Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : waterfall.ml *) | |
(* DESCRIPTION : `Waterfall' of heuristics. Clauses pour over. *) | |
(* Some evaporate. Others collect in a pool to be cleaned up. *) | |
(* Heuristics that act on a clause send the new clauses to *) | |
(* the top of the waterfall. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 9th May 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 12th August 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : July 2009 *) | |
(******************************************************************************) | |
(*============================================================================*) | |
(* Some auxiliary functions *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* proves : thm -> term -> bool *) | |
(* *) | |
(* Returns true if and only if the theorem proves the term without making any *) | |
(* assumptions. *) | |
(*----------------------------------------------------------------------------*) | |
let proves th tm = | |
(let (hyp,concl) = dest_thm th | |
in (hyp = []) && (concl = tm));; | |
(*----------------------------------------------------------------------------*) | |
(* fproves : thm -> term -> bool *) | |
(* *) | |
(* Returns true if and only if the theorem proves the term without making any *) | |
(* assumptions except _FALSITY_. *) | |
(* This alternative is used for the HOL Light tactic validation. *) | |
(*----------------------------------------------------------------------------*) | |
let fproves th tm = | |
(let (hyp,concl) = dest_thm th | |
in ((subtract hyp [`_FALSITY_`]) = []) && (concl = tm));; | |
(*----------------------------------------------------------------------------*) | |
(* apply_proof : proof -> term list -> proof *) | |
(* *) | |
(* Converts a proof into a new proof that checks that the theorems it is *) | |
(* given have no hypotheses and have conclusions equal to the specified *) | |
(* terms. Used to make a proof robust. *) | |
(*----------------------------------------------------------------------------*) | |
let apply_proof f tms ths = | |
try | |
(if (itlist (fun (tm,th) b -> (fproves th tm) && b) (List.combine tms ths) true) | |
then (f ths) | |
else failwith "" | |
) with Failure _ -> failwith "apply_proof";; | |
(*----------------------------------------------------------------------------*) | |
(* apply_fproof : proof -> term list -> proof *) | |
(* *) | |
(* Converts a proof into a new proof that checks that the theorems it is *) | |
(* given have no hypotheses and have conclusions equal to the specified *) | |
(* terms. Used to make a proof robust. *) | |
(* Ignores _FALSITY_ assumptions so as to be used in the validation of the *) | |
(* HOL Light tactics. *) | |
(*----------------------------------------------------------------------------*) | |
let apply_fproof s f tms ths = | |
try ( | |
(* print_string "Terms:" ; print_newline() ; | |
ignore (map (fun x -> (print_term x ; print_newline())) tms); | |
print_string "Theorems:"; print_newline(); | |
ignore (map (fun x -> (print_thm x ; print_newline())) ths); | |
print_string "===" ; print_newline();*) | |
if (itlist (fun (tm,th) b -> (fproves th tm) && b) (List.combine tms ths) true) | |
then (f ths) | |
else failwith "" | |
) with Failure _ -> failwith ("apply_fproof: " ^ s);; | |
(*============================================================================*) | |
(* The `waterfall' for heuristics *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* proof_printing : bool *) | |
(* *) | |
(* Assignable variable. If true, clauses are printed as they are `poured' *) | |
(* over the waterfall. *) | |
(*----------------------------------------------------------------------------*) | |
let proof_printing = ref false;; | |
(*----------------------------------------------------------------------------*) | |
(* proof_printer : bool -> bool *) | |
(* *) | |
(* Function for setting the flag that controls the printing of clauses as *) | |
(* are `poured' over the waterfall. *) | |
(*----------------------------------------------------------------------------*) | |
let proof_printer state = | |
let old_state = !proof_printing | |
in proof_printing := state; old_state;; | |
(*----------------------------------------------------------------------------*) | |
(* proof_print_depth : int *) | |
(* *) | |
(* Assignable variable. A number indicating the `depth' of the proof and more *) | |
(* practically the number of spaces printed before a term. *) | |
(*----------------------------------------------------------------------------*) | |
let proof_print_depth = ref 0;; | |
(*----------------------------------------------------------------------------*) | |
(* inc_print_depth : * -> * *) | |
(* *) | |
(* Identity function that has the side-effect of incrementing the *) | |
(* print_proof_depth. *) | |
(*----------------------------------------------------------------------------*) | |
let inc_print_depth x = (proof_print_depth := !proof_print_depth + 1; x);; | |
(*----------------------------------------------------------------------------*) | |
(* dec_print_depth : * -> * *) | |
(* *) | |
(* Identity function that has the side-effect of decrementing the *) | |
(* print_proof_depth. *) | |
(*----------------------------------------------------------------------------*) | |
let dec_print_depth x = | |
if (!proof_print_depth < 1) | |
then (proof_print_depth := 0; x) | |
else (proof_print_depth := !proof_print_depth - 1; x);; | |
(*----------------------------------------------------------------------------*) | |
(* proof_print_term : term -> term *) | |
(* *) | |
(* Identity function on terms that has the side effect of printing the term *) | |
(* if the `proof_printing' flag is set to true. *) | |
(*----------------------------------------------------------------------------*) | |
let proof_print_term tm = | |
if !proof_printing | |
then (print_string (implode (replicate " " !proof_print_depth)); | |
print_term tm; print_newline () ; tm) | |
else tm;; | |
let proof_print_thm thm = | |
if !proof_printing | |
then ( print_thm thm; print_newline (); print_newline());; | |
let proof_print_tmi (tm,i) = | |
if !proof_printing | |
then ( proof_print_term tm; print_string " ("; print_bool i; print_string ")"; (tm,i) ) | |
else (tm,i);; | |
(* | |
let proof_print_clause cl = | |
if !proof_printing | |
then ( | |
match cl with | |
| Clause_proved thm -> (print_thm thm; print_newline (); cl) | |
| _ -> cl | |
) | |
else cl;; | |
*) | |
(*----------------------------------------------------------------------------*) | |
(* proof_print_newline : * -> * *) | |
(* *) | |
(* Identity function that has the side effect of printing a newline if the *) | |
(* `proof_printing' flag is set to true. *) | |
(*----------------------------------------------------------------------------*) | |
let proof_print_newline x = | |
if !proof_printing | |
then (print_newline (); x) | |
else x;; | |
let proof_print_string s x = | |
if !proof_printing | |
then (print_string s; x) | |
else x;; | |
let proof_print_string_l s x = | |
if !proof_printing | |
then (print_string s; print_newline (); x) | |
else x;; | |
(*----------------------------------------------------------------------------*) | |
(* Recursive type for holding partly processed clauses. *) | |
(* *) | |
(* A clause is either still to be proved, has been proved, or can be proved *) | |
(* once sub-clauses have been. A clause that is still to be proved carries a *) | |
(* flag indicating whether or not it is an induction step. *) | |
(*----------------------------------------------------------------------------*) | |
type clause_tree = Clause of (term * bool) | |
| Clause_proved of thm | |
| Clause_split of clause_tree list * (thm list -> thm);; | |
let rec proof_print_clausetree cl = | |
if !proof_printing | |
then ( proof_print_string_l "Clause tree:" (); match cl with | |
| Clause (tm,bool) -> (print_term tm; print_newline ()) | |
| Clause_proved thm -> (print_thm thm; print_newline()) | |
| Clause_split (tlist,proof) -> (print_string "Split -> "; print_int (length tlist); print_newline () ; | |
let void = map proof_print_clausetree tlist in () ));; | |
(*----------------------------------------------------------------------------*) | |
(* waterfall : ((term # bool) -> ((term # bool) list # proof)) list -> *) | |
(* (term # bool) -> *) | |
(* clause_tree *) | |
(* *) | |
(* `Waterfall' of heuristics. Takes a list of heuristics and a term as *) | |
(* arguments. Each heuristic should fail if it can do nothing with its input. *) | |
(* Otherwise the heuristic should return a list of new clauses to be proved *) | |
(* together with a proof of the original clause from these new clauses. *) | |
(* *) | |
(* Clauses that are not processed by any of the heuristics are placed in a *) | |
(* leaf node of the tree, to be proved later. The heuristics are attempted in *) | |
(* turn. If a heuristic returns an empty list of new clauses, the proof is *) | |
(* applied to an empty list, and the resultant theorem is placed in the tree *) | |
(* as a leaf node. Otherwise, the tree is split, and each of the new clauses *) | |
(* is passed to ALL of the heuristics. *) | |
(*----------------------------------------------------------------------------*) | |
let nth_tail n l = if (n > length l) then [] | |
else let rec repeattl l i = | |
if ( i = 0 ) then l | |
else tl (repeattl l (i-1)) | |
in repeattl l n;; | |
let rec waterfall heuristics tmi = | |
bm_steps := hashI ((+) 1) !bm_steps; | |
let rec flow_on_down rest_of_heuristics tmi = | |
if (is_F (fst tmi)) then (failwith "cannot prove") | |
else if (rest_of_heuristics = []) then (Clause tmi) | |
else try ((let (tms,f) = hd rest_of_heuristics tmi | |
in if (tms = []) then (proof_print_string "Proven:" (); proof_print_thm (f []) ; Clause_proved (f [])) | |
else if ((tl tms) = []) then | |
(Clause_split ([waterfall heuristics (hd tms)],f)) | |
else Clause_split | |
((dec_print_depth o | |
map (waterfall heuristics o proof_print_newline) o | |
inc_print_depth) tms, | |
f)) | |
)with Failure s -> (if (s = "cannot prove") | |
then failwith s | |
else (flow_on_down (tl rest_of_heuristics) tmi) | |
) | |
in flow_on_down heuristics (proof_print_tmi tmi);; | |
let rec filtered_waterfall heuristics warehouse tmi = | |
bm_steps := hashI ((+) 1) !bm_steps; | |
if (max_var_depth (fst tmi) > 12) then (warn true "Reached maximum depth!" ; Clause tmi) (*failwith "cannot prove"*) | |
else | |
let heurn = try (assoc (fst tmi) warehouse) with Failure _ -> 0 in | |
let warehouse = (if (heurn > 0) then | |
( proof_print_string ("Warehouse kicking in! Skipping " ^ string_of_int(heurn) ^ " heuristic(s)") () ; | |
proof_print_newline () ; | |
List.remove_assoc (fst tmi) warehouse) else (warehouse)) in | |
let rec flow_on_down rest_of_heuristics tmi it = | |
if (is_F (fst tmi)) then (failwith "cannot prove") | |
else let rest_of_heuristics = nth_tail heurn rest_of_heuristics in | |
if (rest_of_heuristics = []) then (Clause tmi) | |
else try ( | |
let (tms,f) = hd rest_of_heuristics tmi in | |
if (tms = []) then (proof_print_string "Proven:" (); proof_print_thm (f []) ; Clause_proved (f [])) | |
else if ((tl tms) = []) then | |
Clause_split ([filtered_waterfall heuristics (((fst tmi),it)::warehouse) (hd tms)],f) | |
else | |
( proof_print_string (string_of_int(length tms) ^ " new clauses") () ; | |
proof_print_newline () ; | |
Clause_split | |
((dec_print_depth o | |
map (filtered_waterfall heuristics (((fst tmi),it)::warehouse) o proof_print_newline) o | |
inc_print_depth) tms, | |
f)) | |
)with Failure s -> ( | |
if (s = "cannot prove") | |
then failwith s | |
else (flow_on_down (tl rest_of_heuristics) tmi (it+1)) | |
) | |
in flow_on_down heuristics ((hashI proof_print_term) tmi) 1;; | |
(* in | |
let fringe = fringe_of_clause_tree restree in | |
if (fringe = []) then restree | |
else ( waterfall_warehouse := ((fst tmi),it)::(!waterfall_warehouse) ; restree ) *) | |
(*----------------------------------------------------------------------------*) | |
(* fringe_of_clause_tree : clause_tree -> (term # bool) list *) | |
(* *) | |
(* Computes the fringe of a clause_tree, including in the resultant list only *) | |
(* those clauses that remain to be proved. *) | |
(*----------------------------------------------------------------------------*) | |
let rec fringe_of_clause_tree tree = | |
match tree with | |
| (Clause tmi) -> [tmi] | |
| (Clause_proved _) -> [] | |
| (Clause_split (trees,_)) -> (flat (map fringe_of_clause_tree trees));; | |
(*----------------------------------------------------------------------------*) | |
(* prove_clause_tree : clause_tree -> proof *) | |
(* *) | |
(* Given a clause_tree, returns a proof that if given theorems for the *) | |
(* unproved clauses in the tree, returns a theorem for the clause at the root *) | |
(* of the tree. The list of theorems must be in the same order as the clauses *) | |
(* appear in the fringe of the tree. *) | |
(*----------------------------------------------------------------------------*) | |
let prove_clause_tree tree ths = | |
try( | |
let rec prove_clause_trees trees ths = | |
if (trees = []) then ([],ths) | |
else let (th,ths') = prove_clause_tree' (hd trees) ths | |
in let (thl,ths'') = prove_clause_trees (tl trees) ths' | |
in (th::thl,ths'') | |
and prove_clause_tree' tree ths = | |
match tree with | |
| (Clause (tm,_)) -> | |
(let th = hd ths | |
in if (fproves th tm) | |
then (th,tl ths) | |
else failwith "prove_clause_tree") | |
| (Clause_proved th) -> (th,ths) | |
| (Clause_split (trees,f)) -> | |
(let (thl,ths') = prove_clause_trees trees ths | |
in (f thl,ths')) | |
in (let (th,[]) = (prove_clause_tree' tree ths) in th) | |
) with Failure _ -> failwith "prove_clause_tree";; | |
let fprove_clause_tree tree ths = | |
try( | |
let rec prove_clause_trees trees ths = | |
if (trees = []) then ([],ths) | |
else let (th,ths') = prove_clause_tree' (hd trees) ths | |
in let (thl,ths'') = prove_clause_trees (tl trees) ths' | |
in (th::thl,ths'') | |
and prove_clause_tree' tree ths = | |
match tree with | |
| (Clause (tm,_)) -> | |
(let th = hd ths | |
in if (fproves th tm) | |
then (th,tl ths) | |
else failwith "fprove_clause_tree") | |
| (Clause_proved th) -> (th,ths) | |
| (Clause_split (trees,f)) -> | |
(let (thl,ths') = prove_clause_trees trees ths | |
in (f thl,ths')) | |
in (let (th,[]) = (prove_clause_tree' tree ths) in th) | |
) with Failure s -> failwith ("fprove_clause_tree: " ^ s);; | |
(*============================================================================*) | |
(* Eliminating instances in the `pool' of clauses remaining to be proved *) | |
(* *) | |
(* Constructing partial orderings is probably overkill. It may only be *) | |
(* necessary to split the clauses into two sets, one of most general clauses *) | |
(* and the rest. This would still be computationally intensive, but it would *) | |
(* avoid comparing two clauses that are both instances of some other clause. *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* inst_of : term -> term -> thm -> thm *) | |
(* *) | |
(* Takes two terms and computes whether the first is an instance of the *) | |
(* second. If this is the case, a proof of the first term from the second *) | |
(* (assuming they are formulae) is returned. Otherwise the function fails. *) | |
(*----------------------------------------------------------------------------*) | |
let inst_of tm patt = | |
try( | |
(let (_,tm_bind,ty_bind) = term_match [] patt tm | |
in let (insts,vars) = List.split tm_bind | |
in let f = (SPECL insts) o (GENL vars) o (INST_TYPE ty_bind) | |
in fun th -> apply_fproof "inst_of" (f o hd) [patt] [th] | |
)) with Failure _ -> failwith "inst_of";; | |
(*----------------------------------------------------------------------------*) | |
(* Recursive datatype for a partial ordering of terms using the *) | |
(* `is an instance of' relation. *) | |
(* *) | |
(* The leaf nodes of the tree are terms that have no instances. The other *) | |
(* nodes have a list of instance trees and proofs of each instance from the *) | |
(* term at that node. *) | |
(* *) | |
(* Each term carries a number along with it. This is used to keep track of *) | |
(* where the term came from in a list. The idea is to take the fringe of a *) | |
(* clause tree, number the elements, then form partial orderings so that *) | |
(* only the most general theorems have to be proved. *) | |
(*----------------------------------------------------------------------------*) | |
type inst_tree = No_insts of (term * int) | |
| Insts of (term * int * (inst_tree * (thm -> thm)) list);; | |
(*----------------------------------------------------------------------------*) | |
(* insert_into_inst_tree : (term # int) -> inst_tree -> inst_tree *) | |
(* insert_into_inst_trees : (term # int # (thm -> thm)) -> *) | |
(* (inst_tree # (thm -> thm)) list -> *) | |
(* (inst_tree # (thm -> thm)) list *) | |
(* *) | |
(* Mutually recursive functions for constructing partial orderings, ordered *) | |
(* by `is an instance of' relation. The algorithm is grossly inefficient. *) | |
(* Structures are repeatedly destroyed and rebuilt. Reference variables *) | |
(* should be used for efficiency. *) | |
(* *) | |
(* Inserting into a single tree: *) | |
(* *) | |
(* If tm' is an instance of tm, tm is put in the root node, with the old tree *) | |
(* as its single child. If tm is not an instance of tm', the function fails. *) | |
(* Assume now that tm is an instance of tm'. If the tree is a leaf, it is *) | |
(* made into a branch and tm is inserted as the one and only child. If the *) | |
(* tree is a branch, an attempt is made to insert tm in the list of *) | |
(* sub-trees. If this fails, tm is added as a leaf to the list of instances. *) | |
(* Note that if tm is not an instance of tm', then it cannot be an instance *) | |
(* of the instances of tm'. *) | |
(* *) | |
(* Inserting into a list of trees: *) | |
(* *) | |
(* The list of trees carry proofs with them. The list is split into those *) | |
(* whose root is an instance of tm, and those whose root is not. The proof *) | |
(* associated with a tree that is an instance is replaced by a proof of the *) | |
(* term from tm. If the list of trees that are instances is non-empty, they *) | |
(* are made children of a node containing tm, and this new tree is added to *) | |
(* the list of trees that are n't instances. If tm has instances in the list, *) | |
(* it cannot be the case that tm is an instance of one of the other trees in *) | |
(* the list, for the trees in a list must be unrelated. *) | |
(* *) | |
(* If there are no instances of tm in the list of trees, an attempt is made *) | |
(* to insert tm into the list. If it is unrelated to all of the trees, this *) | |
(* attempt fails, in which case tm is made into a leaf and added to the list. *) | |
(*----------------------------------------------------------------------------*) | |
let rec insert_into_inst_tree (tm,n) tree = | |
match tree with | |
| (No_insts (tm',n')) -> | |
(try ( (let f = inst_of tm' tm | |
in Insts (tm,n,[No_insts (tm',n'),f])) | |
) with Failure _ -> try( let f = inst_of tm tm' | |
in Insts (tm',n',[No_insts (tm,n),f])) with Failure _ -> failwith "insert_into_inst_tree" | |
) | |
| (Insts (tm',n',insts)) -> | |
(try (let f = inst_of tm' tm | |
in Insts (tm,n,[Insts (tm',n',insts),f])) | |
with Failure _ -> try(let f = inst_of tm tm' | |
in try( Insts (tm',n',insert_into_inst_trees (tm,n,f) insts)) | |
with Failure _ -> (Insts (tm',n',(No_insts (tm,n),f)::insts)) | |
) | |
with Failure _ -> failwith "insert_into_inst_tree" ) | |
and insert_into_inst_trees (tm,n,f) insts = | |
let rec instances (tm,n) insts = | |
if (insts = []) | |
then ([],[]) | |
else let (not_instl,instl) = instances (tm,n) (tl insts) | |
and (h,f) = hd insts | |
in let (tm',n') = | |
match h with | |
| (No_insts (tm',n')) -> (tm',n') | |
| (Insts (tm',n',_)) -> (tm',n') | |
in (try( (let f' = inst_of tm' tm | |
in (not_instl,(h,f')::instl)) | |
) with Failure _ -> ((h,f)::not_instl,instl) | |
) | |
and insert_into_inst_trees' (tm,n) trees = | |
if (trees = []) | |
then failwith "insert_into_inst_trees'" | |
else (try( ((insert_into_inst_tree (tm,n) (hd trees))::(tl trees)) | |
) with Failure _ -> ((hd trees)::(insert_into_inst_trees' (tm,n) (tl trees))) | |
) | |
in let (not_instl,instl) = instances (tm,n) insts | |
in if (instl = []) | |
then try( (lcombinep o (hashI (insert_into_inst_trees' (tm,n)))) (List.split insts) | |
) with Failure _ -> ((No_insts (tm,n),f)::insts) | |
else (Insts (tm,n,instl),f)::not_instl;; | |
(*----------------------------------------------------------------------------*) | |
(* mk_inst_trees : (term # int) list -> inst_tree list *) | |
(* *) | |
(* Constructs a partial ordering of terms under the `is an instance of' *) | |
(* relation from a list of numbered terms. *) | |
(* *) | |
(* A dummy proof is passed to the call of insert_into_inst_trees. The result *) | |
(* of the call has a proof associated with the root of each tree. These *) | |
(* proofs are dummies and so are discarded before the final result is *) | |
(* returned. *) | |
(*----------------------------------------------------------------------------*) | |
let mk_inst_trees tmnl = | |
let rec mk_inst_trees' insts tmnl = | |
if (tmnl = []) | |
then insts | |
else let (tm,n) = hd tmnl | |
in mk_inst_trees' | |
(insert_into_inst_trees (tm,n,I) insts) (tl tmnl) | |
in map fst (mk_inst_trees' [] tmnl);; | |
(*----------------------------------------------------------------------------*) | |
(* roots_of_inst_trees : inst_tree list -> term list *) | |
(* *) | |
(* Computes the terms at the roots of a list of partial orderings. *) | |
(*----------------------------------------------------------------------------*) | |
let rec roots_of_inst_trees trees = | |
if (trees = []) | |
then [] | |
else let tm = | |
match (hd trees) with | |
| (No_insts (tm,_)) -> tm | |
| (Insts (tm,_,_)) -> tm | |
in tm::(roots_of_inst_trees (tl trees));; | |
(*----------------------------------------------------------------------------*) | |
(* prove_inst_tree : inst_tree -> thm -> (thm # int) list *) | |
(* *) | |
(* Given a partial ordering of terms and a theorem for its root, returns a *) | |
(* list of theorems for the terms in the tree. *) | |
(*----------------------------------------------------------------------------*) | |
let rec prove_inst_tree tree th = | |
match tree with | |
| (No_insts (tm,n)) -> | |
(if (fproves th tm) then [(th,n)] else failwith "prove_inst_tree") | |
| (Insts (tm,n,insts)) -> | |
(if (fproves th tm) | |
then (th,n)::(flat (map (fun (tr,f) -> prove_inst_tree tr (f th)) insts)) | |
else failwith "prove_inst_tree");; | |
(*----------------------------------------------------------------------------*) | |
(* prove_inst_trees : inst_tree list -> thm list -> thm list *) | |
(* *) | |
(* Given a list of partial orderings of terms and a list of theorems for *) | |
(* their roots, returns a sorted list of theorems for the terms in the trees. *) | |
(* The sorting is done based on the integer labels attached to each term in *) | |
(* the trees. *) | |
(*----------------------------------------------------------------------------*) | |
let prove_inst_trees trees ths = | |
try ( map fst | |
(sort_on_snd (flat (map (uncurry prove_inst_tree) (lcombinep (trees,ths))))) | |
) with Failure _ -> failwith "prove_inst_trees";; | |
(*----------------------------------------------------------------------------*) | |
(* prove_pool : conv -> term list -> thm list *) | |
(* *) | |
(* Attempts to prove the pool of clauses left over from the waterfall, by *) | |
(* applying the conversion, conv, to the most general clauses. *) | |
(*----------------------------------------------------------------------------*) | |
let prove_pool conv tml = | |
let tmnl = number_list tml | |
in let trees = mk_inst_trees tmnl | |
in let most_gen_terms = roots_of_inst_trees trees | |
in let ths = map conv most_gen_terms | |
in prove_inst_trees trees ths;; | |
(*============================================================================*) | |
(* Boyer-Moore prover *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* WATERFALL : ((term # bool) -> ((term # bool) list # proof)) list -> *) | |
(* ((term # bool) -> ((term # bool) list # proof)) -> *) | |
(* (term # bool) -> *) | |
(* thm *) | |
(* *) | |
(* Boyer-Moore style automatic proof procedure. Takes a list of heuristics, *) | |
(* and a single heuristic that does induction, as arguments. The result is a *) | |
(* function that, given a term and a Boolean, attempts to prove the term. The *) | |
(* Boolean is used to indicate whether the term is the step of an induction. *) | |
(* It will normally be set to false for an external call. *) | |
(*----------------------------------------------------------------------------*) | |
let rec WATERFALL heuristics induction (tm,(ind:bool)) = | |
let conv tm = | |
proof_print_string "Doing induction on:" () ; bm_steps := hash ((+) 1) ((+) 1) !bm_steps ; | |
let void = proof_print_term tm ; proof_print_newline () | |
in let (tmil,proof) = induction (tm,false) | |
in dec_print_depth | |
(proof | |
(map (WATERFALL heuristics induction) (inc_print_depth tmil))) | |
in let void = proof_print_newline () | |
in let tree = waterfall heuristics (tm,ind) | |
in let tmil = fringe_of_clause_tree tree | |
in let thl = prove_pool conv (map fst tmil) | |
in prove_clause_tree tree thl;; | |
let rec FILTERED_WATERFALL heuristics induction warehouse (tm,(ind:bool)) = | |
let conv tm = | |
(* let constr_check = ind && not((find_bm_terms (fun t -> count_constructors t > 5) tm) = []) in *) | |
let constr_check = (max_var_depth tm > 12) in | |
if (constr_check) then let void = (warn true "Reached maximum depth!") in failwith "cannot prove" | |
else | |
let heurn = try (assoc tm warehouse) with Failure _ -> 0 in | |
let warehouse = (if (heurn > 0) then (List.remove_assoc tm warehouse) else (warehouse)) in | |
if (heurn > length heuristics) then ( warn true "Induction loop detected."; failwith "cannot prove" ) | |
else | |
proof_print_string "Doing induction on:" (); bm_steps := hash ((+) 1) ((+) 1) !bm_steps ; | |
let void = proof_print_term tm ; proof_print_newline () in | |
let (tmil,proof) = induction (tm,false) | |
in dec_print_depth | |
(proof | |
(map (FILTERED_WATERFALL heuristics induction ((tm,(length heuristics) + 1)::warehouse)) (inc_print_depth tmil))) | |
in let void = proof_print_newline () | |
in let tree = filtered_waterfall heuristics [] (tm,ind) | |
(* in let void = proof_print_clausetree tree *) | |
in let tmil = fringe_of_clause_tree tree | |
in let thl = prove_pool conv (map fst tmil) | |
in prove_clause_tree tree thl;; | |
(*============================================================================*) | |
(* Some sample heuristics *) | |
(*============================================================================*) | |
(*----------------------------------------------------------------------------*) | |
(* conjuncts_heuristic : (term # bool) -> ((term # bool) list # proof) *) | |
(* *) | |
(* `Heuristic' for splitting a conjunction into a list of conjuncts. *) | |
(* Right conjuncts are split recursively. *) | |
(* Fails if the argument term is not a conjunction. *) | |
(*----------------------------------------------------------------------------*) | |
let conjuncts_heuristic (tm,(i:bool)) = | |
let tms = conj_list tm | |
in if (length tms = 1) | |
then failwith "conjuncts_heuristic" | |
else (map (fun tm -> (tm,i)) tms,apply_fproof "conjuncts_heuristic" LIST_CONJ tms);; | |
(*----------------------------------------------------------------------------*) | |
(* refl_heuristic : (term # bool) -> ((term # bool) list # proof) *) | |
(* *) | |
(* `Heuristic' for proving that terms of the form "x = x" are true. Fails if *) | |
(* the argument term is not of this form. Otherwise it returns an empty list *) | |
(* of new clauses, and a proof of the original term. *) | |
(*----------------------------------------------------------------------------*) | |
let refl_heuristic (tm,(i:bool)) = | |
try(if (lhs tm = rhs tm) | |
then (([]:(term * bool) list),apply_fproof "refl_heuristic" (fun ths -> REFL (lhs tm)) []) | |
else failwith "" | |
) with Failure _ -> failwith "refl_heuristic";; | |
(*----------------------------------------------------------------------------*) | |
(* clausal_form_heuristic : (term # bool) -> ((term # bool) list # proof) *) | |
(* *) | |
(* `Heuristic' that tests a term to see if it is in clausal form, and if not *) | |
(* converts it to clausal form and returns the resulting clauses as new *) | |
(* `goals'. It is critical for efficiency that the normalization is only done *) | |
(* if the term is not in clausal form. Note that the functions `conjuncts' *) | |
(* and `disjuncts' are not used for the testing because they split trees of *) | |
(* conjuncts (disjuncts) rather than simply `linear' con(dis)junctions. *) | |
(* If the term is in clausal form, but is not a single clause, it is split *) | |
(* into single clauses. If the term is in clausal form but contains Boolean *) | |
(* constants, the normalizer is applied to it. A single new goal will be *) | |
(* produced in this case unless the result of the normalization was true. *) | |
(*----------------------------------------------------------------------------*) | |
let clausal_form_heuristic (tm,(i:bool)) = | |
try (let is_atom tm = | |
(not (has_boolean_args_and_result tm)) || (is_var tm) || (is_const tm) | |
in let is_literal tm = | |
(is_atom tm) || ((is_neg tm) && (try (is_atom (rand tm)) with Failure _ -> false)) | |
in let is_clause tm = forall is_literal (disj_list tm) | |
in let result_string = fun tms -> let s = length tms | |
in let plural = if (s=1) then "" else "s" | |
in ("-> Clausal Form Heuristic (" ^ string_of_int(s) ^ " clause" ^ plural ^ ")") | |
in if (forall is_clause (conj_list tm)) && | |
(not (free_in `T` tm)) && (not (free_in `F` tm)) | |
then if (is_conj tm) | |
then let tms = conj_list tm | |
in (proof_print_string_l (result_string tms) () ; | |
(map (fun tm -> (tm,i)) tms,apply_fproof "clausal_form_heuristic" LIST_CONJ tms)) | |
else failwith "" | |
else let th = CLAUSAL_FORM_CONV tm | |
in let tm' = rhs (concl th) | |
in if (is_T tm') | |
then (proof_print_string_l "-> Clausal Form Heuristic" () ; ([],apply_fproof "clausal_form_heuristic" (fun _ -> EQT_ELIM th) [])) | |
else let tms = conj_list tm' | |
in (proof_print_string_l (result_string tms) () ; | |
(map (fun tm -> (tm,i)) tms, | |
apply_fproof "clausal_form_heuristic" ((EQ_MP (SYM th)) o LIST_CONJ) tms)) | |
) with Failure _ -> failwith "clausal_form_heuristic";; | |
let meson_heuristic l (tm,(i:bool)) = | |
try( let meth = MESON (l @ rewrite_rules()) tm in | |
(([]:(term * bool) list),apply_fproof "meson_heuristic" (fun ths -> meth) []) | |
) with Failure _ -> failwith "meson_heuristic";; | |
let taut_heuristic (tm,(i:bool)) = | |
try( let tautthm = TAUT tm in (proof_print_string_l "-> Tautology Heuristic" () ; | |
(([]:(term * bool) list),apply_fproof "taut_heuristic" (fun ths -> tautthm) [])) | |
) with Failure _ -> failwith "taut_heuristic";; | |
let setify_heuristic (tm,(i:bool)) = | |
try ( | |
if (not (is_disj tm)) then failwith "" | |
else | |
let tms = disj_list tm | |
in let tms' = setify tms | |
in let tm' = list_mk_disj tms' | |
in if ((length tms) = (length tms')) then failwith "" | |
else let th = TAUT (mk_imp (tm',tm)) | |
in (proof_print_string_l "-> Setify Heuristic" () ; | |
([tm',i],apply_fproof "setify_heuristic" ((MP th) o hd) [tm'])) | |
) | |
with Failure _ -> failwith "setify_heuristic";; | |