Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.56 kB
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro, Johan Commelin, Amelia Livingston, Anne Baanen
-/
import ring_theory.localization.basic
/-!
# Localizations away from an element
## Main definitions
* `is_localization.away (x : R) S` expresses that `S` is a localization away from `x`, as an
abbreviation of `is_localization (submonoid.powers x) S`
## Implementation notes
See `src/ring_theory/localization/basic.lean` for a design overview.
## Tags
localization, ring localization, commutative ring localization, characteristic predicate,
commutative ring, field of fractions
-/
variables {R : Type*} [comm_semiring R] (M : submonoid R) {S : Type*} [comm_semiring S]
variables [algebra R S] {P : Type*} [comm_semiring P]
namespace is_localization
section away
variables (x : R)
/-- Given `x : R`, the typeclass `is_localization.away x S` states that `S` is
isomorphic to the localization of `R` at the submonoid generated by `x`. -/
abbreviation away (S : Type*) [comm_semiring S] [algebra R S] :=
is_localization (submonoid.powers x) S
namespace away
variables [is_localization.away x S]
/-- Given `x : R` and a localization map `F : R →+* S` away from `x`, `inv_self` is `(F x)⁻¹`. -/
noncomputable def inv_self : S :=
mk' S (1 : R) ⟨x, submonoid.mem_powers _⟩
variables {g : R →+* P}
/-- Given `x : R`, a localization map `F : R →+* S` away from `x`, and a map of `comm_semiring`s
`g : R →+* P` such that `g x` is invertible, the homomorphism induced from `S` to `P` sending
`z : S` to `g y * (g x)⁻ⁿ`, where `y : R, n : ℕ` are such that `z = F y * (F x)⁻ⁿ`. -/
noncomputable def lift (hg : is_unit (g x)) : S →+* P :=
is_localization.lift $ λ (y : submonoid.powers x), show is_unit (g y.1),
begin
obtain ⟨n, hn⟩ := y.2,
rw [←hn, g.map_pow],
exact is_unit.map (pow_monoid_hom n : P →* P) hg,
end
@[simp] lemma away_map.lift_eq (hg : is_unit (g x)) (a : R) :
lift x hg ((algebra_map R S) a) = g a := lift_eq _ _
@[simp] lemma away_map.lift_comp (hg : is_unit (g x)) :
(lift x hg).comp (algebra_map R S) = g := lift_comp _
/-- Given `x y : R` and localizations `S`, `P` away from `x` and `x * y`
respectively, the homomorphism induced from `S` to `P`. -/
noncomputable def away_to_away_right (y : R) [algebra R P] [is_localization.away (x * y) P] :
S →+* P :=
lift x $ show is_unit ((algebra_map R P) x), from
is_unit_of_mul_eq_one ((algebra_map R P) x) (mk' P y ⟨x * y, submonoid.mem_powers _⟩) $
by rw [mul_mk'_eq_mk'_of_mul, mk'_self]
variables (S) (Q : Type*) [comm_semiring Q] [algebra P Q]
/-- Given a map `f : R →+* S` and an element `r : R`, we may construct a map `Rᵣ →+* Sᵣ`. -/
noncomputable
def map (f : R →+* P) (r : R) [is_localization.away r S]
[is_localization.away (f r) Q] : S →+* Q :=
is_localization.map Q f
(show submonoid.powers r ≤ (submonoid.powers (f r)).comap f,
by { rintros x ⟨n, rfl⟩, use n, simp })
end away
end away
variables [is_localization M S]
section at_units
variables (R) (S) (M)
/-- The localization at a module of units is isomorphic to the ring -/
noncomputable
def at_units (H : ∀ x : M, is_unit (x : R)) : R ≃ₐ[R] S :=
begin
refine alg_equiv.of_bijective (algebra.of_id R S) ⟨_, _⟩,
{ intros x y hxy,
obtain ⟨c, eq⟩ := (is_localization.eq_iff_exists M S).mp hxy,
obtain ⟨u, hu⟩ := H c,
rwa [← hu, units.mul_left_inj] at eq },
{ intros y,
obtain ⟨⟨x, s⟩, eq⟩ := is_localization.surj M y,
obtain ⟨u, hu⟩ := H s,
use x * u.inv,
dsimp only [algebra.of_id, ring_hom.to_fun_eq_coe, alg_hom.coe_mk],
rw [ring_hom.map_mul, ← eq, ← hu, mul_assoc, ← ring_hom.map_mul],
simp }
end
/-- The localization away from a unit is isomorphic to the ring -/
noncomputable
def at_unit (x : R) (e : is_unit x) [is_localization.away x S] : R ≃ₐ[R] S :=
begin
apply at_units R (submonoid.powers x),
rintros ⟨xn, n, hxn⟩,
obtain ⟨u, hu⟩ := e,
rw is_unit_iff_exists_inv,
use u.inv ^ n,
simp[← hxn, ← hu, ← mul_pow]
end
/-- The localization at one is isomorphic to the ring. -/
noncomputable
def at_one [is_localization.away (1 : R) S] : R ≃ₐ[R] S :=
@at_unit R _ S _ _ (1 : R) is_unit_one _
lemma away_of_is_unit_of_bijective {R : Type*} (S : Type*) [comm_ring R] [comm_ring S]
[algebra R S] {r : R} (hr : is_unit r) (H : function.bijective (algebra_map R S)) :
is_localization.away r S :=
{ map_units := by { rintros ⟨_, n, rfl⟩, exact (algebra_map R S).is_unit_map (hr.pow _) },
surj := λ z, by { obtain ⟨z', rfl⟩ := H.2 z, exact ⟨⟨z', 1⟩, by simp⟩ },
eq_iff_exists := λ x y, begin
erw H.1.eq_iff,
split,
{ rintro rfl, exact ⟨1, rfl⟩ },
{ rintro ⟨⟨_, n, rfl⟩, e⟩, exact (hr.pow _).mul_left_inj.mp e }
end }
end at_units
end is_localization
namespace localization
open is_localization
variables {M}
/-- Given a map `f : R →+* S` and an element `r : R`, such that `f r` is invertible,
we may construct a map `Rᵣ →+* S`. -/
noncomputable
abbreviation away_lift (f : R →+* P) (r : R) (hr : is_unit (f r)) :
localization.away r →+* P :=
is_localization.away.lift r hr
/-- Given a map `f : R →+* S` and an element `r : R`, we may construct a map `Rᵣ →+* Sᵣ`. -/
noncomputable
abbreviation away_map (f : R →+* P) (r : R) :
localization.away r →+* localization.away (f r) :=
is_localization.away.map _ _ f r
end localization