Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Andrew Yang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Andrew Yang | |
-/ | |
import group_theory.submonoid.pointwise | |
import logic.equiv.transfer_instance | |
import ring_theory.finiteness | |
import ring_theory.localization.at_prime | |
import ring_theory.localization.away | |
import ring_theory.localization.integer | |
import ring_theory.localization.submodule | |
import ring_theory.nilpotent | |
import ring_theory.ring_hom_properties | |
/-! | |
# Local properties of commutative rings | |
In this file, we provide the proofs of various local properties. | |
## Naming Conventions | |
* `localization_P` : `P` holds for `S⁻¹R` if `P` holds for `R`. | |
* `P_of_localization_maximal` : `P` holds for `R` if `P` holds for `Rₘ` for all maximal `m`. | |
* `P_of_localization_prime` : `P` holds for `R` if `P` holds for `Rₘ` for all prime `m`. | |
* `P_of_localization_span` : `P` holds for `R` if given a spanning set `{fᵢ}`, `P` holds for all | |
`R_{fᵢ}`. | |
## Main results | |
The following properties are covered: | |
* The triviality of an ideal or an element: | |
`ideal_eq_zero_of_localization`, `eq_zero_of_localization` | |
* `is_reduced` : `localization_is_reduced`, `is_reduced_of_localization_maximal`. | |
* `finite`: `localization_finite`, `finite_of_localization_span` | |
* `finite_type`: `localization_finite_type`, `finite_type_of_localization_span` | |
-/ | |
open_locale pointwise classical big_operators | |
universe u | |
variables {R S : Type u} [comm_ring R] [comm_ring S] (M : submonoid R) | |
variables (N : submonoid S) (R' S' : Type u) [comm_ring R'] [comm_ring S'] (f : R →+* S) | |
variables [algebra R R'] [algebra S S'] | |
section properties | |
section comm_ring | |
variable (P : ∀ (R : Type u) [comm_ring R], Prop) | |
include P | |
/-- A property `P` of comm rings is said to be preserved by localization | |
if `P` holds for `M⁻¹R` whenever `P` holds for `R`. -/ | |
def localization_preserves : Prop := | |
∀ {R : Type u} [hR : comm_ring R] (M : by exactI submonoid R) (S : Type u) [hS : comm_ring S] | |
[by exactI algebra R S] [by exactI is_localization M S], @P R hR → @P S hS | |
/-- A property `P` of comm rings satisfies `of_localization_maximal` if | |
if `P` holds for `R` whenever `P` holds for `Rₘ` for all maximal ideal `m`. -/ | |
def of_localization_maximal : Prop := | |
∀ (R : Type u) [comm_ring R], | |
by exactI (∀ (J : ideal R) (hJ : J.is_maximal), by exactI P (localization.at_prime J)) → P R | |
end comm_ring | |
section ring_hom | |
variable (P : ∀ {R S : Type u} [comm_ring R] [comm_ring S] (f : by exactI R →+* S), Prop) | |
include P | |
/-- A property `P` of ring homs is said to be preserved by localization | |
if `P` holds for `M⁻¹R →+* M⁻¹S` whenever `P` holds for `R →+* S`. -/ | |
def ring_hom.localization_preserves := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) (M : by exactI submonoid R) | |
(R' S' : Type u) [comm_ring R'] [comm_ring S'] [by exactI algebra R R'] | |
[by exactI algebra S S'] [by exactI is_localization M R'] | |
[by exactI is_localization (M.map f) S'], | |
by exactI (P f → P (is_localization.map S' f (submonoid.le_comap_map M) : R' →+* S')) | |
/-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span` | |
if `P` holds for `R →+* S` whenever there exists a finite set `{ r }` that spans `R` such that | |
`P` holds for `Rᵣ →+* Sᵣ`. | |
Note that this is equivalent to `ring_hom.of_localization_span` via | |
`ring_hom.of_localization_span_iff_finite`, but this is easier to prove. -/ | |
def ring_hom.of_localization_finite_span := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) | |
(s : finset R) (hs : by exactI ideal.span (s : set R) = ⊤) | |
(H : by exactI (∀ (r : s), P (localization.away_map f r))), by exactI P f | |
/-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span` | |
if `P` holds for `R →+* S` whenever there exists a set `{ r }` that spans `R` such that | |
`P` holds for `Rᵣ →+* Sᵣ`. | |
Note that this is equivalent to `ring_hom.of_localization_finite_span` via | |
`ring_hom.of_localization_span_iff_finite`, but this has less restrictions when applying. -/ | |
def ring_hom.of_localization_span := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) | |
(s : set R) (hs : by exactI ideal.span s = ⊤) | |
(H : by exactI (∀ (r : s), P (localization.away_map f r))), by exactI P f | |
/-- A property `P` of ring homs satisfies `ring_hom.holds_for_localization_away` | |
if `P` holds for each localization map `R →+* Rᵣ`. -/ | |
def ring_hom.holds_for_localization_away : Prop := | |
∀ ⦃R : Type u⦄ (S : Type u) [comm_ring R] [comm_ring S] [by exactI algebra R S] (r : R) | |
[by exactI is_localization.away r S], by exactI P (algebra_map R S) | |
/-- A property `P` of ring homs satisfies `ring_hom.of_localization_finite_span_target` | |
if `P` holds for `R →+* S` whenever there exists a finite set `{ r }` that spans `S` such that | |
`P` holds for `R →+* Sᵣ`. | |
Note that this is equivalent to `ring_hom.of_localization_span_target` via | |
`ring_hom.of_localization_span_target_iff_finite`, but this is easier to prove. -/ | |
def ring_hom.of_localization_finite_span_target : Prop := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) | |
(s : finset S) (hs : by exactI ideal.span (s : set S) = ⊤) | |
(H : by exactI (∀ (r : s), P ((algebra_map S (localization.away (r : S))).comp f))), | |
by exactI P f | |
/-- A property `P` of ring homs satisfies `ring_hom.of_localization_span_target` | |
if `P` holds for `R →+* S` whenever there exists a set `{ r }` that spans `S` such that | |
`P` holds for `R →+* Sᵣ`. | |
Note that this is equivalent to `ring_hom.of_localization_finite_span_target` via | |
`ring_hom.of_localization_span_target_iff_finite`, but this has less restrictions when applying. -/ | |
def ring_hom.of_localization_span_target : Prop := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S) | |
(s : set S) (hs : by exactI ideal.span s = ⊤) | |
(H : by exactI (∀ (r : s), P ((algebra_map S (localization.away (r : S))).comp f))), | |
by exactI P f | |
/-- A property `P` of ring homs satisfies `of_localization_prime` if | |
if `P` holds for `R` whenever `P` holds for `Rₘ` for all prime ideals `p`. -/ | |
def ring_hom.of_localization_prime : Prop := | |
∀ ⦃R S : Type u⦄ [comm_ring R] [comm_ring S] (f : by exactI R →+* S), | |
by exactI (∀ (J : ideal S) (hJ : J.is_prime), | |
by exactI P (localization.local_ring_hom _ J f rfl)) → P f | |
/-- A property of ring homs is local if it is preserved by localizations and compositions, and for | |
each `{ r }` that spans `S`, we have `P (R →+* S) ↔ ∀ r, P (R →+* Sᵣ)`. -/ | |
structure ring_hom.property_is_local : Prop := | |
(localization_preserves : ring_hom.localization_preserves @P) | |
(of_localization_span_target : ring_hom.of_localization_span_target @P) | |
(stable_under_composition : ring_hom.stable_under_composition @P) | |
(holds_for_localization_away : ring_hom.holds_for_localization_away @P) | |
lemma ring_hom.of_localization_span_iff_finite : | |
ring_hom.of_localization_span @P ↔ ring_hom.of_localization_finite_span @P := | |
begin | |
delta ring_hom.of_localization_span ring_hom.of_localization_finite_span, | |
apply forall₅_congr, -- TODO: Using `refine` here breaks `resetI`. | |
introsI, | |
split, | |
{ intros h s, exact h s }, | |
{ intros h s hs hs', | |
obtain ⟨s', h₁, h₂⟩ := (ideal.span_eq_top_iff_finite s).mp hs, | |
exact h s' h₂ (λ x, hs' ⟨_, h₁ x.prop⟩) } | |
end | |
lemma ring_hom.of_localization_span_target_iff_finite : | |
ring_hom.of_localization_span_target @P ↔ ring_hom.of_localization_finite_span_target @P := | |
begin | |
delta ring_hom.of_localization_span_target ring_hom.of_localization_finite_span_target, | |
apply forall₅_congr, -- TODO: Using `refine` here breaks `resetI`. | |
introsI, | |
split, | |
{ intros h s, exact h s }, | |
{ intros h s hs hs', | |
obtain ⟨s', h₁, h₂⟩ := (ideal.span_eq_top_iff_finite s).mp hs, | |
exact h s' h₂ (λ x, hs' ⟨_, h₁ x.prop⟩) } | |
end | |
variables {P f R' S'} | |
lemma _root_.ring_hom.property_is_local.respects_iso (hP : ring_hom.property_is_local @P) : | |
ring_hom.respects_iso @P := | |
begin | |
apply hP.stable_under_composition.respects_iso, | |
introv, | |
resetI, | |
letI := e.to_ring_hom.to_algebra, | |
apply_with hP.holds_for_localization_away { instances := ff }, | |
apply is_localization.away_of_is_unit_of_bijective _ is_unit_one, | |
exact e.bijective | |
end | |
-- Almost all arguments are implicit since this is not intended to use mid-proof. | |
lemma ring_hom.localization_preserves.away | |
(H : ring_hom.localization_preserves @P) (r : R) [is_localization.away r R'] | |
[is_localization.away (f r) S'] (hf : P f) : | |
P (by exactI is_localization.away.map R' S' f r) := | |
begin | |
resetI, | |
haveI : is_localization ((submonoid.powers r).map f) S', | |
{ rw submonoid.map_powers, assumption }, | |
exact H f (submonoid.powers r) R' S' hf, | |
end | |
lemma ring_hom.property_is_local.of_localization_span (hP : ring_hom.property_is_local @P) : | |
ring_hom.of_localization_span @P := | |
begin | |
introv R hs hs', | |
resetI, | |
apply_fun (ideal.map f) at hs, | |
rw [ideal.map_span, ideal.map_top] at hs, | |
apply hP.of_localization_span_target _ _ hs, | |
rintro ⟨_, r, hr, rfl⟩, | |
have := hs' ⟨r, hr⟩, | |
convert hP.stable_under_composition _ _ (hP.holds_for_localization_away (localization.away r) r) | |
(hs' ⟨r, hr⟩) using 1, | |
exact (is_localization.map_comp _).symm | |
end | |
end ring_hom | |
end properties | |
section ideal | |
-- This proof should work for all modules, but we do not know how to localize a module yet. | |
/-- An ideal is trivial if its localization at every maximal ideal is trivial. -/ | |
lemma ideal_eq_zero_of_localization (I : ideal R) | |
(h : ∀ (J : ideal R) (hJ : J.is_maximal), | |
by exactI is_localization.coe_submodule (localization.at_prime J) I = 0) : I = 0 := | |
begin | |
by_contradiction hI, change I ≠ ⊥ at hI, | |
obtain ⟨x, hx, hx'⟩ := set_like.exists_of_lt hI.bot_lt, | |
rw [submodule.mem_bot] at hx', | |
have H : (ideal.span ({x} : set R)).annihilator ≠ ⊤, | |
{ rw [ne.def, submodule.annihilator_eq_top_iff], | |
by_contra, | |
apply hx', | |
rw [← set.mem_singleton_iff, ← @submodule.bot_coe R, ← h], | |
exact ideal.subset_span (set.mem_singleton x) }, | |
obtain ⟨p, hp₁, hp₂⟩ := ideal.exists_le_maximal _ H, | |
resetI, | |
specialize h p hp₁, | |
have : algebra_map R (localization.at_prime p) x = 0, | |
{ rw ← set.mem_singleton_iff, | |
change algebra_map R (localization.at_prime p) x ∈ (0 : submodule R (localization.at_prime p)), | |
rw ← h, | |
exact submodule.mem_map_of_mem hx }, | |
rw is_localization.map_eq_zero_iff p.prime_compl at this, | |
obtain ⟨m, hm⟩ := this, | |
apply m.prop, | |
refine hp₂ _, | |
erw submodule.mem_annihilator_span_singleton, | |
rwa mul_comm at hm, | |
end | |
lemma eq_zero_of_localization (r : R) | |
(h : ∀ (J : ideal R) (hJ : J.is_maximal), | |
by exactI algebra_map R (localization.at_prime J) r = 0) : r = 0 := | |
begin | |
rw ← ideal.span_singleton_eq_bot, | |
apply ideal_eq_zero_of_localization, | |
intros J hJ, | |
delta is_localization.coe_submodule, | |
erw [submodule.map_span, submodule.span_eq_bot], | |
rintro _ ⟨_, h', rfl⟩, | |
cases set.mem_singleton_iff.mpr h', | |
exact h J hJ, | |
end | |
end ideal | |
section reduced | |
lemma localization_is_reduced : localization_preserves (λ R hR, by exactI is_reduced R) := | |
begin | |
introv R _ _, | |
resetI, | |
constructor, | |
rintro x ⟨(_|n), e⟩, | |
{ simpa using congr_arg (*x) e }, | |
obtain ⟨⟨y, m⟩, hx⟩ := is_localization.surj M x, | |
dsimp only at hx, | |
let hx' := congr_arg (^ n.succ) hx, | |
simp only [mul_pow, e, zero_mul, ← ring_hom.map_pow] at hx', | |
rw [← (algebra_map R S).map_zero] at hx', | |
obtain ⟨m', hm'⟩ := (is_localization.eq_iff_exists M S).mp hx', | |
apply_fun (*m'^n) at hm', | |
simp only [mul_assoc, zero_mul] at hm', | |
rw [mul_comm, ← pow_succ, ← mul_pow] at hm', | |
replace hm' := is_nilpotent.eq_zero ⟨_, hm'.symm⟩, | |
rw [← (is_localization.map_units S m).mul_left_inj, hx, zero_mul, | |
is_localization.map_eq_zero_iff M], | |
exact ⟨m', by rw [← hm', mul_comm]⟩ | |
end | |
instance [is_reduced R] : is_reduced (localization M) := localization_is_reduced M _ infer_instance | |
lemma is_reduced_of_localization_maximal : | |
of_localization_maximal (λ R hR, by exactI is_reduced R) := | |
begin | |
introv R h, | |
constructor, | |
intros x hx, | |
apply eq_zero_of_localization, | |
intros J hJ, | |
specialize h J hJ, | |
resetI, | |
exact (hx.map $ algebra_map R $ localization.at_prime J).eq_zero, | |
end | |
end reduced | |
section surjective | |
lemma localization_preserves_surjective : | |
ring_hom.localization_preserves (λ R S _ _ f, function.surjective f) := | |
begin | |
introv R H x, | |
resetI, | |
obtain ⟨x, ⟨_, s, hs, rfl⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, | |
obtain ⟨y, rfl⟩ := H x, | |
use is_localization.mk' R' y ⟨s, hs⟩, | |
rw is_localization.map_mk', | |
refl, | |
end | |
lemma surjective_of_localization_span : | |
ring_hom.of_localization_span (λ R S _ _ f, function.surjective f) := | |
begin | |
introv R e H, | |
rw [← set.range_iff_surjective, set.eq_univ_iff_forall], | |
resetI, | |
letI := f.to_algebra, | |
intro x, | |
apply submodule.mem_of_span_eq_top_of_smul_pow_mem (algebra.of_id R S).to_linear_map.range s e, | |
intro r, | |
obtain ⟨a, e'⟩ := H r (algebra_map _ _ x), | |
obtain ⟨b, ⟨_, n, rfl⟩, rfl⟩ := is_localization.mk'_surjective (submonoid.powers (r : R)) a, | |
erw is_localization.map_mk' at e', | |
rw [eq_comm, is_localization.eq_mk'_iff_mul_eq, subtype.coe_mk, subtype.coe_mk, ← map_mul] at e', | |
obtain ⟨⟨_, n', rfl⟩, e''⟩ := (is_localization.eq_iff_exists (submonoid.powers (f r)) _).mp e', | |
rw [subtype.coe_mk, mul_assoc, ← map_pow, ← map_mul, ← map_mul, ← pow_add, mul_comm] at e'', | |
exact ⟨n + n', _, e''.symm⟩ | |
end | |
end surjective | |
section finite | |
/-- If `S` is a finite `R`-algebra, then `S' = M⁻¹S` is a finite `R' = M⁻¹R`-algebra. -/ | |
lemma localization_finite : ring_hom.localization_preserves @ring_hom.finite := | |
begin | |
introv R hf, | |
-- Setting up the `algebra` and `is_scalar_tower` instances needed | |
resetI, | |
letI := f.to_algebra, | |
letI := ((algebra_map S S').comp f).to_algebra, | |
let f' : R' →+* S' := is_localization.map S' f (submonoid.le_comap_map M), | |
letI := f'.to_algebra, | |
haveI : is_scalar_tower R R' S' := | |
is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, | |
let fₐ : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') (λ c x, ring_hom.map_mul _ _ _), | |
-- We claim that if `S` is generated by `T` as an `R`-module, | |
-- then `S'` is generated by `T` as an `R'`-module. | |
unfreezingI { obtain ⟨T, hT⟩ := hf }, | |
use T.image (algebra_map S S'), | |
rw eq_top_iff, | |
rintro x -, | |
-- By the hypotheses, for each `x : S'`, we have `x = y / (f r)` for some `y : S` and `r : M`. | |
-- Since `S` is generated by `T`, the image of `y` should fall in the span of the image of `T`. | |
obtain ⟨y, ⟨_, ⟨r, hr, rfl⟩⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, | |
rw [is_localization.mk'_eq_mul_mk'_one, mul_comm, finset.coe_image], | |
have hy : y ∈ submodule.span R ↑T, by { rw hT, trivial }, | |
replace hy : algebra_map S S' y ∈ submodule.map fₐ.to_linear_map (submodule.span R T) := | |
submodule.mem_map_of_mem hy, | |
rw submodule.map_span fₐ.to_linear_map T at hy, | |
have H : submodule.span R ((algebra_map S S') '' T) ≤ | |
(submodule.span R' ((algebra_map S S') '' T)).restrict_scalars R, | |
{ rw submodule.span_le, exact submodule.subset_span }, | |
-- Now, since `y ∈ span T`, and `(f r)⁻¹ ∈ R'`, `x / (f r)` is in `span T` as well. | |
convert (submodule.span R' ((algebra_map S S') '' T)).smul_mem | |
(is_localization.mk' R' (1 : R) ⟨r, hr⟩) (H hy) using 1, | |
rw algebra.smul_def, | |
erw is_localization.map_mk', | |
rw map_one, | |
refl, | |
end | |
lemma localization_away_map_finite (r : R) [is_localization.away r R'] | |
[is_localization.away (f r) S'] (hf : f.finite) : | |
(is_localization.away.map R' S' f r).finite := | |
localization_finite.away r hf | |
/-- | |
Let `S` be an `R`-algebra, `M` an submonoid of `R`, and `S' = M⁻¹S`. | |
If the image of some `x : S` falls in the span of some finite `s ⊆ S'` over `R`, | |
then there exists some `m : M` such that `m • x` falls in the | |
span of `finset_integer_multiple _ s` over `R`. | |
-/ | |
lemma is_localization.smul_mem_finset_integer_multiple_span [algebra R S] | |
[algebra R S'] [is_scalar_tower R S S'] | |
[is_localization (M.map (algebra_map R S : R →* S)) S'] (x : S) | |
(s : finset S') (hx : algebra_map S S' x ∈ submodule.span R (s : set S')) : | |
∃ m : M, m • x ∈ submodule.span R | |
(is_localization.finset_integer_multiple (M.map (algebra_map R S : R →* S)) s : set S) := | |
begin | |
let g : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') | |
(λ c x, by simp [algebra.algebra_map_eq_smul_one]), | |
-- We first obtain the `y' ∈ M` such that `s' = y' • s` is falls in the image of `S` in `S'`. | |
let y := is_localization.common_denom_of_finset (M.map (algebra_map R S : R →* S)) s, | |
have hx₁ : (y : S) • ↑s = g '' _ := (is_localization.finset_integer_multiple_image _ s).symm, | |
obtain ⟨y', hy', e : algebra_map R S y' = y⟩ := y.prop, | |
have : algebra_map R S y' • (s : set S') = y' • s := | |
by simp_rw [algebra.algebra_map_eq_smul_one, smul_assoc, one_smul], | |
rw [← e, this] at hx₁, | |
replace hx₁ := congr_arg (submodule.span R) hx₁, | |
rw submodule.span_smul_eq at hx₁, | |
replace hx : _ ∈ y' • submodule.span R (s : set S') := set.smul_mem_smul_set hx, | |
rw hx₁ at hx, | |
erw [← g.map_smul, ← submodule.map_span (g : S →ₗ[R] S')] at hx, | |
-- Since `x` falls in the span of `s` in `S'`, `y' • x : S` falls in the span of `s'` in `S'`. | |
-- That is, there exists some `x' : S` in the span of `s'` in `S` and `x' = y' • x` in `S'`. | |
-- Thus `a • (y' • x) = a • x' ∈ span s'` in `S` for some `a ∈ M`. | |
obtain ⟨x', hx', hx'' : algebra_map _ _ _ = _⟩ := hx, | |
obtain ⟨⟨_, a, ha₁, rfl⟩, ha₂⟩ := (is_localization.eq_iff_exists | |
(M.map (algebra_map R S : R →* S)) S').mp hx'', | |
use (⟨a, ha₁⟩ : M) * (⟨y', hy'⟩ : M), | |
convert (submodule.span R (is_localization.finset_integer_multiple | |
(submonoid.map (algebra_map R S : R →* S) M) s : set S)).smul_mem a hx' using 1, | |
convert ha₂.symm, | |
{ rw [mul_comm (y' • x), subtype.coe_mk, submonoid.smul_def, submonoid.coe_mul, ← smul_smul], | |
exact algebra.smul_def _ _ }, | |
{ rw mul_comm, exact algebra.smul_def _ _ } | |
end | |
/-- If `S` is an `R' = M⁻¹R` algebra, and `x ∈ span R' s`, | |
then `t • x ∈ span R s` for some `t : M`.-/ | |
lemma multiple_mem_span_of_mem_localization_span [algebra R' S] [algebra R S] | |
[is_scalar_tower R R' S] [is_localization M R'] | |
(s : set S) (x : S) (hx : x ∈ submodule.span R' s) : | |
∃ t : M, t • x ∈ submodule.span R s := | |
begin | |
classical, | |
obtain ⟨s', hss', hs'⟩ := submodule.mem_span_finite_of_mem_span hx, | |
suffices : ∃ t : M, t • x ∈ submodule.span R (s' : set S), | |
{ obtain ⟨t, ht⟩ := this, | |
exact ⟨t, submodule.span_mono hss' ht⟩ }, | |
clear hx hss' s, | |
revert x, | |
apply s'.induction_on, | |
{ intros x hx, use 1, simpa using hx }, | |
rintros a s ha hs x hx, | |
simp only [finset.coe_insert, finset.image_insert, finset.coe_image, subtype.coe_mk, | |
submodule.mem_span_insert] at hx ⊢, | |
rcases hx with ⟨y, z, hz, rfl⟩, | |
rcases is_localization.surj M y with ⟨⟨y', s'⟩, e⟩, | |
replace e : _ * a = _ * a := (congr_arg (λ x, algebra_map R' S x * a) e : _), | |
simp_rw [ring_hom.map_mul, ← is_scalar_tower.algebra_map_apply, mul_comm (algebra_map R' S y), | |
mul_assoc, ← algebra.smul_def] at e, | |
rcases hs _ hz with ⟨t, ht⟩, | |
refine ⟨t*s', t*y', _, (submodule.span R (s : set S)).smul_mem s' ht, _⟩, | |
rw [smul_add, ← smul_smul, mul_comm, ← smul_smul, ← smul_smul, ← e], | |
refl, | |
end | |
/-- If `S` is an `R' = M⁻¹R` algebra, and `x ∈ adjoin R' s`, | |
then `t • x ∈ adjoin R s` for some `t : M`.-/ | |
lemma multiple_mem_adjoin_of_mem_localization_adjoin [algebra R' S] [algebra R S] | |
[is_scalar_tower R R' S] [is_localization M R'] | |
(s : set S) (x : S) (hx : x ∈ algebra.adjoin R' s) : | |
∃ t : M, t • x ∈ algebra.adjoin R s := | |
begin | |
change ∃ (t : M), t • x ∈ (algebra.adjoin R s).to_submodule, | |
change x ∈ (algebra.adjoin R' s).to_submodule at hx, | |
simp_rw [algebra.adjoin_eq_span] at hx ⊢, | |
exact multiple_mem_span_of_mem_localization_span M R' _ _ hx | |
end | |
lemma finite_of_localization_span : ring_hom.of_localization_span @ring_hom.finite := | |
begin | |
rw ring_hom.of_localization_span_iff_finite, | |
introv R hs H, | |
-- We first setup the instances | |
resetI, | |
letI := f.to_algebra, | |
letI := λ (r : s), (localization.away_map f r).to_algebra, | |
haveI : ∀ r : s, is_localization ((submonoid.powers (r : R)).map (algebra_map R S : R →* S)) | |
(localization.away (f r)), | |
{ intro r, rw submonoid.map_powers, exact localization.is_localization }, | |
haveI : ∀ r : s, is_scalar_tower R (localization.away (r : R)) (localization.away (f r)) := | |
λ r, is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, | |
-- By the hypothesis, we may find a finite generating set for each `Sᵣ`. This set can then be | |
-- lifted into `R` by multiplying a sufficiently large power of `r`. I claim that the union of | |
-- these generates `S`. | |
constructor, | |
replace H := λ r, (H r).1, | |
choose s₁ s₂ using H, | |
let sf := λ (x : s), is_localization.finset_integer_multiple (submonoid.powers (f x)) (s₁ x), | |
use s.attach.bUnion sf, | |
rw [submodule.span_attach_bUnion, eq_top_iff], | |
-- It suffices to show that `r ^ n • x ∈ span T` for each `r : s`, since `{ r ^ n }` spans `R`. | |
-- This then follows from the fact that each `x : R` is a linear combination of the generating set | |
-- of `Sᵣ`. By multiplying a sufficiently large power of `r`, we can cancel out the `r`s in the | |
-- denominators of both the generating set and the coefficients. | |
rintro x -, | |
apply submodule.mem_of_span_eq_top_of_smul_pow_mem _ (s : set R) hs _ _, | |
intro r, | |
obtain ⟨⟨_, n₁, rfl⟩, hn₁⟩ := multiple_mem_span_of_mem_localization_span | |
(submonoid.powers (r : R)) (localization.away (r : R)) (s₁ r : set (localization.away (f r))) | |
(algebra_map S _ x) (by { rw s₂ r, trivial }), | |
rw [submonoid.smul_def, algebra.smul_def, is_scalar_tower.algebra_map_apply R S, | |
subtype.coe_mk, ← map_mul] at hn₁, | |
obtain ⟨⟨_, n₂, rfl⟩, hn₂⟩ := is_localization.smul_mem_finset_integer_multiple_span | |
(submonoid.powers (r : R)) (localization.away (f r)) _ (s₁ r) hn₁, | |
rw [submonoid.smul_def, ← algebra.smul_def, smul_smul, subtype.coe_mk, ← pow_add] at hn₂, | |
use n₂ + n₁, | |
refine le_supr (λ (x : s), submodule.span R (sf x : set S)) r _, | |
change _ ∈ submodule.span R | |
((is_localization.finset_integer_multiple _ (s₁ r) : finset S) : set S), | |
convert hn₂, | |
rw submonoid.map_powers, refl, | |
end | |
end finite | |
section finite_type | |
lemma localization_finite_type : ring_hom.localization_preserves @ring_hom.finite_type := | |
begin | |
introv R hf, | |
-- mirrors the proof of `localization_map_finite` | |
resetI, | |
letI := f.to_algebra, | |
letI := ((algebra_map S S').comp f).to_algebra, | |
let f' : R' →+* S' := is_localization.map S' f (submonoid.le_comap_map M), | |
letI := f'.to_algebra, | |
haveI : is_scalar_tower R R' S' := | |
is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, | |
let fₐ : S →ₐ[R] S' := alg_hom.mk' (algebra_map S S') (λ c x, ring_hom.map_mul _ _ _), | |
obtain ⟨T, hT⟩ := id hf, | |
use T.image (algebra_map S S'), | |
rw eq_top_iff, | |
rintro x -, | |
obtain ⟨y, ⟨_, ⟨r, hr, rfl⟩⟩, rfl⟩ := is_localization.mk'_surjective (M.map f) x, | |
rw [is_localization.mk'_eq_mul_mk'_one, mul_comm, finset.coe_image], | |
have hy : y ∈ algebra.adjoin R (T : set S), by { rw hT, trivial }, | |
replace hy : algebra_map S S' y ∈ (algebra.adjoin R (T : set S)).map fₐ := | |
subalgebra.mem_map.mpr ⟨_, hy, rfl⟩, | |
rw fₐ.map_adjoin T at hy, | |
have H : algebra.adjoin R ((algebra_map S S') '' T) ≤ | |
(algebra.adjoin R' ((algebra_map S S') '' T)).restrict_scalars R, | |
{ rw algebra.adjoin_le_iff, exact algebra.subset_adjoin }, | |
convert (algebra.adjoin R' ((algebra_map S S') '' T)).smul_mem (H hy) | |
(is_localization.mk' R' (1 : R) ⟨r, hr⟩) using 1, | |
rw algebra.smul_def, | |
erw is_localization.map_mk', | |
rw map_one, | |
refl, | |
end | |
lemma localization_away_map_finite_type (r : R) [is_localization.away r R'] | |
[is_localization.away (f r) S'] (hf : f.finite_type) : | |
(is_localization.away.map R' S' f r).finite_type := | |
localization_finite_type.away r hf | |
variable {S'} | |
/-- | |
Let `S` be an `R`-algebra, `M` a submonoid of `S`, `S' = M⁻¹S`. | |
Suppose the image of some `x : S` falls in the adjoin of some finite `s ⊆ S'` over `R`, | |
and `A` is an `R`-subalgebra of `S` containing both `M` and the numerators of `s`. | |
Then, there exists some `m : M` such that `m • x` falls in `A`. | |
-/ | |
lemma is_localization.exists_smul_mem_of_mem_adjoin [algebra R S] | |
[algebra R S'] [is_scalar_tower R S S'] (M : submonoid S) | |
[is_localization M S'] (x : S) (s : finset S') (A : subalgebra R S) | |
(hA₁ : (is_localization.finset_integer_multiple M s : set S) ⊆ A) | |
(hA₂ : M ≤ A.to_submonoid) | |
(hx : algebra_map S S' x ∈ algebra.adjoin R (s : set S')) : | |
∃ m : M, m • x ∈ A := | |
begin | |
let g : S →ₐ[R] S' := is_scalar_tower.to_alg_hom R S S', | |
let y := is_localization.common_denom_of_finset M s, | |
have hx₁ : (y : S) • ↑s = g '' _ := (is_localization.finset_integer_multiple_image _ s).symm, | |
obtain ⟨n, hn⟩ := algebra.pow_smul_mem_of_smul_subset_of_mem_adjoin (y : S) (s : set S') | |
(A.map g) (by { rw hx₁, exact set.image_subset _ hA₁ }) hx (set.mem_image_of_mem _ (hA₂ y.2)), | |
obtain ⟨x', hx', hx''⟩ := hn n (le_of_eq rfl), | |
rw [algebra.smul_def, ← _root_.map_mul] at hx'', | |
obtain ⟨a, ha₂⟩ := (is_localization.eq_iff_exists M S').mp hx'', | |
use a * y ^ n, | |
convert A.mul_mem hx' (hA₂ a.2), | |
convert ha₂.symm, | |
simp only [submonoid.smul_def, submonoid.coe_pow, smul_eq_mul, submonoid.coe_mul], | |
ring, | |
end | |
/-- | |
Let `S` be an `R`-algebra, `M` an submonoid of `R`, and `S' = M⁻¹S`. | |
If the image of some `x : S` falls in the adjoin of some finite `s ⊆ S'` over `R`, | |
then there exists some `m : M` such that `m • x` falls in the | |
adjoin of `finset_integer_multiple _ s` over `R`. | |
-/ | |
lemma is_localization.lift_mem_adjoin_finset_integer_multiple [algebra R S] | |
[algebra R S'] [is_scalar_tower R S S'] | |
[is_localization (M.map (algebra_map R S : R →* S)) S'] (x : S) | |
(s : finset S') (hx : algebra_map S S' x ∈ algebra.adjoin R (s : set S')) : | |
∃ m : M, m • x ∈ algebra.adjoin R | |
(is_localization.finset_integer_multiple (M.map (algebra_map R S : R →* S)) s : set S) := | |
begin | |
obtain ⟨⟨_, a, ha, rfl⟩, e⟩ := is_localization.exists_smul_mem_of_mem_adjoin | |
(M.map (algebra_map R S : R →* S)) x s (algebra.adjoin R _) algebra.subset_adjoin _ hx, | |
{ exact ⟨⟨a, ha⟩, by simpa [submonoid.smul_def] using e⟩ }, | |
{ rintros _ ⟨a, ha, rfl⟩, exact subalgebra.algebra_map_mem _ a } | |
end | |
lemma finite_type_of_localization_span : ring_hom.of_localization_span @ring_hom.finite_type := | |
begin | |
rw ring_hom.of_localization_span_iff_finite, | |
introv R hs H, | |
-- mirrors the proof of `finite_of_localization_span` | |
resetI, | |
letI := f.to_algebra, | |
letI := λ (r : s), (localization.away_map f r).to_algebra, | |
haveI : ∀ r : s, is_localization ((submonoid.powers (r : R)).map (algebra_map R S : R →* S)) | |
(localization.away (f r)), | |
{ intro r, rw submonoid.map_powers, exact localization.is_localization }, | |
haveI : ∀ r : s, is_scalar_tower R (localization.away (r : R)) (localization.away (f r)) := | |
λ r, is_scalar_tower.of_algebra_map_eq' (is_localization.map_comp _).symm, | |
constructor, | |
replace H := λ r, (H r).1, | |
choose s₁ s₂ using H, | |
let sf := λ (x : s), is_localization.finset_integer_multiple (submonoid.powers (f x)) (s₁ x), | |
use s.attach.bUnion sf, | |
convert (algebra.adjoin_attach_bUnion sf).trans _, | |
rw eq_top_iff, | |
rintro x -, | |
apply (⨆ (x : s), algebra.adjoin R (sf x : set S)).to_submodule | |
.mem_of_span_eq_top_of_smul_pow_mem _ hs _ _, | |
intro r, | |
obtain ⟨⟨_, n₁, rfl⟩, hn₁⟩ := multiple_mem_adjoin_of_mem_localization_adjoin | |
(submonoid.powers (r : R)) (localization.away (r : R)) (s₁ r : set (localization.away (f r))) | |
(algebra_map S (localization.away (f r)) x) (by { rw s₂ r, trivial }), | |
rw [submonoid.smul_def, algebra.smul_def, is_scalar_tower.algebra_map_apply R S, | |
subtype.coe_mk, ← map_mul] at hn₁, | |
obtain ⟨⟨_, n₂, rfl⟩, hn₂⟩ := is_localization.lift_mem_adjoin_finset_integer_multiple | |
(submonoid.powers (r : R)) _ (s₁ r) hn₁, | |
rw [submonoid.smul_def, ← algebra.smul_def, smul_smul, subtype.coe_mk, ← pow_add] at hn₂, | |
use n₂ + n₁, | |
refine le_supr (λ (x : s), algebra.adjoin R (sf x : set S)) r _, | |
change _ ∈ algebra.adjoin R | |
((is_localization.finset_integer_multiple _ (s₁ r) : finset S) : set S), | |
convert hn₂, | |
rw submonoid.map_powers, | |
refl, | |
end | |
end finite_type | |