Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Kenny Lau. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kenny Lau, Johan Commelin | |
-/ | |
import group_theory.free_abelian_group | |
/-! | |
# Free rings | |
The theory of the free ring over a type. | |
## Main definitions | |
* `free_ring α` : the free (not commutative in general) ring over a type. | |
* `lift (f : α → R)` : the ring hom `free_ring α →+* R` induced by `f`. | |
* `map (f : α → β)` : the ring hom `free_ring α →+* free_ring β` induced by `f`. | |
## Implementation details | |
`free_ring α` is implemented as the free abelian group over the free monoid on `α`. | |
## Tags | |
free ring | |
-/ | |
universes u v | |
/-- The free ring over a type `α`. -/ | |
@[derive [ring, inhabited]] | |
def free_ring (α : Type u) : Type u := | |
free_abelian_group $ free_monoid α | |
namespace free_ring | |
variables {α : Type u} | |
/-- The canonical map from α to `free_ring α`. -/ | |
def of (x : α) : free_ring α := | |
free_abelian_group.of (free_monoid.of x) | |
lemma of_injective : function.injective (of : α → free_ring α) := | |
free_abelian_group.of_injective.comp free_monoid.of_injective | |
@[elab_as_eliminator] protected lemma induction_on | |
{C : free_ring α → Prop} (z : free_ring α) | |
(hn1 : C (-1)) (hb : ∀ b, C (of b)) | |
(ha : ∀ x y, C x → C y → C (x + y)) | |
(hm : ∀ x y, C x → C y → C (x * y)) : C z := | |
have hn : ∀ x, C x → C (-x), from λ x ih, neg_one_mul x ▸ hm _ _ hn1 ih, | |
have h1 : C 1, from neg_neg (1 : free_ring α) ▸ hn _ hn1, | |
free_abelian_group.induction_on z | |
(add_left_neg (1 : free_ring α) ▸ ha _ _ hn1 h1) | |
(λ m, list.rec_on m h1 $ λ a m ih, hm _ _ (hb a) ih) | |
(λ m ih, hn _ ih) | |
ha | |
section lift | |
variables {R : Type v} [ring R] (f : α → R) | |
/-- The ring homomorphism `free_ring α →+* R` induced from a map `α → R`. -/ | |
def lift : (α → R) ≃ (free_ring α →+* R) := | |
free_monoid.lift.trans free_abelian_group.lift_monoid | |
@[simp] lemma lift_of (x : α) : lift f (of x) = f x := | |
congr_fun (lift.left_inv f) x | |
@[simp] lemma lift_comp_of (f : free_ring α →+* R) : lift (f ∘ of) = f := | |
lift.right_inv f | |
@[ext] | |
lemma hom_ext ⦃f g : free_ring α →+* R⦄ (h : ∀ x, f (of x) = g (of x)) : | |
f = g := | |
lift.symm.injective (funext h) | |
end lift | |
variables {β : Type v} (f : α → β) | |
/-- The canonical ring homomorphism `free_ring α →+* free_ring β` generated by a map `α → β`. -/ | |
def map : free_ring α →+* free_ring β := | |
lift $ of ∘ f | |
@[simp] | |
lemma map_of (x : α) : map f (of x) = of (f x) := lift_of _ _ | |
end free_ring | |