Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright Β© 2020 NicolΓ² Cavalleri. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: NicolΓ² Cavalleri | |
-/ | |
import ring_theory.adjoin.basic | |
import algebra.lie.of_associative | |
/-! | |
# Derivations | |
This file defines derivation. A derivation `D` from the `R`-algebra `A` to the `A`-module `M` is an | |
`R`-linear map that satisfy the Leibniz rule `D (a * b) = a * D b + D a * b`. | |
## Notation | |
The notation `β D1, D2β` is used for the commutator of two derivations. | |
TODO: this file is just a stub to go on with some PRs in the geometry section. It only | |
implements the definition of derivations in commutative algebra. This will soon change: as soon | |
as bimodules will be there in mathlib I will change this file to take into account the | |
non-commutative case. Any development on the theory of derivations is discouraged until the | |
definitive definition of derivation will be implemented. | |
-/ | |
open algebra | |
open_locale big_operators | |
/-- `D : derivation R A M` is an `R`-linear map from `A` to `M` that satisfies the `leibniz` | |
equality. We also require that `D 1 = 0`. See `derivation.mk'` for a constructor that deduces this | |
assumption from the Leibniz rule when `M` is cancellative. | |
TODO: update this when bimodules are defined. -/ | |
@[protect_proj] | |
structure derivation (R : Type*) (A : Type*) [comm_semiring R] [comm_semiring A] | |
[algebra R A] (M : Type*) [add_comm_monoid M] [module A M] [module R M] | |
extends A ββ[R] M := | |
(map_one_eq_zero' : to_linear_map 1 = 0) | |
(leibniz' (a b : A) : to_linear_map (a * b) = a β’ to_linear_map b + b β’ to_linear_map a) | |
/-- The `linear_map` underlying a `derivation`. -/ | |
add_decl_doc derivation.to_linear_map | |
namespace derivation | |
section | |
variables {R : Type*} [comm_semiring R] | |
variables {A : Type*} [comm_semiring A] [algebra R A] | |
variables {M : Type*} [add_comm_monoid M] [module A M] [module R M] | |
variables (D : derivation R A M) {D1 D2 : derivation R A M} (r : R) (a b : A) | |
instance : add_monoid_hom_class (derivation R A M) A M := | |
{ coe := Ξ» D, D.to_fun, | |
coe_injective' := Ξ» D1 D2 h, by { cases D1, cases D2, congr, exact fun_like.coe_injective h }, | |
map_add := Ξ» D, D.to_linear_map.map_add', | |
map_zero := Ξ» D, D.to_linear_map.map_zero } | |
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` | |
directly. -/ | |
instance : has_coe_to_fun (derivation R A M) (Ξ» _, A β M) := β¨Ξ» D, D.to_linear_map.to_funβ© | |
-- Not a simp lemma because it can be proved via `coe_fn_coe` + `to_linear_map_eq_coe` | |
lemma to_fun_eq_coe : D.to_fun = βD := rfl | |
instance has_coe_to_linear_map : has_coe (derivation R A M) (A ββ[R] M) := | |
β¨Ξ» D, D.to_linear_mapβ© | |
@[simp] lemma to_linear_map_eq_coe : D.to_linear_map = D := rfl | |
@[simp] lemma mk_coe (f : A ββ[R] M) (hβ hβ) : | |
((β¨f, hβ, hββ© : derivation R A M) : A β M) = f := rfl | |
@[simp, norm_cast] | |
lemma coe_fn_coe (f : derivation R A M) : β(f : A ββ[R] M) = f := rfl | |
lemma coe_injective : @function.injective (derivation R A M) (A β M) coe_fn := | |
fun_like.coe_injective | |
@[ext] theorem ext (H : β a, D1 a = D2 a) : D1 = D2 := | |
fun_like.ext _ _ H | |
lemma congr_fun (h : D1 = D2) (a : A) : D1 a = D2 a := fun_like.congr_fun h a | |
protected lemma map_add : D (a + b) = D a + D b := map_add D a b | |
protected lemma map_zero : D 0 = 0 := map_zero D | |
@[simp] lemma map_smul : D (r β’ a) = r β’ D a := D.to_linear_map.map_smul r a | |
@[simp] lemma leibniz : D (a * b) = a β’ D b + b β’ D a := D.leibniz' _ _ | |
lemma map_sum {ΞΉ : Type*} (s : finset ΞΉ) (f : ΞΉ β A) : D (β i in s, f i) = β i in s, D (f i) := | |
D.to_linear_map.map_sum | |
@[simp, priority 900] lemma map_smul_of_tower {S : Type*} [has_smul S A] [has_smul S M] | |
[linear_map.compatible_smul A M S R] (D : derivation R A M) (r : S) (a : A) : | |
D (r β’ a) = r β’ D a := | |
D.to_linear_map.map_smul_of_tower r a | |
@[simp] lemma map_one_eq_zero : D 1 = 0 := D.map_one_eq_zero' | |
@[simp] lemma map_algebra_map : D (algebra_map R A r) = 0 := | |
by rw [βmul_one r, ring_hom.map_mul, ring_hom.map_one, βsmul_def, map_smul, map_one_eq_zero, | |
smul_zero] | |
@[simp] lemma map_coe_nat (n : β) : D (n : A) = 0 := | |
by rw [β nsmul_one, D.map_smul_of_tower n, map_one_eq_zero, smul_zero] | |
@[simp] lemma leibniz_pow (n : β) : D (a ^ n) = n β’ a ^ (n - 1) β’ D a := | |
begin | |
induction n with n ihn, | |
{ rw [pow_zero, map_one_eq_zero, zero_smul] }, | |
{ rcases (zero_le n).eq_or_lt with (rfl|hpos), | |
{ rw [pow_one, one_smul, pow_zero, one_smul] }, | |
{ have : a * a ^ (n - 1) = a ^ n, by rw [β pow_succ, nat.sub_add_cancel hpos], | |
simp only [pow_succ, leibniz, ihn, smul_comm a n, smul_smul a, add_smul, this, | |
nat.succ_eq_add_one, nat.add_succ_sub_one, add_zero, one_nsmul] } } | |
end | |
lemma eq_on_adjoin {s : set A} (h : set.eq_on D1 D2 s) : set.eq_on D1 D2 (adjoin R s) := | |
Ξ» x hx, algebra.adjoin_induction hx h | |
(Ξ» r, (D1.map_algebra_map r).trans (D2.map_algebra_map r).symm) | |
(Ξ» x y hx hy, by simp only [map_add, *]) | |
(Ξ» x y hx hy, by simp only [leibniz, *]) | |
/-- If adjoin of a set is the whole algebra, then any two derivations equal on this set are equal | |
on the whole algebra. -/ | |
lemma ext_of_adjoin_eq_top (s : set A) (hs : adjoin R s = β€) (h : set.eq_on D1 D2 s) : D1 = D2 := | |
ext $ Ξ» a, eq_on_adjoin h $ hs.symm βΈ trivial | |
/- Data typeclasses -/ | |
instance : has_zero (derivation R A M) := | |
β¨{ to_linear_map := 0, | |
map_one_eq_zero' := rfl, | |
leibniz' := Ξ» a b, by simp only [add_zero, linear_map.zero_apply, smul_zero] }β© | |
@[simp] lemma coe_zero : β(0 : derivation R A M) = 0 := rfl | |
@[simp] lemma coe_zero_linear_map : β(0 : derivation R A M) = (0 : A ββ[R] M) := rfl | |
lemma zero_apply (a : A) : (0 : derivation R A M) a = 0 := rfl | |
instance : has_add (derivation R A M) := | |
β¨Ξ» D1 D2, | |
{ to_linear_map := D1 + D2, | |
map_one_eq_zero' := by simp, | |
leibniz' := Ξ» a b, by simp only [leibniz, linear_map.add_apply, | |
coe_fn_coe, smul_add, add_add_add_comm] }β© | |
@[simp] lemma coe_add (D1 D2 : derivation R A M) : β(D1 + D2) = D1 + D2 := rfl | |
@[simp] lemma coe_add_linear_map (D1 D2 : derivation R A M) : β(D1 + D2) = (D1 + D2 : A ββ[R] M) := | |
rfl | |
lemma add_apply : (D1 + D2) a = D1 a + D2 a := rfl | |
instance : inhabited (derivation R A M) := β¨0β© | |
section scalar | |
variables {S : Type*} [monoid S] [distrib_mul_action S M] [smul_comm_class R S M] | |
[smul_comm_class S A M] | |
@[priority 100] | |
instance : has_smul S (derivation R A M) := | |
β¨Ξ» r D, | |
{ to_linear_map := r β’ D, | |
map_one_eq_zero' := by rw [linear_map.smul_apply, coe_fn_coe, D.map_one_eq_zero, smul_zero], | |
leibniz' := Ξ» a b, by simp only [linear_map.smul_apply, coe_fn_coe, leibniz, smul_add, | |
smul_comm r] }β© | |
@[simp] lemma coe_smul (r : S) (D : derivation R A M) : β(r β’ D) = r β’ D := rfl | |
@[simp] lemma coe_smul_linear_map (r : S) (D : derivation R A M) : | |
β(r β’ D) = (r β’ D : A ββ[R] M) := rfl | |
lemma smul_apply (r : S) (D : derivation R A M) : (r β’ D) a = r β’ D a := rfl | |
instance : add_comm_monoid (derivation R A M) := | |
coe_injective.add_comm_monoid _ coe_zero coe_add (Ξ» _ _, rfl) | |
/-- `coe_fn` as an `add_monoid_hom`. -/ | |
def coe_fn_add_monoid_hom : derivation R A M β+ (A β M) := | |
{ to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add } | |
@[priority 100] | |
instance : distrib_mul_action S (derivation R A M) := | |
function.injective.distrib_mul_action coe_fn_add_monoid_hom coe_injective coe_smul | |
instance [distrib_mul_action Sα΅α΅α΅ M] [is_central_scalar S M] : | |
is_central_scalar S (derivation R A M) := | |
{ op_smul_eq_smul := Ξ» _ _, ext $ Ξ» _, op_smul_eq_smul _ _} | |
end scalar | |
@[priority 100] | |
instance {S : Type*} [semiring S] [module S M] [smul_comm_class R S M] [smul_comm_class S A M] : | |
module S (derivation R A M) := | |
function.injective.module S coe_fn_add_monoid_hom coe_injective coe_smul | |
instance [is_scalar_tower R A M] : is_scalar_tower R A (derivation R A M) := | |
β¨Ξ» x y z, ext (Ξ» a, smul_assoc _ _ _)β© | |
section push_forward | |
variables {N : Type*} [add_comm_monoid N] [module A N] [module R N] [is_scalar_tower R A M] | |
[is_scalar_tower R A N] | |
variables (f : M ββ[A] N) | |
/-- We can push forward derivations using linear maps, i.e., the composition of a derivation with a | |
linear map is a derivation. Furthermore, this operation is linear on the spaces of derivations. -/ | |
def _root_.linear_map.comp_der : derivation R A M ββ[R] derivation R A N := | |
{ to_fun := Ξ» D, | |
{ to_linear_map := (f : M ββ[R] N).comp (D : A ββ[R] M), | |
map_one_eq_zero' := by simp only [linear_map.comp_apply, coe_fn_coe, map_one_eq_zero, map_zero], | |
leibniz' := Ξ» a b, by simp only [coe_fn_coe, linear_map.comp_apply, linear_map.map_add, | |
leibniz, linear_map.coe_coe_is_scalar_tower, linear_map.map_smul] }, | |
map_add' := Ξ» Dβ Dβ, by { ext, exact linear_map.map_add _ _ _, }, | |
map_smul' := Ξ» r D, by { ext, exact linear_map.map_smul _ _ _, }, } | |
@[simp] lemma coe_to_linear_map_comp : | |
(f.comp_der D : A ββ[R] N) = (f : M ββ[R] N).comp (D : A ββ[R] M) := | |
rfl | |
@[simp] lemma coe_comp : | |
(f.comp_der D : A β N) = (f : M ββ[R] N).comp (D : A ββ[R] M) := | |
rfl | |
end push_forward | |
end | |
section cancel | |
variables {R : Type*} [comm_semiring R] {A : Type*} [comm_semiring A] [algebra R A] | |
{M : Type*} [add_cancel_comm_monoid M] [module R M] [module A M] | |
/-- Define `derivation R A M` from a linear map when `M` is cancellative by verifying the Leibniz | |
rule. -/ | |
def mk' (D : A ββ[R] M) (h : β a b, D (a * b) = a β’ D b + b β’ D a) : derivation R A M := | |
{ to_linear_map := D, | |
map_one_eq_zero' := add_right_eq_self.1 $ by simpa only [one_smul, one_mul] using (h 1 1).symm, | |
leibniz' := h } | |
@[simp] lemma coe_mk' (D : A ββ[R] M) (h) : β(mk' D h) = D := rfl | |
@[simp] lemma coe_mk'_linear_map (D : A ββ[R] M) (h) : (mk' D h : A ββ[R] M) = D := rfl | |
end cancel | |
section | |
variables {R : Type*} [comm_ring R] | |
variables {A : Type*} [comm_ring A] [algebra R A] | |
section | |
variables {M : Type*} [add_comm_group M] [module A M] [module R M] | |
variables (D : derivation R A M) {D1 D2 : derivation R A M} (r : R) (a b : A) | |
protected lemma map_neg : D (-a) = -D a := map_neg D a | |
protected lemma map_sub : D (a - b) = D a - D b := map_sub D a b | |
@[simp] lemma map_coe_int (n : β€) : D (n : A) = 0 := | |
by rw [β zsmul_one, D.map_smul_of_tower n, map_one_eq_zero, smul_zero] | |
lemma leibniz_of_mul_eq_one {a b : A} (h : a * b = 1) : D a = -a^2 β’ D b := | |
begin | |
rw neg_smul, | |
refine eq_neg_of_add_eq_zero_left _, | |
calc D a + a ^ 2 β’ D b = a β’ b β’ D a + a β’ a β’ D b : by simp only [smul_smul, h, one_smul, sq] | |
... = a β’ D (a * b) : by rw [leibniz, smul_add, add_comm] | |
... = 0 : by rw [h, map_one_eq_zero, smul_zero] | |
end | |
lemma leibniz_inv_of [invertible a] : D (β a) = -β a^2 β’ D a := | |
D.leibniz_of_mul_eq_one $ inv_of_mul_self a | |
lemma leibniz_inv {K : Type*} [field K] [module K M] [algebra R K] (D : derivation R K M) (a : K) : | |
D (aβ»ΒΉ) = -aβ»ΒΉ ^ 2 β’ D a := | |
begin | |
rcases eq_or_ne a 0 with (rfl|ha), | |
{ simp }, | |
{ exact D.leibniz_of_mul_eq_one (inv_mul_cancel ha) } | |
end | |
instance : has_neg (derivation R A M) := | |
β¨Ξ» D, mk' (-D) $ Ξ» a b, | |
by simp only [linear_map.neg_apply, smul_neg, neg_add_rev, leibniz, coe_fn_coe, add_comm]β© | |
@[simp] lemma coe_neg (D : derivation R A M) : β(-D) = -D := rfl | |
@[simp] lemma coe_neg_linear_map (D : derivation R A M) : β(-D) = (-D : A ββ[R] M) := | |
rfl | |
lemma neg_apply : (-D) a = -D a := rfl | |
instance : has_sub (derivation R A M) := | |
β¨Ξ» D1 D2, mk' (D1 - D2 : A ββ[R] M) $ Ξ» a b, | |
by simp only [linear_map.sub_apply, leibniz, coe_fn_coe, smul_sub, add_sub_add_comm]β© | |
@[simp] lemma coe_sub (D1 D2 : derivation R A M) : β(D1 - D2) = D1 - D2 := rfl | |
@[simp] lemma coe_sub_linear_map (D1 D2 : derivation R A M) : β(D1 - D2) = (D1 - D2 : A ββ[R] M) := | |
rfl | |
lemma sub_apply : (D1 - D2) a = D1 a - D2 a := rfl | |
instance : add_comm_group (derivation R A M) := | |
coe_injective.add_comm_group _ coe_zero coe_add coe_neg coe_sub (Ξ» _ _, rfl) (Ξ» _ _, rfl) | |
end | |
section lie_structures | |
/-! # Lie structures -/ | |
variables (D : derivation R A A) {D1 D2 : derivation R A A} (r : R) (a b : A) | |
/-- The commutator of derivations is again a derivation. -/ | |
instance : has_bracket (derivation R A A) (derivation R A A) := | |
β¨Ξ» D1 D2, mk' (β (D1 : module.End R A), (D2 : module.End R A)β) $ Ξ» a b, | |
by { simp only [ring.lie_def, map_add, id.smul_eq_mul, linear_map.mul_apply, leibniz, coe_fn_coe, | |
linear_map.sub_apply], ring, }β© | |
@[simp] lemma commutator_coe_linear_map : | |
ββ D1, D2β = β (D1 : module.End R A), (D2 : module.End R A)β := rfl | |
lemma commutator_apply : β D1, D2β a = D1 (D2 a) - D2 (D1 a) := rfl | |
instance : lie_ring (derivation R A A) := | |
{ add_lie := Ξ» d e f, by { ext a, simp only [commutator_apply, add_apply, map_add], ring, }, | |
lie_add := Ξ» d e f, by { ext a, simp only [commutator_apply, add_apply, map_add], ring, }, | |
lie_self := Ξ» d, by { ext a, simp only [commutator_apply, add_apply, map_add], ring_nf, }, | |
leibniz_lie := Ξ» d e f, | |
by { ext a, simp only [commutator_apply, add_apply, sub_apply, map_sub], ring, } } | |
instance : lie_algebra R (derivation R A A) := | |
{ lie_smul := Ξ» r d e, by { ext a, simp only [commutator_apply, map_smul, smul_sub, smul_apply]}, | |
..derivation.module } | |
end lie_structures | |
end | |
end derivation | |
section to_square_zero | |
universes u v w | |
variables {R : Type u} {A : Type u} {B : Type w} [comm_semiring R] [comm_semiring A] [comm_ring B] | |
variables [algebra R A] [algebra R B] (I : ideal B) (hI : I ^ 2 = β₯) | |
/-- If `fβ fβ : A ββ[R] B` are two lifts of the same `A ββ[R] B β§Έ I`, | |
we may define a map `fβ - fβ : A ββ[R] I`. -/ | |
def diff_to_ideal_of_quotient_comp_eq (fβ fβ : A ββ[R] B) | |
(e : (ideal.quotient.mkβ R I).comp fβ = (ideal.quotient.mkβ R I).comp fβ) : | |
A ββ[R] I := | |
linear_map.cod_restrict (I.restrict_scalars _) (fβ.to_linear_map - fβ.to_linear_map) | |
begin | |
intro x, | |
change fβ x - fβ x β I, | |
rw [β ideal.quotient.eq, β ideal.quotient.mkβ_eq_mk R, β alg_hom.comp_apply, e], | |
refl, | |
end | |
@[simp] | |
lemma diff_to_ideal_of_quotient_comp_eq_apply (fβ fβ : A ββ[R] B) | |
(e : (ideal.quotient.mkβ R I).comp fβ = (ideal.quotient.mkβ R I).comp fβ) (x : A) : | |
((diff_to_ideal_of_quotient_comp_eq I fβ fβ e) x : B) = fβ x - fβ x := | |
rfl | |
variables [algebra A B] [is_scalar_tower R A B] | |
include hI | |
/-- Given a tower of algebras `R β A β B`, and a square-zero `I : ideal B`, each lift `A ββ[R] B` | |
of the canonical map `A ββ[R] B β§Έ I` corresponds to a `R`-derivation from `A` to `I`. -/ | |
def derivation_to_square_zero_of_lift | |
(f : A ββ[R] B) (e : (ideal.quotient.mkβ R I).comp f = is_scalar_tower.to_alg_hom R A (B β§Έ I)) : | |
derivation R A I := | |
begin | |
refine | |
{ map_one_eq_zero' := _, | |
leibniz' := _, | |
..(diff_to_ideal_of_quotient_comp_eq I f (is_scalar_tower.to_alg_hom R A B) _) }, | |
{ rw e, ext, refl }, | |
{ ext, change f 1 - algebra_map A B 1 = 0, rw [map_one, map_one, sub_self] }, | |
{ intros x y, | |
let F := diff_to_ideal_of_quotient_comp_eq I f (is_scalar_tower.to_alg_hom R A B) | |
(by { rw e, ext, refl }), | |
have : (f x - algebra_map A B x) * (f y - algebra_map A B y) = 0, | |
{ rw [β ideal.mem_bot, β hI, pow_two], | |
convert (ideal.mul_mem_mul (F x).2 (F y).2) using 1 }, | |
ext, | |
dsimp only [submodule.coe_add, submodule.coe_mk, linear_map.coe_mk, | |
diff_to_ideal_of_quotient_comp_eq_apply, submodule.coe_smul_of_tower, | |
is_scalar_tower.coe_to_alg_hom', linear_map.to_fun_eq_coe], | |
simp only [map_mul, sub_mul, mul_sub, algebra.smul_def] at β’ this, | |
rw [sub_eq_iff_eq_add, sub_eq_iff_eq_add] at this, | |
rw this, | |
ring } | |
end | |
lemma derivation_to_square_zero_of_lift_apply (f : A ββ[R] B) | |
(e : (ideal.quotient.mkβ R I).comp f = is_scalar_tower.to_alg_hom R A (B β§Έ I)) | |
(x : A) : (derivation_to_square_zero_of_lift I hI f e x : B) = f x - algebra_map A B x := rfl | |
/-- Given a tower of algebras `R β A β B`, and a square-zero `I : ideal B`, each `R`-derivation | |
from `A` to `I` corresponds to a lift `A ββ[R] B` of the canonical map `A ββ[R] B β§Έ I`. -/ | |
def lift_of_derivation_to_square_zero (f : derivation R A I) : | |
A ββ[R] B := | |
{ map_one' := show (f 1 : B) + algebra_map A B 1 = 1, | |
by rw [map_one, f.map_one_eq_zero, submodule.coe_zero, zero_add], | |
map_mul' := Ξ» x y, begin | |
have : (f x : B) * (f y) = 0, | |
{ rw [β ideal.mem_bot, β hI, pow_two], convert (ideal.mul_mem_mul (f x).2 (f y).2) using 1 }, | |
dsimp, | |
simp only [map_mul, f.leibniz, add_mul, mul_add, submodule.coe_add, | |
submodule.coe_smul_of_tower, algebra.smul_def, this], | |
ring | |
end, | |
commutes' := Ξ» r, by { dsimp, simp [β is_scalar_tower.algebra_map_apply R A B r] }, | |
map_zero' := ((I.restrict_scalars R).subtype.comp f.to_linear_map + | |
(is_scalar_tower.to_alg_hom R A B).to_linear_map).map_zero, | |
..((I.restrict_scalars R).subtype.comp f.to_linear_map + | |
(is_scalar_tower.to_alg_hom R A B).to_linear_map) } | |
lemma lift_of_derivation_to_square_zero_apply (f : derivation R A I) (x : A) : | |
lift_of_derivation_to_square_zero I hI f x = f x + algebra_map A B x := rfl | |
@[simp] lemma lift_of_derivation_to_square_zero_mk_apply (d : derivation R A I) (x : A) : | |
ideal.quotient.mk I (lift_of_derivation_to_square_zero I hI d x) = algebra_map A (B β§Έ I) x := | |
by { rw [lift_of_derivation_to_square_zero_apply, map_add, | |
ideal.quotient.eq_zero_iff_mem.mpr (d x).prop, zero_add], refl } | |
/-- Given a tower of algebras `R β A β B`, and a square-zero `I : ideal B`, | |
there is a 1-1 correspondance between `R`-derivations from `A` to `I` and | |
lifts `A ββ[R] B` of the canonical map `A ββ[R] B β§Έ I`. -/ | |
@[simps] | |
def derivation_to_square_zero_equiv_lift : | |
derivation R A I β | |
{ f : A ββ[R] B // (ideal.quotient.mkβ R I).comp f = is_scalar_tower.to_alg_hom R A (B β§Έ I) } := | |
begin | |
refine β¨Ξ» d, β¨lift_of_derivation_to_square_zero I hI d, _β©, Ξ» f, | |
(derivation_to_square_zero_of_lift I hI f.1 f.2 : _), _, _β©, | |
{ ext x, exact lift_of_derivation_to_square_zero_mk_apply I hI d x }, | |
{ intro d, ext x, exact add_sub_cancel (d x : B) (algebra_map A B x) }, | |
{ rintro β¨f, hfβ©, ext x, exact sub_add_cancel (f x) (algebra_map A B x) } | |
end | |
end to_square_zero | |