃₀ c, begin | |
refine ⟨⟨algebraic_independent_sUnion_of_directed hcn | |
chainc.directed_on | |
(λ a ha, (hc ha).1), _, _⟩, _⟩, | |
{ cases hcn with x hx, | |
exact subset_sUnion_of_subset _ x (hc hx).2.1 hx }, | |
{ exact sUnion_subset (λ x hx, (hc hx).2.2) }, | |
{ intros s, | |
exact subset_sUnion_of_mem } | |
end⟩) | |
s ⟨hs, set.subset.refl s, hst⟩ with ⟨u, ⟨huai, hsu, hut⟩, hsu, hx⟩, | |
use [u, huai, hsu, hut], | |
intros x hxai huv hxt, | |
exact hx _ ⟨hxai, trans hsu huv, hxt⟩ huv, | |
end | |
section repr | |
variables (hx : algebraic_independent R x) | |
/-- Canonical isomorphism between polynomials and the subalgebra generated by | |
algebraically independent elements. -/ | |
@[simps] def algebraic_independent.aeval_equiv (hx : algebraic_independent R x) : | |
(mv_polynomial ι R) ≃ₐ[R] algebra.adjoin R (range x) := | |
begin | |
apply alg_equiv.of_bijective | |
(alg_hom.cod_restrict (@aeval R A ι _ _ _ x) (algebra.adjoin R (range x)) _), | |
swap, | |
{ intros x, | |
rw [adjoin_range_eq_range_aeval], | |
exact alg_hom.mem_range_self _ _ }, | |
{ split, | |
{ exact (alg_hom.injective_cod_restrict _ _ _).2 hx }, | |
{ rintros ⟨x, hx⟩, | |
rw [adjoin_range_eq_range_aeval] at hx, | |
rcases hx with ⟨y, rfl⟩, | |
use y, | |
ext, | |
simp } } | |
end | |
@[simp] lemma algebraic_independent.algebra_map_aeval_equiv (hx : algebraic_independent R x) | |
(p : mv_polynomial ι R) : algebra_map (algebra.adjoin R (range x)) A (hx.aeval_equiv p) = | |
aeval x p := rfl | |
/-- The canonical map from the subalgebra generated by an algebraic independent family | |
into the polynomial ring. -/ | |
def algebraic_independent.repr (hx : algebraic_independent R x) : | |
algebra.adjoin R (range x) →ₐ[R] mv_polynomial ι R := hx.aeval_equiv.symm | |
@[simp] lemma algebraic_independent.aeval_repr (p) : aeval x (hx.repr p) = p := | |
subtype.ext_iff.1 (alg_equiv.apply_symm_apply hx.aeval_equiv p) | |
lemma algebraic_independent.aeval_comp_repr : | |
(aeval x).comp hx.repr = subalgebra.val _ := | |
alg_hom.ext $ hx.aeval_repr | |
lemma algebraic_independent.repr_ker : | |
(hx.repr : adjoin R (range x) →+* mv_polynomial ι R).ker = ⊥ := | |
(ring_hom.injective_iff_ker_eq_bot _).1 (alg_equiv.injective _) | |
end repr | |
-- TODO - make this an `alg_equiv` | |
/-- The isomorphism between `mv_polynomial (option ι) R` and the polynomial ring over | |
the algebra generated by an algebraically independent family. -/ | |
def algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin | |
(hx : algebraic_independent R x) : | |
mv_polynomial (option ι) R ≃+* polynomial (adjoin R (set.range x)) := | |
(mv_polynomial.option_equiv_left _ _).to_ring_equiv.trans | |
(polynomial.map_equiv hx.aeval_equiv.to_ring_equiv) | |
@[simp] | |
lemma algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_apply | |
(hx : algebraic_independent R x) (y) : | |
hx.mv_polynomial_option_equiv_polynomial_adjoin y = | |
polynomial.map (hx.aeval_equiv : mv_polynomial ι R →+* adjoin R (range x)) | |
(aeval (λ (o : option ι), o.elim polynomial.X (λ (s : ι), polynomial.C (X s))) y) := | |
rfl | |
@[simp] | |
lemma algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_C | |
(hx : algebraic_independent R x) (r) : | |
hx.mv_polynomial_option_equiv_polynomial_adjoin (C r) = | |
polynomial.C (algebra_map _ _ r) := | |
begin | |
-- TODO: this instance is slow to infer | |
have h : is_scalar_tower R (mv_polynomial ι R) (polynomial (mv_polynomial ι R)) := | |
@polynomial.is_scalar_tower (mv_polynomial ι R) _ R _ _ _ _ _ _ _, | |
rw [algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_apply, aeval_C, | |
@is_scalar_tower.algebra_map_apply _ _ _ _ _ _ _ _ _ h, ← polynomial.C_eq_algebra_map, | |
polynomial.map_C, ring_hom.coe_coe, alg_equiv.commutes] | |
end | |
@[simp] | |
lemma algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_X_none | |
(hx : algebraic_independent R x) : | |
hx.mv_polynomial_option_equiv_polynomial_adjoin (X none) = polynomial.X := | |
by rw [algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_apply, aeval_X, | |
option.elim, polynomial.map_X] | |
@[simp] | |
lemma algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_X_some | |
(hx : algebraic_independent R x) (i) : | |
hx.mv_polynomial_option_equiv_polynomial_adjoin (X (some i)) = | |
polynomial.C (hx.aeval_equiv (X i)) := | |
by rw [algebraic_independent.mv_polynomial_option_equiv_polynomial_adjoin_apply, aeval_X, | |
option.elim, polynomial.map_C, ring_hom.coe_coe] | |
lemma algebraic_independent.aeval_comp_mv_polynomial_option_equiv_polynomial_adjoin | |
(hx : algebraic_independent R x) (a : A) : | |
(ring_hom.comp (↑(polynomial.aeval a : polynomial (adjoin R (set.range x)) →ₐ[_] A) : | |
polynomial (adjoin R (set.range x)) →+* A) | |
hx.mv_polynomial_option_equiv_polynomial_adjoin.to_ring_hom) = | |
↑((mv_polynomial.aeval (λ o : option ι, o.elim a x)) : | |
mv_polynomial (option ι) R →ₐ[R] A) := | |
begin | |
refine mv_polynomial.ring_hom_ext _ _; | |
simp only [ring_hom.comp_apply, ring_equiv.to_ring_hom_eq_coe, ring_equiv.coe_to_ring_hom, | |
alg_hom.coe_to_ring_hom, alg_hom.coe_to_ring_hom], | |
{ intro r, | |
rw [hx.mv_polynomial_option_equiv_polynomial_adjoin_C, | |
aeval_C, polynomial.aeval_C, is_scalar_tower.algebra_map_apply R (adjoin R (range x)) A] }, | |
{ rintro (⟨⟩|⟨i⟩), | |
{ rw [hx.mv_polynomial_option_equiv_polynomial_adjoin_X_none, | |
aeval_X, polynomial.aeval_X, option.elim] }, | |
{ rw [hx.mv_polynomial_option_equiv_polynomial_adjoin_X_some, polynomial.aeval_C, | |
hx.algebra_map_aeval_equiv, aeval_X, aeval_X, option.elim] } }, | |
end | |
theorem algebraic_independent.option_iff (hx : algebraic_independent R x) (a : A) : | |
(algebraic_independent R (λ o : option ι, o.elim a x)) ↔ | |
¬ is_algebraic (adjoin R (set.range x)) a := | |
by erw [algebraic_independent_iff_injective_aeval, is_algebraic_iff_not_injective, not_not, | |
← alg_hom.coe_to_ring_hom, | |
← hx.aeval_comp_mv_polynomial_option_equiv_polynomial_adjoin, | |
ring_hom.coe_comp, injective.of_comp_iff' _ (ring_equiv.bijective _), alg_hom.coe_to_ring_hom] | |
variable (R) | |
/-- | |
A family is a transcendence basis if it is a maximal algebraically independent subset. | |
-/ | |
def is_transcendence_basis (x : ι → A) : Prop := | |
algebraic_independent R x ∧ | |
∀ (s : set A) (i' : algebraic_independent R (coe : s → A)) (h : range x ≤ s), range x = s | |
lemma exists_is_transcendence_basis (h : injective (algebra_map R A)) : | |
∃ s : set A, is_transcendence_basis R (coe : s → A) := | |
begin | |
cases exists_maximal_algebraic_independent (∅ : set A) set.univ | |
(set.subset_univ _) ((algebraic_independent_empty_iff R A).2 h) with s hs, | |
use [s, hs.1], | |
intros t ht hr, | |
simp only [subtype.range_coe_subtype, set_of_mem_eq] at *, | |
exact eq.symm (hs.2.2.2 t ht hr (set.subset_univ _)) | |
end | |
variable {R} | |
lemma algebraic_independent.is_transcendence_basis_iff | |
{ι : Type w} {R : Type u} [comm_ring R] [nontrivial R] | |
{A : Type v} [comm_ring A] [algebra R A] {x : ι → A} (i : algebraic_independent R x) : | |
is_transcendence_basis R x ↔ ∀ (κ : Type v) (w : κ → A) (i' : algebraic_independent R w) | |
(j : ι → κ) (h : w ∘ j = x), surjective j := | |
begin | |
fsplit, | |
{ rintros p κ w i' j rfl, | |
have p := p.2 (range w) i'.coe_range (range_comp_subset_range _ _), | |
rw [range_comp, ←@image_univ _ _ w] at p, | |
exact range_iff_surjective.mp (image_injective.mpr i'.injective p) }, | |
{ intros p, | |
use i, | |
intros w i' h, | |
specialize p w (coe : w → A) i' | |
(λ i, ⟨x i, range_subset_iff.mp h i⟩) | |
(by { ext, simp, }), | |
have q := congr_arg (λ s, (coe : w → A) '' s) p.range_eq, | |
dsimp at q, | |
rw [←image_univ, image_image] at q, | |
simpa using q, }, | |
end | |
lemma is_transcendence_basis.is_algebraic [nontrivial R] | |
(hx : is_transcendence_basis R x) : is_algebraic (adjoin R (range x)) A := | |
begin | |
intro a, | |
rw [← not_iff_comm.1 (hx.1.option_iff _).symm], | |
intro ai, | |
have h₁ : range x ⊆ range (λ o : option ι, o.elim a x), | |
{ rintros x ⟨y, rfl⟩, exact ⟨some y, rfl⟩ }, | |
have h₂ : range x ≠ range (λ o : option ι, o.elim a x), | |
{ intro h, | |
have : a ∈ range x, { rw h, exact ⟨none, rfl⟩ }, | |
rcases this with ⟨b, rfl⟩, | |
have : some b = none := ai.injective rfl, | |
simpa }, | |
exact h₂ (hx.2 (set.range (λ o : option ι, o.elim a x)) | |
((algebraic_independent_subtype_range ai.injective).2 ai) h₁) | |
end | |
section field | |
variables [field K] [algebra K A] | |
@[simp] lemma algebraic_independent_empty_type [is_empty ι] [nontrivial A] : | |
algebraic_independent K x := | |
begin | |
rw [algebraic_independent_empty_type_iff], | |
exact ring_hom.injective _, | |
end | |
lemma algebraic_independent_empty [nontrivial A] : | |
algebraic_independent K (coe : ((∅ : set A) → A)) := | |
algebraic_independent_empty_type | |
end field | |