Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Library /pocklington.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
113 kB
(* ========================================================================= *)
(* HOL primality proving via Pocklington-optimized Pratt certificates. *)
(* ========================================================================= *)
needs "Library/iter.ml";;
needs "Library/prime.ml";;
prioritize_num();;
let num_0 = Int 0;;
let num_1 = Int 1;;
let num_2 = Int 2;;
(* ------------------------------------------------------------------------- *)
(* Mostly for compatibility. Should eliminate this eventually. *)
(* ------------------------------------------------------------------------- *)
let nat_mod_lemma = prove
(`!x y n:num. (x == y) (mod n) /\ y <= x ==> ?q. x = y + n * q`,
REPEAT GEN_TAC THEN REWRITE_TAC[num_congruent] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
ONCE_REWRITE_TAC
[INTEGER_RULE `(x == y) (mod &n) <=> &n divides (x - y)`] THEN
ASM_SIMP_TAC[INT_OF_NUM_SUB;
ARITH_RULE `x <= y ==> (y:num = x + d <=> y - x = d)`] THEN
REWRITE_TAC[GSYM num_divides; divides]);;
let nat_mod = prove
(`!x y n:num. (mod n) x y <=> ?q1 q2. x + n * q1 = y + n * q2`,
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM cong] THEN
EQ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
MP_TAC(SPECL [`x:num`; `y:num`] LE_CASES) THEN
REWRITE_TAC[TAUT `a \/ b ==> c ==> d <=> (c /\ b) \/ (c /\ a) ==> d`] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ALL_TAC;
ONCE_REWRITE_TAC[NUMBER_RULE
`(x:num == y) (mod n) <=> (y == x) (mod n)`]] THEN
MESON_TAC[nat_mod_lemma; ARITH_RULE `x + y * 0 = x`]);;
(* ------------------------------------------------------------------------- *)
(* Lemmas about previously defined terms. *)
(* ------------------------------------------------------------------------- *)
let FINITE_NUMBER_SEGMENT = prove
(`!n. { m | 0 < m /\ m < n } HAS_SIZE (n - 1)`,
INDUCT_TAC THENL
[SUBGOAL_THEN `{m | 0 < m /\ m < 0} = EMPTY` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; LT]; ALL_TAC] THEN
REWRITE_TAC[HAS_SIZE; FINITE_RULES; CARD_CLAUSES] THEN
CONV_TAC NUM_REDUCE_CONV;
ASM_CASES_TAC `n = 0` THENL
[SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = EMPTY` SUBST1_TAC THENL
[ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY] THEN
ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[HAS_SIZE_0];
SUBGOAL_THEN `{m | 0 < m /\ m < SUC n} = n INSERT {m | 0 < m /\ m < n}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_INSERT] THEN
UNDISCH_TAC `~(n = 0)` THEN ARITH_TAC; ALL_TAC] THEN
UNDISCH_TAC `~(n = 0)` THEN
POP_ASSUM MP_TAC THEN
SIMP_TAC[FINITE_RULES; HAS_SIZE; CARD_CLAUSES] THEN
DISCH_TAC THEN REWRITE_TAC[IN_ELIM_THM; LT_REFL] THEN
ARITH_TAC]]);;
(* ------------------------------------------------------------------------- *)
(* Congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_MOD_0 = prove
(`!x y. (x == y) (mod 0) <=> (x = y)`,
NUMBER_TAC);;
let CONG_MOD_1 = prove
(`!x y. (x == y) (mod 1)`,
NUMBER_TAC);;
let CONG_MOD_2 = prove
(`!a b. (a == b) (mod 2) <=> (EVEN a <=> EVEN b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONG; MOD_2_CASES] THEN
ASM_CASES_TAC `EVEN a` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `EVEN b` THEN ASM_REWRITE_TAC[] THEN
CONV_TAC NUM_REDUCE_CONV);;
let CONG_MOD_2_ALT = prove
(`!a b. (a == b) (mod 2) <=> (ODD a <=> ODD b)`,
REWRITE_TAC[CONG_MOD_2; GSYM NOT_ODD] THEN MESON_TAC[]);;
let CONG_0 = prove
(`!x n. ((x == 0) (mod n) <=> n divides x)`,
NUMBER_TAC);;
let CONG_SUB_CASES = prove
(`!x y n. (x == y) (mod n) <=>
if x <= y then (y - x == 0) (mod n)
else (x - y == 0) (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
COND_CASES_TAC THENL
[GEN_REWRITE_TAC LAND_CONV [SWAP_EXISTS_THM]; ALL_TAC] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
POP_ASSUM MP_TAC THEN ARITH_TAC);;
let CONG_MINUS1 = prove
(`!a n. (a == n - 1) (mod n) <=> n = 0 /\ a = 0 \/ n divides (a + 1)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[SUB_0; CONG_MOD_0; DIVIDES_ZERO] THEN ARITH_TAC;
ONCE_REWRITE_TAC[NUMBER_RULE
`(a == b) (mod n) <=> (a + 1 == b + 1) (mod n)`] THEN
ASM_SIMP_TAC[SUB_ADD; LE_1] THEN CONV_TAC NUMBER_RULE]);;
let CONG_MINUS1_SQUARED = prove
(`!p. ((p - 1) EXP 2 == 1) (mod p) <=> ~(p = 0)`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN
ASM_REWRITE_TAC[CONG_MOD_0; ARITH] THEN
ONCE_REWRITE_TAC[NUMBER_RULE
`(n EXP 2 == m) (mod p) <=> ((n + 1) EXP 2 == m + 2 * n + 1) (mod p)`] THEN
ASM_SIMP_TAC[SUB_ADD; LE_1; NUMBER_RULE
`(p EXP 2 == 1 + 2 * n + 1) (mod p) <=> p divides (2 * (n + 1))`] THEN
CONV_TAC NUMBER_RULE);;
let CONG_CASES = prove
(`!x y n. (x == y) (mod n) <=> (?q. x = q * n + y) \/ (?q. y = q * n + x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[ALL_TAC; STRIP_TAC THEN ASM_REWRITE_TAC[] THEN NUMBER_TAC] THEN
REWRITE_TAC[cong; nat_mod; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q1:num`; `q2:num`] THEN
DISCH_THEN(MP_TAC o MATCH_MP(ARITH_RULE
`x + a = y + b ==> x = (b - a) + y \/ y = (a - b) + x`)) THEN
REWRITE_TAC[GSYM LEFT_SUB_DISTRIB] THEN MESON_TAC[MULT_SYM]);;
let CONG_MULT_LCANCEL = prove
(`!a n x y. coprime(a,n) /\ (a * x == a * y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL = prove
(`!a n x y. coprime(a,n) /\ (x * a == y * a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_REFL = prove
(`!x n. (x == x) (mod n)`,
NUMBER_TAC);;
let EQ_IMP_CONG = prove
(`!a b n. a = b ==> (a == b) (mod n)`,
SIMP_TAC[CONG_REFL]);;
let CONG_SYM = prove
(`!x y n. (x == y) (mod n) <=> (y == x) (mod n)`,
NUMBER_TAC);;
let CONG_TRANS = prove
(`!x y z n. (x == y) (mod n) /\ (y == z) (mod n) ==> (x == z) (mod n)`,
NUMBER_TAC);;
let CONG_ADD = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) ==> (x + y == x' + y') (mod n)`,
NUMBER_TAC);;
let CONG_MULT = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) ==> (x * y == x' * y') (mod n)`,
NUMBER_TAC);;
let CONG_MULT_1 = prove
(`!n x y. (x == 1) (mod n) /\ (y == 1) (mod n) ==> (x * y == 1) (mod n)`,
NUMBER_TAC);;
let CONG_EXP = prove
(`!n k x y. (x == y) (mod n) ==> (x EXP k == y EXP k) (mod n)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[CONG_MULT; EXP; CONG_REFL]);;
let CONG_EXP_1 = prove
(`!x n k. (x == 1) (mod n) ==> (x EXP k == 1) (mod n)`,
REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o SPEC `k:num` o MATCH_MP CONG_EXP) THEN
REWRITE_TAC[EXP_ONE]);;
let CONG_SUB = prove
(`!x x' y y'.
(x == x') (mod n) /\ (y == y') (mod n) /\ y <= x /\ y' <= x'
==> (x - y == x' - y') (mod n)`,
REPEAT GEN_TAC THEN REWRITE_TAC[cong; nat_mod] THEN
REWRITE_TAC[LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(x + a = x' + a') /\ (y + b = y' + b') /\ y <= x /\ y' <= x'
==> ((x - y) + (a + b') = (x' - y') + (a' + b))`)) THEN
REWRITE_TAC[GSYM LEFT_ADD_DISTRIB] THEN MESON_TAC[]);;
let CONG_MULT_LCANCEL_EQ = prove
(`!a n x y. coprime(a,n) ==> ((a * x == a * y) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_MULT_RCANCEL_EQ = prove
(`!a n x y. coprime(a,n) ==> ((x * a == y * a) (mod n) <=> (x == y) (mod n))`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ = prove
(`!a n x y. (a + x == a + y) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ = prove
(`!a n x y. (x + a == y + a) (mod n) <=> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL = prove
(`!a n x y. (x + a == y + a) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL = prove
(`!a n x y. (a + x == a + y) (mod n) ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_LCANCEL_EQ_0 = prove
(`!a n x. (a + x == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_ADD_RCANCEL_EQ_0 = prove
(`!a n x. (x + a == a) (mod n) <=> (x == 0) (mod n)`,
NUMBER_TAC);;
let CONG_MULT_LCANCEL_ALL = prove
(`!a x y n. (a * x == a * y) (mod (a * n)) <=> a = 0 \/ (x == y) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[] THEN
POP_ASSUM MP_TAC THEN NUMBER_TAC);;
let CONG_LMUL = NUMBER_RULE
`!a x y n:num. (x == y) (mod n) ==> (a * x == a * y) (mod n)`;;
let CONG_RMUL = NUMBER_RULE
`!x y a n:num. (x == y) (mod n) ==> (x * a == y * a) (mod n)`;;
let CONG_IMP_EQ = prove
(`!x y n. x < n /\ y < n /\ (x == y) (mod n) ==> x = y`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[LT] THEN
ASM_MESON_TAC[CONG; MOD_LT]);;
let CONG_DIVIDES_MODULUS = prove
(`!x y m n. (x == y) (mod m) /\ n divides m ==> (x == y) (mod n)`,
NUMBER_TAC);;
let CONG_0_DIVIDES = prove
(`!n x. (x == 0) (mod n) <=> n divides x`,
NUMBER_TAC);;
let CONG_1_DIVIDES = prove
(`!n x. (x == 1) (mod n) ==> n divides (x - 1)`,
REPEAT GEN_TAC THEN REWRITE_TAC[divides; cong; nat_mod] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(x + q1 = 1 + q2) ==> ~(x = 0) ==> (x - 1 = q2 - q1)`)) THEN
ASM_CASES_TAC `x = 0` THEN
ASM_REWRITE_TAC[ARITH; GSYM LEFT_SUB_DISTRIB] THEN
ASM_MESON_TAC[MULT_CLAUSES]);;
let CONG_1_DIVIDES_EQ = prove
(`!n x. (x == 1) (mod n) <=> (x = 0 ==> n = 1) /\ n divides (x - 1)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x = 0` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[NUMBER_RULE `(0 == a) (mod n) <=> n divides a`] THEN
CONV_TAC NUM_REDUCE_CONV THEN REWRITE_TAC[DIVIDES_ONE; DIVIDES_0];
ONCE_REWRITE_TAC[CONG_SYM] THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN
ASM_SIMP_TAC[LE_1] THEN CONV_TAC NUMBER_RULE]);;
let CONG_DIVIDES = prove
(`!x y n. (x == y) (mod n) ==> (n divides x <=> n divides y)`,
NUMBER_TAC);;
let CONG_COPRIME = prove
(`!x y n. (x == y) (mod n) ==> (coprime(n,x) <=> coprime(n,y))`,
NUMBER_TAC);;
let CONG_GCD_RIGHT = prove
(`!x y n. (x == y) (mod n) ==> gcd(n,x) = gcd(n,y)`,
NUMBER_TAC);;
let CONG_GCD_LEFT = prove
(`!x y n. (x == y) (mod n) ==> gcd(x,n) = gcd(y,n)`,
NUMBER_TAC);;
let CONG_MOD = prove
(`!a n. (a MOD n == a) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONG_REFL; MOD_ZERO] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP DIVISION) THEN
DISCH_THEN(MP_TAC o SPEC `a:num`) THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (RATOR_CONV o RAND_CONV) [th]) THEN
REWRITE_TAC[cong; nat_mod] THEN
MAP_EVERY EXISTS_TAC [`a DIV n`; `0`] THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; ADD_AC; MULT_AC]);;
let MOD_MULT_CONG = prove
(`!a b x y. ((x MOD (a * b) == y) (mod a) <=> (x == y) (mod a))`,
REPEAT STRIP_TAC THEN SUBGOAL_THEN `(x MOD (a * b) == x) (mod a)`
(fun th -> MESON_TAC[th; CONG_TRANS; CONG_SYM]) THEN
MATCH_MP_TAC CONG_DIVIDES_MODULUS THEN EXISTS_TAC `a * b` THEN
ASM_SIMP_TAC[CONG_MOD; MULT_EQ_0; DIVIDES_RMUL; DIVIDES_REFL]);;
let CONG_MOD_MULT = prove
(`!x y m n. (x == y) (mod n) /\ m divides n ==> (x == y) (mod m)`,
NUMBER_TAC);;
let CONG_MOD_LT = prove
(`!y. y < n ==> (x MOD n = y <=> (x == y) (mod n))`,
MESON_TAC[MOD_LT; CONG; LT]);;
let MOD_UNIQUE = prove
(`!m n p. m MOD n = p <=> ((n = 0 /\ m = p) \/ p < n) /\ (m == p) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONG_MOD_0; LT] THENL
[ASM_MESON_TAC[DIVISION_0]; ALL_TAC] THEN
ASM_SIMP_TAC[CONG] THEN ASM_MESON_TAC[DIVISION; MOD_LT]);;
let CONG_DIV = prove
(`!m n a b.
~(m = 0) /\ (a == m * b) (mod (m * n)) ==> (a DIV m == b) (mod n)`,
MESON_TAC[CONG_DIV2; DIV_MULT]);;
let CONG_DIV_COPRIME = prove
(`!m n a b.
coprime(m,n) /\ m divides a /\ (a == m * b) (mod n)
==> (a DIV m == b) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THEN
ASM_SIMP_TAC[COPRIME_0; CONG_MOD_1] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC CONG_DIV THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE);;
let CONG_SQUARE_1_PRIME_POWER = prove
(`!p k x.
prime p /\ ~(p = 2)
==> ((x EXP 2 == 1) (mod (p EXP k)) <=>
(x == 1) (mod (p EXP k)) \/ (x == p EXP k - 1) (mod (p EXP k)))`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; CONG_MOD_1] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[CONG_MINUS1; CONG_1_DIVIDES_EQ] THEN
ASM_REWRITE_TAC[EXP_EQ_0; EXP_EQ_1] THEN
ASM_CASES_TAC `x = 0` THEN
ASM_REWRITE_TAC[ADD_CLAUSES; DIVIDES_ONE; EXP_EQ_1; ARITH] THEN
SUBGOAL_THEN `x EXP 2 - 1 = (x - 1) * (x + 1)` SUBST1_TAC THENL
[REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_MUL] THEN
ASM_SIMP_TAC[GSYM INT_OF_NUM_SUB; EXP_EQ_0; LE_1] THEN
REWRITE_TAC[GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_POW] THEN
INT_ARITH_TAC;
MATCH_MP_TAC PRIME_DIVPROD_POW_GEN_EQ THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[GCD_SYM] THEN REWRITE_TAC[DIVIDES_GCD] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_SUB) THEN
ASM_SIMP_TAC[ARITH_RULE `~(x = 0) ==> (x + 1) - (x - 1) = 2`] THEN
ASM_SIMP_TAC[DIVIDES_PRIME_PRIME; PRIME_2]]);;
(* ------------------------------------------------------------------------- *)
(* Some things when we know more about the order. *)
(* ------------------------------------------------------------------------- *)
let CONG_LT = prove
(`!x y n. y < n ==> ((x == y) (mod n) <=> ?d. x = d * n + y)`,
REWRITE_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_LT;
GSYM INT_OF_NUM_ADD; GSYM INT_OF_NUM_MUL] THEN
REWRITE_TAC[num_congruent; int_congruent] THEN
REWRITE_TAC[INT_ARITH `x = m * n + y <=> x - y:int = n * m`] THEN
REPEAT STRIP_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(X_CHOOSE_TAC `d:int`) THEN
DISJ_CASES_TAC(SPEC `d:int` INT_IMAGE) THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o MATCH_MP (INT_ARITH
`x - y:int = n * --m ==> y = x + n * m`)) THEN
POP_ASSUM MP_TAC THEN DISJ_CASES_TAC(ARITH_RULE `m = 0 \/ 1 <= m`) THEN
ASM_REWRITE_TAC[INT_MUL_RZERO; INT_ARITH `x - (x + a):int = --a`] THENL
[STRIP_TAC THEN EXISTS_TAC `0` THEN INT_ARITH_TAC;
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` SUBST1_TAC) THEN
REWRITE_TAC[INT_OF_NUM_ADD; INT_OF_NUM_MUL; INT_OF_NUM_LT] THEN
ARITH_TAC]);;
let CONG_LE = prove
(`!x y n. y <= x ==> ((x == y) (mod n) <=> ?q. x = q * n + y)`,
ONCE_REWRITE_TAC[CONG_SYM] THEN ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN
SIMP_TAC[ARITH_RULE `y <= x ==> (x = a + y <=> x - y = a)`] THEN
REWRITE_TAC[CONG_0; divides] THEN MESON_TAC[MULT_SYM]);;
let CONG_TO_1 = prove
(`!a n. (a == 1) (mod n) <=> a = 0 /\ n = 1 \/ ?m. a = 1 + m * n`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[CONG_MOD_1] THENL
[MESON_TAC[ARITH_RULE `n = 0 \/ n = 1 + (n - 1) * 1`]; ALL_TAC] THEN
DISJ_CASES_TAC(ARITH_RULE `a = 0 \/ ~(a = 0) /\ 1 <= a`) THEN
ASM_SIMP_TAC[CONG_LE] THENL [ALL_TAC; MESON_TAC[ADD_SYM; MULT_SYM]] THEN
ASM_MESON_TAC[CONG_SYM; CONG_0; DIVIDES_ONE; ARITH_RULE `~(0 = 1 + a)`]);;
(* ------------------------------------------------------------------------- *)
(* In particular two common cases. *)
(* ------------------------------------------------------------------------- *)
let EVEN_MOD_2 = prove
(`EVEN n <=> (n == 0) (mod 2)`,
SIMP_TAC[EVEN_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; MULT_AC]);;
let ODD_MOD_2 = prove
(`ODD n <=> (n == 1) (mod 2)`,
SIMP_TAC[ODD_EXISTS; CONG_LT; ARITH; ADD_CLAUSES; ADD1; MULT_AC]);;
(* ------------------------------------------------------------------------- *)
(* Conversion to evaluate congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_CONV =
let pth = prove
(`(x == y) (mod n) <=>
if x <= y then n divides (y - x) else n divides (x - y)`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN REWRITE_TAC[CONG_0_DIVIDES]) in
GEN_REWRITE_CONV I [pth] THENC
RATOR_CONV(LAND_CONV NUM_LE_CONV) THENC
GEN_REWRITE_CONV I [COND_CLAUSES] THENC
RAND_CONV NUM_SUB_CONV THENC
DIVIDES_CONV;;
(* ------------------------------------------------------------------------- *)
(* Some basic theorems about solving congruences. *)
(* ------------------------------------------------------------------------- *)
let CONG_SOLVE_EQ = prove
(`!n a b. (?x. (a * x == b) (mod n)) <=> gcd(a,n) divides b`,
REPEAT GEN_TAC THEN EQ_TAC THENL [NUMBER_TAC; ALL_TAC] THEN
ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; GCD_0]
THENL [NUMBER_TAC; REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM]] THEN
X_GEN_TAC `c:num` THEN DISCH_THEN SUBST1_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP BEZOUT_GCD_STRONG) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN STRIP_TAC THEN
EXISTS_TAC `c * x:num` THEN POP_ASSUM MP_TAC THEN CONV_TAC NUMBER_RULE);;
let CONG_SOLVE_LT_EQ = prove
(`!n a b. (?x. x < n /\ (a * x == b) (mod n)) <=>
~(n = 0) /\ gcd(a,n) divides b`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[CONJUNCT1 LT] THEN REWRITE_TAC[GSYM CONG_SOLVE_EQ] THEN
MATCH_MP_TAC(MESON[DIVISION]
`~(n = 0) /\ (!y. P y ==> P(y MOD n))
==> ((?y. y < n /\ P y) <=> (?y. P y))`) THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `x:num` THEN MATCH_MP_TAC(NUMBER_RULE
`(x == y) (mod n) ==> (a * x == b) (mod n) ==> (a * y == b) (mod n)`) THEN
ASM_SIMP_TAC[CONG_RMOD; CONG_REFL]);;
let CONG_SOLVE = prove
(`!a b n. coprime(a,n) ==> ?x. (a * x == b) (mod n)`,
REWRITE_TAC[CONG_SOLVE_EQ] THEN CONV_TAC NUMBER_RULE);;
let CONG_SOLVE_UNIQUE = prove
(`!a b n. coprime(a,n) /\ ~(n = 0) ==> ?!x. x < n /\ (a * x == b) (mod n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
MP_TAC(SPECL [`a:num`; `b:num`; `n:num`] CONG_SOLVE) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_TAC `x:num`) THEN
EXISTS_TAC `x MOD n` THEN
MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL
[ASM_SIMP_TAC[DIVISION] THEN MATCH_MP_TAC CONG_TRANS THEN
EXISTS_TAC `a * x:num` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC CONG_MULT THEN REWRITE_TAC[CONG_REFL] THEN
ASM_SIMP_TAC[CONG; MOD_MOD_REFL];
ALL_TAC] THEN
STRIP_TAC THEN X_GEN_TAC `y:num` THEN STRIP_TAC THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `y MOD n` THEN CONJ_TAC THENL
[ASM_SIMP_TAC[MOD_LT]; ALL_TAC] THEN
ASM_SIMP_TAC[GSYM CONG] THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a:num` THEN ASM_MESON_TAC[CONG_TRANS; CONG_SYM]);;
let CONG_SOLVE_UNIQUE_NONTRIVIAL = prove
(`!a p x. prime p /\ coprime(p,a) /\ 0 < x /\ x < p
==> ?!y. 0 < y /\ y < p /\ (x * y == a) (mod p)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
REPEAT STRIP_TAC THEN SUBGOAL_THEN `1 < p` ASSUME_TAC THENL
[REWRITE_TAC[ARITH_RULE `1 < p <=> ~(p = 0) /\ ~(p = 1)`] THEN
ASM_MESON_TAC[PRIME_1];
ALL_TAC] THEN
MP_TAC(SPECL [`x:num`; `a:num`; `p:num`] CONG_SOLVE_UNIQUE) THEN
ANTS_TAC THENL
[CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_0]] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN
MP_TAC(SPECL [`x:num`; `p:num`] PRIME_COPRIME) THEN
ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
ASM_MESON_TAC[COPRIME_SYM; NOT_LT; DIVIDES_LE; LT_REFL];
ALL_TAC] THEN
MATCH_MP_TAC EQ_IMP THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `r:num` THEN REWRITE_TAC[] THEN
REWRITE_TAC[ARITH_RULE `0 < r <=> ~(r = 0)`] THEN
ASM_CASES_TAC `r = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN REWRITE_TAC[CONG_0] THEN
ASM_MESON_TAC[DIVIDES_REFL; PRIME_1; coprime]);;
let CONG_UNIQUE_INVERSE_PRIME = prove
(`!p x. prime p /\ 0 < x /\ x < p
==> ?!y. 0 < y /\ y < p /\ (x * y == 1) (mod p)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_SOLVE_UNIQUE_NONTRIVIAL THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[COPRIME_1; COPRIME_SYM]);;
let COUNT_CONG_SOLVE_SIMPLE = prove
(`!m n b. {x | x < m * n /\ (x == b) (mod n)} HAS_SIZE
(if n = 0 then 0 else m)`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[MULT_CLAUSES; LT; HAS_SIZE_0; EMPTY_GSPEC] THEN
SUBGOAL_THEN
`{x | x < m * n /\ (x == b) (mod n)} =
IMAGE (\i. i * n + b MOD n) {i | i < m}`
SUBST1_TAC THENL
[REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_ELIM_THM; IN_IMAGE] THEN CONJ_TAC THENL
[X_GEN_TAC `x:num` THEN REWRITE_TAC[CONG] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN EXISTS_TAC `x DIV n` THEN
ASM_SIMP_TAC[RDIV_LT_EQ; DIVISION_SIMP] THEN ASM_MESON_TAC[MULT_SYM];
X_GEN_TAC `i:num` THEN DISCH_TAC THEN
REWRITE_TAC[CONG_LMOD; CONG_REFL; NUMBER_RULE
`(x * n + c:num == b) (mod n) <=> (c == b) (mod n)`] THEN
MATCH_MP_TAC(ARITH_RULE
`b < n /\ (i + 1) * n <= m * n ==> i * n + b < m * n`) THEN
ASM_REWRITE_TAC[MOD_LT_EQ; LE_MULT_RCANCEL] THEN ASM_ARITH_TAC];
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
REWRITE_TAC[IN_ELIM_THM; HAS_SIZE_NUMSEG_LT] THEN
ASM_SIMP_TAC[EQ_ADD_RCANCEL; EQ_MULT_RCANCEL]]);;
let COUNT_CONG_SOLVE_GEN = prove
(`!m n a b.
{x | x < m * n /\ (a * x == b) (mod n)} HAS_SIZE
(if ~(n = 0) /\ gcd(n,a) divides b then m * gcd(n,a) else 0)`,
REPEAT GEN_TAC THEN
MAP_EVERY ASM_CASES_TAC [`m = 0`; `n = 0`] THEN
ASM_REWRITE_TAC[LT; EMPTY_GSPEC; HAS_SIZE_0; MULT_CLAUSES; COND_ID] THEN
COND_CASES_TAC THENL
[ALL_TAC;
REWRITE_TAC[HAS_SIZE_0; SET_RULE `{x | P x} = {} <=> ~(?x. P x)`] THEN
ASM_MESON_TAC[CONG_SOLVE_EQ; GCD_SYM]] THEN
MP_TAC(SPECL [`n:num`; `a:num`; `b:num`] CONG_SOLVE_EQ) THEN
DISCH_THEN(MP_TAC o snd o EQ_IMP_RULE) THEN
ANTS_TAC THENL [ASM_MESON_TAC[GCD_SYM]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `z:num` MP_TAC) THEN REWRITE_TAC[CONG] THEN
DISCH_THEN(fun th -> REWRITE_TAC[SYM th]) THEN REWRITE_TAC[GSYM CONG] THEN
MP_TAC(NUMBER_RULE `gcd(n:num,a) divides n`) THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `d:num` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN
SUBGOAL_THEN `!x:num. (a * x == a * z) (mod n) <=> (x == z) (mod d)`
(fun th -> REWRITE_TAC[th])
THENL [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE; ALL_TAC] THEN
EXPAND_TAC "n" THEN REWRITE_TAC[MULT_ASSOC; HAS_SIZE] THEN
REWRITE_TAC[REWRITE_RULE[HAS_SIZE] COUNT_CONG_SOLVE_SIMPLE] THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[MULT_CLAUSES]);;
let COUNT_CONG_SOLVE = prove
(`!n a b. {x | x < n /\ (a * x == b) (mod n)} HAS_SIZE
(if ~(n = 0) /\ gcd(n,a) divides b then gcd(n,a) else 0)`,
MP_TAC(SPEC `1` COUNT_CONG_SOLVE_GEN) THEN
REWRITE_TAC[MULT_CLAUSES; ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Forms of the Chinese remainder theorem. *)
(* ------------------------------------------------------------------------- *)
let CONG_CHINESE = prove
(`coprime(a,b) /\ (x == y) (mod a) /\ (x == y) (mod b)
==> (x == y) (mod (a * b))`,
ONCE_REWRITE_TAC[CONG_SUB_CASES] THEN MESON_TAC[CONG_0; DIVIDES_MUL]);;
let CHINESE_REMAINDER_UNIQUE = prove
(`!a b m n.
coprime(a,b) /\ ~(a = 0) /\ ~(b = 0)
==> ?!x. x < a * b /\ (x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_UNIQUE_THM] THEN CONJ_TAC THENL
[MP_TAC(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `q1:num`; `q2:num`] THEN
DISCH_TAC THEN EXISTS_TAC `x MOD (a * b)` THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVISION; MULT_EQ_0]; ALL_TAC] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
CONJ_TAC THENL
[FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT1);
FIRST_X_ASSUM(SUBST1_TAC o CONJUNCT2)] THEN
ASM_SIMP_TAC[MOD_MULT_CONG] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
REWRITE_TAC[cong; nat_mod; GSYM ADD_ASSOC; GSYM LEFT_ADD_DISTRIB] THEN
MESON_TAC[];
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
EXISTS_TAC `a * b` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[CONG_CHINESE; CONG_SYM; CONG_TRANS]]);;
let CHINESE_REMAINDER_COPRIME_UNIQUE = prove
(`!a b m n.
coprime(a,b) /\ ~(a = 0) /\ ~(b = 0) /\ coprime(m,a) /\ coprime(n,b)
==> ?!x. coprime(x,a * b) /\ x < a * b /\
(x == m) (mod a) /\ (x == n) (mod b)`,
REPEAT STRIP_TAC THEN MP_TAC
(SPECL [`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_UNIQUE) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[]
`(!x. P(x) ==> Q(x)) ==> (?!x. P x) ==> ?!x. Q(x) /\ P(x)`) THEN
ASM_SIMP_TAC[CHINESE_REMAINDER_UNIQUE] THEN
ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; COPRIME_MUL]);;
let CHINESE_REMAINDER_USUAL = prove
(`!a b u v:num. coprime(a,b) ==> ?x. (x == u) (mod a) /\ (x == v) (mod b)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a = 0` THEN
ASM_SIMP_TAC[CONG_MOD_1; COPRIME_0; CONG_MOD_0; EXISTS_REFL] THEN
ASM_CASES_TAC `b = 0` THEN
ASM_SIMP_TAC[CONG_MOD_1; COPRIME_0; CONG_MOD_0; EXISTS_REFL] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`a:num`; `b:num`; `u:num`; `v:num`] CHINESE_REMAINDER) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
MATCH_MP_TAC MONO_AND THEN SIMP_TAC[] THEN CONV_TAC NUMBER_RULE);;
let CONG_CHINESE_EQ = prove
(`!a b x y.
coprime(a,b)
==> ((x == y) (mod (a * b)) <=> (x == y) (mod a) /\ (x == y) (mod b))`,
NUMBER_TAC);;
let CHINESE_REMAINDER_COUNT = prove
(`!P Q R a b m n.
coprime(a,b) /\
(!x. x < a * b ==> (R x <=> P (x MOD a) /\ Q (x MOD b))) /\
{x | x < a /\ P x} HAS_SIZE m /\ {x | x < b /\ Q x} HAS_SIZE n
==> {x | x < a * b /\ R x} HAS_SIZE (m * n)`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 2 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(MP_TAC o MATCH_MP HAS_SIZE_CROSS) THEN
ASM_CASES_TAC `a = 0` THENL
[ASM_REWRITE_TAC[LT; EMPTY_GSPEC; CROSS_EMPTY; MULT_CLAUSES;
HAS_SIZE; CARD_CLAUSES; FINITE_EMPTY];
ALL_TAC] THEN
ASM_CASES_TAC `b = 0` THENL
[ASM_REWRITE_TAC[LT; EMPTY_GSPEC; CROSS_EMPTY; MULT_CLAUSES;
HAS_SIZE; CARD_CLAUSES; FINITE_EMPTY];
ALL_TAC] THEN
MP_TAC(ISPECL [`a:num`; `b:num`] CHINESE_REMAINDER_UNIQUE) THEN
ASM_REWRITE_TAC[UNIQUE_SKOLEM_THM] THEN
DISCH_THEN(X_CHOOSE_TAC `f:num->num->num` o EXISTENCE) THEN
MATCH_MP_TAC(MESON[HAS_SIZE_IMAGE_INJ_EQ]
`!f. (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
IMAGE f s = t
==> s HAS_SIZE p ==> t HAS_SIZE p`) THEN
EXISTS_TAC `\(m,n). (f:num->num->num) m n` THEN
REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_IMAGE] THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; IN_ELIM_THM] THEN
REWRITE_TAC[EXISTS_PAIR_THM; IN_IMAGE; IN_CROSS] THEN
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN REPEAT CONJ_TAC THENL
[ASM_MESON_TAC[CONG_IMP_EQ; CONG_SYM; CONG_TRANS];
RULE_ASSUM_TAC(REWRITE_RULE[CONG]) THEN ASM_SIMP_TAC[MOD_LT];
X_GEN_TAC `x:num` THEN ASM_SIMP_TAC[IMP_CONJ] THEN REPEAT STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`x MOD a`; `x MOD b`] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[MOD_LT; MOD_LT_EQ]] THEN
MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `a * b:num` THEN
ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[NUMBER_RULE
`coprime(a,b)
==> ((x == y) (mod (a * b)) <=>
(x == y) (mod a) /\ (x == y) (mod b))`] THEN
ASM_MESON_TAC[MOD_LT; MOD_LT_EQ; CONG]]);;
let CHINESE_REMAINDER_COPRIME_COUNT = prove
(`!P Q R a b m n.
coprime(a,b) /\
(!x. x < a * b ==> (R x <=> P (x MOD a) /\ Q (x MOD b))) /\
{x | x < a /\ coprime(a,x) /\ P x} HAS_SIZE m /\
{x | x < b /\ coprime(b,x) /\ Q x} HAS_SIZE n
==> {x | x < a * b /\ coprime(a * b,x) /\ R x} HAS_SIZE (m * n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CHINESE_REMAINDER_COUNT THEN
EXISTS_TAC `\x:num. coprime(a,x) /\ P x` THEN
EXISTS_TAC `\x:num. coprime(b,x) /\ Q x` THEN
ASM_SIMP_TAC[COPRIME_RMOD; NUMBER_RULE
`coprime(a:num,b)
==> (coprime(a * b,x) <=> coprime(a,x) /\ coprime(b,x))`] THEN
MESON_TAC[]);;
let COUNT_ROOTS_MODULO_COPRIME = prove
(`!a b k m n.
coprime(a,b) /\
{x | x < a /\ (x EXP k == 1) (mod a)} HAS_SIZE m /\
{x | x < b /\ (x EXP k == 1) (mod b)} HAS_SIZE n
==> {x | x < a * b /\ (x EXP k == 1) (mod (a * b))} HAS_SIZE (m * n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CHINESE_REMAINDER_COUNT THEN
EXISTS_TAC `\x. (x EXP k == 1) (mod a)` THEN
EXISTS_TAC `\x. (x EXP k == 1) (mod b)` THEN
ASM_SIMP_TAC[NUMBER_RULE
`coprime(a,b)
==> ((x == y) (mod (a * b)) <=>
(x == y) (mod a) /\ (x == y) (mod b))`] THEN
REWRITE_TAC[CONG; MOD_EXP_MOD]);;
(* ------------------------------------------------------------------------- *)
(* A "multiplicative inverse (or nearest equivalent) modulo n" function. *)
(* ------------------------------------------------------------------------- *)
let inverse_mod = new_definition
`inverse_mod n x =
if n <= 1 then 1
else @y. y < n /\ (x * y == gcd(n,x)) (mod n)`;;
let INVERSE_MOD_BOUND,INVERSE_MOD_RMUL_GEN = (CONJ_PAIR o prove)
(`(!n x. inverse_mod n x < n <=> 2 <= n) /\
(!n x. (x * inverse_mod n x == gcd(n,x)) (mod n))`,
REWRITE_TAC[AND_FORALL_THM] THEN REWRITE_TAC[inverse_mod] THEN
MAP_EVERY X_GEN_TAC [`n:num`; `x:num`] THEN ASM_CASES_TAC `n <= 1` THENL
[FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
`n <= 1 ==> n = 0 \/ n = 1`)) THEN
ASM_REWRITE_TAC[] THEN CONV_TAC NUM_REDUCE_CONV THEN
REWRITE_TAC[CONG_MOD_0; CONG_MOD_1; GCD_0; MULT_CLAUSES];
ASM_REWRITE_TAC[ARITH_RULE `2 <= n <=> ~(n <= 1)`] THEN
CONV_TAC SELECT_CONV THEN ASM_REWRITE_TAC[CONG_SOLVE_LT_EQ] THEN
REWRITE_TAC[GCD_SYM; DIVIDES_REFL] THEN ASM_ARITH_TAC]);;
let INVERSE_MOD_LMUL_GEN = prove
(`!n x. (inverse_mod n x * x == gcd(n,x)) (mod n)`,
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[INVERSE_MOD_RMUL_GEN]);;
let INVERSE_MOD_RMUL_EQ = prove
(`!n x. (x * inverse_mod n x == 1) (mod n) <=> coprime(n,x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [NUMBER_TAC; ALL_TAC] THEN
REWRITE_TAC[COPRIME_GCD] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[INVERSE_MOD_RMUL_GEN]);;
let INVERSE_MOD_LMUL_EQ = prove
(`!n x. (inverse_mod n x * x == 1) (mod n) <=> coprime(n,x)`,
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[INVERSE_MOD_RMUL_EQ]);;
let INVERSE_MOD_LMUL = prove
(`!n x. coprime(n,x) ==> (inverse_mod n x * x == 1) (mod n)`,
REWRITE_TAC[INVERSE_MOD_LMUL_EQ]);;
let INVERSE_MOD_RMUL = prove
(`!n x. coprime(n,x) ==> (x * inverse_mod n x == 1) (mod n)`,
REWRITE_TAC[INVERSE_MOD_RMUL_EQ]);;
let INVERSE_MOD_UNIQUE = prove
(`!n a x.
(a * x == 1) (mod n) /\ x <= n /\ ~(n = 1 /\ x = 0)
==> inverse_mod n a = x`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[CONG_MOD_0; MULT_EQ_1] THEN ARITH_TAC;
ALL_TAC] THEN
ASM_CASES_TAC `x:num = n` THENL
[ASM_REWRITE_TAC[NUMBER_RULE `(a * n == z) (mod n) <=> n divides z`] THEN
REWRITE_TAC[DIVIDES_ONE] THEN SIMP_TAC[inverse_mod; LE_REFL];
REPEAT STRIP_TAC] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
`~(n = 1 /\ x = 0) ==> ~(x = n) /\ x <= n ==> ~(n = 1)`)) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `n:num` THEN
ASM_REWRITE_TAC[INVERSE_MOD_BOUND] THEN
REPEAT(CONJ_TAC THENL [ASM_ARITH_TAC; ALL_TAC]) THEN
MATCH_MP_TAC(NUMBER_RULE
`(a * x == 1) (mod n) /\ (a * y == 1) (mod n) ==> (x == y) (mod n)`) THEN
ASM_REWRITE_TAC[INVERSE_MOD_RMUL_EQ] THEN
UNDISCH_TAC `(a * x == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
let INVERSE_MOD_1 = prove
(`!n. inverse_mod n 1 = 1`,
GEN_TAC THEN ASM_CASES_TAC `n <= 1` THENL
[ASM_REWRITE_TAC[inverse_mod]; MATCH_MP_TAC INVERSE_MOD_UNIQUE] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n <= 1) ==> 1 <= n`; ARITH_EQ] THEN
NUMBER_TAC);;
let INVERSE_MOD_CONG = prove
(`!n x y. (x == y) (mod n) ==> inverse_mod n x = inverse_mod n y`,
REPEAT STRIP_TAC THEN REWRITE_TAC[inverse_mod] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP CONG_GCD_RIGHT) THEN
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN
UNDISCH_TAC `(x:num == y) (mod n)` THEN CONV_TAC NUMBER_RULE);;
let INVERSE_MOD_INVERSE_MOD_CONG = prove
(`!n x. coprime(n,x) ==> (inverse_mod n (inverse_mod n x) == x) (mod n)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(NUMBER_RULE
`!x'. (x * x' == 1) (mod n) /\ (x' * x'' == 1) (mod n)
==> (x'' == x) (mod n)`) THEN
EXISTS_TAC `inverse_mod n x` THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[ASM_REWRITE_TAC[INVERSE_MOD_RMUL_EQ];
GEN_REWRITE_TAC RAND_CONV [INVERSE_MOD_RMUL_EQ] THEN
CONV_TAC NUMBER_RULE]);;
let INVERSE_MOD_INVERSE_MOD = prove
(`!n x. coprime(n,x) /\ 1 <= x /\ x <= n
==> inverse_mod n (inverse_mod n x) = x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INVERSE_MOD_UNIQUE THEN
ASM_SIMP_TAC[INVERSE_MOD_LMUL_EQ; LE_1]);;
let INVERSE_MOD_NONZERO_ALT = prove
(`!n a. ~(n divides a) ==> ~(inverse_mod n a = 0)`,
REPEAT GEN_TAC THEN REWRITE_TAC[CONTRAPOS_THM] THEN DISCH_TAC THEN
MP_TAC(SPECL [`n:num`; `a:num`] INVERSE_MOD_RMUL_GEN) THEN
ASM_REWRITE_TAC[NUMBER_RULE `(a * 0 == b) (mod n) <=> n divides b`] THEN
SIMP_TAC[DIVIDES_GCD]);;
let INVERSE_MOD_NONZERO = prove
(`!n a. coprime(n,a) ==> ~(inverse_mod n a = 0)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 1` THENL
[ASM_REWRITE_TAC[inverse_mod; ARITH];
DISCH_TAC THEN MATCH_MP_TAC INVERSE_MOD_NONZERO_ALT THEN
ASM_SIMP_TAC[DIVIDES_ONE; NUMBER_RULE
`coprime(n,a) ==> (n divides a <=> n divides 1)`]]);;
let INVERSE_MOD_BOUND_LE = prove
(`!n a. inverse_mod n a <= n <=> ~(n = 0)`,
GEN_TAC THEN REWRITE_TAC[LE_LT; INVERSE_MOD_BOUND] THEN
REWRITE_TAC[inverse_mod] THEN ARITH_TAC);;
let INVERSE_MOD_INVERSION = prove
(`!m n. coprime(m,n)
==> m * inverse_mod n m + n * inverse_mod m n = m * n + 1`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `m = 0` THENL
[ASM_SIMP_TAC[COPRIME_0; inverse_mod; MULT_CLAUSES; ADD_CLAUSES; ARITH];
ALL_TAC] THEN
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_SIMP_TAC[COPRIME_0; inverse_mod; MULT_CLAUSES; ADD_CLAUSES; ARITH];
ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN
`(m * inverse_mod n m + n * inverse_mod m n == 1) (mod (m * n))`
MP_TAC THENL
[MATCH_MP_TAC CONG_CHINESE THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[NUMBER_RULE `(m * x + a == 1) (mod m) <=> (a == 1) (mod m)`;
NUMBER_RULE `(a + m * x == 1) (mod m) <=> (a == 1) (mod m)`;
INVERSE_MOD_RMUL_EQ; INVERSE_MOD_LMUL_EQ] THEN
ASM_MESON_TAC[COPRIME_SYM];
REWRITE_TAC[CONG_TO_1; ADD_EQ_0; MULT_EQ_0; MULT_EQ_1]] THEN
DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL
[ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[inverse_mod; ARITH] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[inverse_mod; ARITH];
DISCH_THEN(X_CHOOSE_THEN `q:num` MP_TAC)] THEN
ASM_CASES_TAC `q = 0` THENL
[ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; MULT_EQ_0; MULT_EQ_1;
ARITH_RULE `a + b = 1 <=> a = 0 /\ b = 1 \/ a = 1 /\ b = 0`] THEN
MAP_EVERY ASM_CASES_TAC [`m = 1`; `n = 1`] THEN
ASM_REWRITE_TAC[COPRIME_0; inverse_mod; ARITH];
ALL_TAC] THEN
ASM_CASES_TAC `q = 1` THENL [ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE
`m * x <= m * n /\ n * y <= n * m /\ 2 * m * n <= q * m * n
==> m * x + n * y = 1 + q * m * n ==> u:num = v`) THEN
ASM_REWRITE_TAC[LE_MULT_LCANCEL; INVERSE_MOD_BOUND_LE] THEN
REWRITE_TAC[LE_MULT_RCANCEL] THEN ASM_ARITH_TAC);;
let INVERSE_MOD_CONV =
let rec gcdex(m,n) =
if n </ m then let (x,y) = gcdex(n,m) in (y,x)
else if m =/ Int 0 then (Int 0,Int 1) else
let q = quo_num n m in
let r = n -/ q */ m in
let (x,y) = gcdex(r,m) in (y -/ q */ x,x) in
let pth_01,pth = (CONJ_PAIR o prove)
(`(inverse_mod 0 n = 1 /\ inverse_mod 1 n = 1) /\
(MAX 2 p <= n /\ (m * p) MOD n = 1 ==> inverse_mod n m = p)`,
CONJ_TAC THENL [REWRITE_TAC[inverse_mod; ARITH]; STRIP_TAC] THEN
MATCH_MP_TAC INVERSE_MOD_UNIQUE THEN ONCE_REWRITE_TAC[CONG_SYM] THEN
ASM_REWRITE_TAC[CONG; MOD_EQ_SELF] THEN ASM_ARITH_TAC)
and dest_iterm = dest_binop `inverse_mod`
and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in
let baseconv = GEN_REWRITE_CONV I [pth_01] in
fun tm ->
let ntm,mtm = dest_iterm tm in
let n = dest_numeral ntm and m = dest_numeral mtm in
if n <=/ num_1 then baseconv tm else
let (x,y) = gcdex(m,n) in
let d = x */ m +/ y */ n in
if d <>/ num_1 then failwith "INVERSE_MOD_CONV: not coprime" else
let p = mod_num x n in
let th = INST[mtm,m_tm; ntm,n_tm; mk_numeral p,p_tm] pth in
MP th (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th))));;
(* ------------------------------------------------------------------------- *)
(* Square-free natural numbers. *)
(* ------------------------------------------------------------------------- *)
let squarefree = new_definition
`squarefree n <=> !m. m EXP 2 divides n ==> m = 1`;;
let SQUAREFREE_0 = prove
(`~squarefree 0`,
REWRITE_TAC[squarefree; DIVIDES_0] THEN MESON_TAC[ARITH_RULE `~(1 = 0)`]);;
let SQUAREFREE_1 = prove
(`squarefree 1`,
REWRITE_TAC[squarefree; DIVIDES_ONE; EXP_EQ_1; ARITH_EQ]);;
let SQUAREFREE_IMP_NZ = prove
(`!n. squarefree n ==> ~(n = 0)`,
MESON_TAC[SQUAREFREE_0]);;
let SQUAREFREE_PRIME,SQUAREFREE_PRIME_DIVISOR = (CONJ_PAIR o prove)
(`(!n. squarefree n <=> !p. prime p ==> ~(p EXP 2 divides n)) /\
(!n. squarefree n <=> !p. prime p /\ p divides n ==> ~(p EXP 2 divides n))`,
REWRITE_TAC[AND_FORALL_THM; squarefree] THEN X_GEN_TAC `n:num` THEN
MATCH_MP_TAC(TAUT
`(q ==> r) /\ (p ==> q) /\ (r ==> p)
==> (p <=> q) /\ (p <=> r)`) THEN
CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN
DISCH_TAC THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[] THEN
MP_TAC(SPEC `m:num` PRIME_FACTOR) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[NOT_IMP] THEN
MAP_EVERY UNDISCH_TAC [`m EXP 2 divides n`; `(p:num) divides m`] THEN
CONV_TAC NUMBER_RULE);;
let SQUAREFREE_INDEX = prove
(`!n. squarefree n <=> ~(n = 0) /\ !m. index m n <= 1`,
GEN_TAC THEN REWRITE_TAC[squarefree; PRIMEPOW_DIVIDES_INDEX] THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`];
ASM_REWRITE_TAC[TAUT `p \/ q ==> p <=> q ==> p`]] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 1` THEN
ASM_REWRITE_TAC[ARITH_RULE `~(2 <= n) <=> n <= 1`] THEN
ASM_REWRITE_TAC[index_def] THEN CONV_TAC NUM_REDUCE_CONV);;
let SQUAREFREE_PRIME_INDEX = prove
(`!n. squarefree n <=>
~(n = 0) /\ !p. prime p ==> index p n <= 1`,
GEN_TAC THEN REWRITE_TAC[SQUAREFREE_PRIME] THEN
REWRITE_TAC[PRIMEPOW_DIVIDES_INDEX] THEN
ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[DE_MORGAN_THM; ARITH_RULE `~(2 <= n) <=> n <= 1`] THEN
ASM_MESON_TAC[PRIME_1; PRIME_2]);;
let SQUAREFREE_COPRIME,SQUAREFREE_COPRIME_DIVISORS = (CONJ_PAIR o prove)
(`(!n. squarefree n <=> !a b. a * b = n ==> coprime(a,b)) /\
(!n. squarefree n <=> !a b. a * b divides n ==> coprime(a,b))`,
REWRITE_TAC[squarefree; AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN
MATCH_MP_TAC(TAUT
`(r ==> p) /\ (q ==> r) /\ (p ==> q)
==> (p <=> q) /\ (p <=> r)`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[EXP_2] THEN MESON_TAC[COPRIME_REFL];
REWRITE_TAC[divides; GSYM MULT_ASSOC] THEN MESON_TAC[COPRIME_RMUL];
REWRITE_TAC[coprime; EXP_2] THEN MESON_TAC[DIVIDES_MUL2]]);;
let SQUAREFREE_DIVISOR = prove
(`!m n. squarefree n /\ m divides n ==> squarefree m`,
REWRITE_TAC[squarefree] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE);;
let PRIME_IMP_SQUAREFREE = prove
(`!p. prime p ==> squarefree p`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[SQUAREFREE_PRIME_DIVISOR; DIVIDES_PRIME_PRIME; IMP_CONJ] THEN
GEN_TAC THEN REPLICATE_TAC 2 (DISCH_THEN(K ALL_TAC)) THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM EXP_1] THEN
ASM_SIMP_TAC[DIVIDES_EXP_LE; PRIME_GE_2] THEN
CONV_TAC NUM_REDUCE_CONV);;
let SQUAREFREE_MUL = prove
(`!m n. squarefree(m * n) <=> coprime(m,n) /\ squarefree m /\ squarefree n`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `coprime(m:num,n)` THENL
[ASM_REWRITE_TAC[]; ASM_MESON_TAC[SQUAREFREE_COPRIME]] THEN
EQ_TAC THENL
[REWRITE_TAC[squarefree] THEN MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL];
ASM_SIMP_TAC[SQUAREFREE_PRIME; PRIME_DIVPROD_POW_EQ]]);;
let SQUAREFREE_EXP = prove
(`!n k. squarefree(n EXP k) <=> n = 1 \/ k = 0 \/ squarefree n /\ k = 1`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[EXP_ONE; SQUAREFREE_1] THEN
ASM_CASES_TAC `k = 0` THEN ASM_REWRITE_TAC[EXP; SQUAREFREE_1] THEN
ASM_CASES_TAC `k = 1` THEN ASM_REWRITE_TAC[EXP_1] THEN
REWRITE_TAC[squarefree] THEN DISCH_THEN(MP_TAC o SPEC `n:num`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC DIVIDES_EXP_LE_IMP THEN
ASM_ARITH_TAC);;
let SQUAREFREE_NPRODUCT = prove
(`!s. FINITE s
==> (squarefree(nproduct s (\n. n)) <=>
pairwise (\a b. coprime(a,b)) s /\ !n. n IN s ==> squarefree n)`,
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[NPRODUCT_CLAUSES; PAIRWISE_EMPTY; NOT_IN_EMPTY; SQUAREFREE_1] THEN
REWRITE_TAC[PAIRWISE_INSERT; SQUAREFREE_MUL; FORALL_IN_INSERT] THEN
SIMP_TAC[pairwise; COPRIME_NPRODUCT_EQ] THEN MESON_TAC[COPRIME_SYM]);;
let SQUAREFREE_EXPAND = prove
(`!n. squarefree n
==> nproduct {p | prime p /\ p divides n} (\p. p) = n`,
REWRITE_TAC[SQUAREFREE_INDEX] THEN REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH (rand o rand) PRIME_FACTORIZATION o rand o snd) THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EQ_TRANS) THEN REWRITE_TAC[nproduct] THEN
MATCH_MP_TAC(MATCH_MP ITERATE_EQ MONOIDAL_MUL) THEN
REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `p:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num` o REWRITE_RULE[SQUAREFREE_INDEX]) THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`; INDEX_EQ_0] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[EXP_1] THEN ASM_MESON_TAC[PRIME_1]);;
let SQUAREFREE_EXPAND_EQ = prove
(`!n. squarefree n <=>
~(n = 0) /\ nproduct {p | prime p /\ p divides n} (\p. p) = n`,
GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_MESON_TAC[SQUAREFREE_0]; ASM_REWRITE_TAC[]] THEN
EQ_TAC THEN REWRITE_TAC[SQUAREFREE_EXPAND] THEN
DISCH_THEN(SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[SQUAREFREE_NPRODUCT; FINITE_SPECIAL_DIVISORS] THEN
SIMP_TAC[IN_ELIM_THM; PRIME_IMP_SQUAREFREE; pairwise] THEN
MESON_TAC[COPRIME_PRIME_PRIME]);;
let SQUAREFREE_DECOMPOSITION = prove
(`!n. ?m r. squarefree m /\ m * r EXP 2 = n`,
MATCH_MP_TAC INDUCT_COPRIME_ALT THEN REPEAT CONJ_TAC THENL
[MAP_EVERY EXISTS_TAC [`1`; `0`] THEN
REWRITE_TAC[SQUAREFREE_1] THEN CONV_TAC NUM_REDUCE_CONV;
REWRITE_TAC[IMP_CONJ; RIGHT_IMP_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[`a:num`; `b:num`; `ma:num`; `na:num`; `mb:num`; `nb:num`] THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `coprime(a:num,b)` THEN
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[COPRIME_LMUL; COPRIME_RMUL] THEN STRIP_TAC THEN
MAP_EVERY EXISTS_TAC [`ma * mb:num`; `na * nb:num`] THEN
ASM_REWRITE_TAC[SQUAREFREE_MUL] THEN ARITH_TAC;
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN DISCH_TAC THEN
MAP_EVERY EXISTS_TAC [`p EXP (k MOD 2)`; `p EXP (k DIV 2)`] THEN
ASM_SIMP_TAC[SQUAREFREE_EXP; PRIME_IMP_SQUAREFREE] THEN
CONJ_TAC THENL [ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[EXP_EXP; GSYM EXP_ADD] THEN AP_TERM_TAC THEN ARITH_TAC]);;
let CONG_MOD_SQUAREFREE = prove
(`!n a b. squarefree n /\
(!p. prime p /\ p divides n ==> (a == b) (mod p))
==> (a == b) (mod n)`,
REPLICATE_TAC 2 (GEN_REWRITE_TAC I [SWAP_FORALL_THM] THEN GEN_TAC) THEN
MATCH_MP_TAC COMPLETE_FACTOR_INDUCT THEN
REWRITE_TAC[CONG_MOD_1; SQUAREFREE_0] THEN
CONJ_TAC THENL [MESON_TAC[DIVIDES_PRIME_PRIME]; ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
ASM_CASES_TAC `squarefree m` THEN ASM_REWRITE_TAC[SQUAREFREE_MUL] THEN
ASM_CASES_TAC `squarefree n` THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[NUMBER_RULE
`coprime(m:num,n)
==> ((a == b) (mod (m * n)) <=>
(a == b) (mod m) /\ (a == b) (mod n))`] THEN
STRIP_TAC THEN DISCH_TAC THEN CONJ_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o CONJUNCT2) THEN
ASM_MESON_TAC[DIVIDES_LMUL; DIVIDES_RMUL]);;
let CONG_MOD_SQUAREFREE_EQ = prove
(`!n a b. squarefree n
==> ((a == b) (mod n) <=>
!p. prime p /\ p divides n ==> (a == b) (mod p))`,
REPEAT STRIP_TAC THEN EQ_TAC THENL [CONV_TAC NUMBER_RULE; ALL_TAC] THEN
ASM_MESON_TAC[CONG_MOD_SQUAREFREE]);;
(* ------------------------------------------------------------------------- *)
(* Euler totient function. *)
(* ------------------------------------------------------------------------- *)
let phi = new_definition
`phi(n) = CARD { m | 0 < m /\ m <= n /\ coprime(m,n) }`;;
let PHI_ALT = prove
(`phi(n) = CARD { m | coprime(m,n) /\ m < n}`,
REWRITE_TAC[phi] THEN
ASM_CASES_TAC `n = 0` THENL
[AP_TERM_TAC THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MESON_TAC[LT; NOT_LT];
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THENL
[SUBGOAL_THEN
`({m | 0 < m /\ m <= n /\ coprime (m,n)} = {1}) /\
({m | coprime (m,n) /\ m < n} = {0})`
(CONJUNCTS_THEN SUBST1_TAC)
THENL [ALL_TAC; SIMP_TAC[CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY]] THEN
ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_SING] THEN
REWRITE_TAC[COPRIME_1] THEN REPEAT STRIP_TAC THEN ARITH_TAC;
ALL_TAC] THEN
AP_TERM_TAC THEN ASM_REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
X_GEN_TAC `m:num` THEN ASM_CASES_TAC `m = 0` THEN
ASM_REWRITE_TAC[LT] THENL
[ASM_MESON_TAC[COPRIME_0; COPRIME_SYM];
ASM_MESON_TAC[LE_LT; COPRIME_REFL; LT_NZ]]);;
let PHI_FINITE_LEMMA = prove
(`!n. FINITE {m | coprime(m,n) /\ m < n}`,
REPEAT GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_NUMSEG; IN_ELIM_THM] THEN ARITH_TAC);;
let PHI_ANOTHER = prove
(`!n. ~(n = 1) ==> (phi(n) = CARD {m | 0 < m /\ m < n /\ coprime(m,n)})`,
REPEAT STRIP_TAC THEN REWRITE_TAC[phi] THEN
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
ASM_MESON_TAC[LE_LT; COPRIME_REFL; COPRIME_1; LT_NZ]);;
let PHI_LIMIT = prove
(`!n. phi(n) <= n`,
GEN_TAC THEN REWRITE_TAC[PHI_ALT] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM CARD_NUMSEG_LT] THEN
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[FINITE_NUMSEG_LT] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_LIMIT_STRONG = prove
(`!n. ~(n = 1) ==> phi(n) <= n - 1`,
REPEAT STRIP_TAC THEN
MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_0 = prove
(`phi 0 = 0`,
MP_TAC(SPEC `0` PHI_LIMIT) THEN REWRITE_TAC[ARITH] THEN ARITH_TAC);;
let PHI_1 = prove
(`phi 1 = 1`,
REWRITE_TAC[PHI_ALT; COPRIME_1; CARD_NUMSEG_LT]);;
let PHI_LOWERBOUND_1_STRONG = prove
(`!n. 1 <= n ==> 1 <= phi(n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `1 = CARD {1}` SUBST1_TAC THENL
[SIMP_TAC[CARD_CLAUSES; NOT_IN_EMPTY; FINITE_RULES; ARITH]; ALL_TAC] THEN
REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
[SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REWRITE_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_1] THEN
GEN_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC;
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_LOWERBOUND_1 = prove
(`!n. 2 <= n ==> 1 <= phi(n)`,
MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_TRANS; ARITH_RULE `1 <= 2`]);;
let PHI_LOWERBOUND_2 = prove
(`!n. 3 <= n ==> 2 <= phi(n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `2 = CARD {1,(n-1)}` SUBST1_TAC THENL
[SIMP_TAC[CARD_CLAUSES; IN_INSERT; NOT_IN_EMPTY; FINITE_RULES; ARITH] THEN
ASM_SIMP_TAC[ARITH_RULE `3 <= n ==> ~(1 = n - 1)`]; ALL_TAC] THEN
REWRITE_TAC[phi] THEN MATCH_MP_TAC CARD_SUBSET THEN CONJ_TAC THENL
[SIMP_TAC[SUBSET; IN_INSERT; NOT_IN_EMPTY; IN_ELIM_THM] THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[COPRIME_1] THEN
ASM_SIMP_TAC[ARITH;
ARITH_RULE `3 <= n ==> 0 < n - 1 /\ n - 1 <= n /\ 1 <= n`] THEN
REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
MP_TAC(SPEC `n:num` (CONJUNCT1 COPRIME_1)) THEN REWRITE_TAC[coprime] THEN
DISCH_THEN MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `1 = n - (n - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `3 <= n` THEN ARITH_TAC;
ASM_SIMP_TAC[DIVIDES_SUB]];
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{b | b <= n}` THEN
REWRITE_TAC[CARD_NUMSEG_LE; FINITE_NUMSEG_LE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]]);;
let PHI_EQ_0 = prove
(`!n. phi n = 0 <=> n = 0`,
GEN_TAC THEN EQ_TAC THEN SIMP_TAC[PHI_0] THEN
MP_TAC(SPEC `n:num` PHI_LOWERBOUND_1_STRONG) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Value on primes and prime powers. *)
(* ------------------------------------------------------------------------- *)
let PHI_PRIME_EQ = prove
(`!n. (phi n = n - 1) /\ ~(n = 0) /\ ~(n = 1) <=> prime n`,
GEN_TAC THEN REWRITE_TAC[PRIME] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
MP_TAC(SPEC `n:num` FINITE_NUMBER_SEGMENT) THEN
ASM_SIMP_TAC[PHI_ANOTHER; HAS_SIZE] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST1_TAC o SYM)) THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`{m | 0 < m /\ m < n /\ coprime (m,n)} = {m | 0 < m /\ m < n}` THEN
CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
AP_TERM_TAC THEN ABS_TAC THEN
REWRITE_TAC[COPRIME_SYM] THEN CONV_TAC TAUT] THEN
EQ_TAC THEN SIMP_TAC[] THEN DISCH_TAC THEN
MATCH_MP_TAC CARD_SUBSET_EQ THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
let PHI_PRIME = prove
(`!p. prime p ==> phi p = p - 1`,
MESON_TAC[PHI_PRIME_EQ]);;
let PHI_PRIMEPOW_SUC = prove
(`!p k. prime(p) ==> phi(p EXP (k + 1)) = p EXP (k + 1) - p EXP k`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[PHI_ALT; COPRIME_PRIMEPOW; ADD_EQ_0; ARITH] THEN
REWRITE_TAC[SET_RULE
`{n | ~(P n) /\ Q n} = {n | Q n} DIFF {n | P n /\ Q n}`] THEN
SIMP_TAC[FINITE_NUMSEG_LT; SUBSET; IN_ELIM_THM; CARD_DIFF] THEN
REWRITE_TAC[CARD_NUMSEG_LT] THEN AP_TERM_TAC THEN
SUBGOAL_THEN `{m | p divides m /\ m < p EXP (k + 1)} =
IMAGE (\x. p * x) {m | m < p EXP k}`
(fun th -> ASM_SIMP_TAC[th; CARD_IMAGE_INJ; EQ_MULT_LCANCEL; PRIME_IMP_NZ;
FINITE_NUMSEG_LT; CARD_NUMSEG_LT]) THEN
REWRITE_TAC[EXTENSION; TAUT `(a <=> b) <=> (a ==> b) /\ (b ==> a)`;
FORALL_AND_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[IN_ELIM_THM; GSYM ADD1; EXP; LT_MULT_LCANCEL; PRIME_IMP_NZ] THEN
CONJ_TAC THENL [ALL_TAC; NUMBER_TAC] THEN
X_GEN_TAC `x:num` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
DISCH_THEN(X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN EXISTS_TAC `n:num` THEN
UNDISCH_TAC `p * n < p * p EXP k` THEN
ASM_SIMP_TAC[LT_MULT_LCANCEL; PRIME_IMP_NZ]);;
let PHI_PRIMEPOW = prove
(`!p k. prime p
==> phi(p EXP k) = if k = 0 then 1 else p EXP k - p EXP (k - 1)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; CONJUNCT1 EXP; PHI_1] THEN
ASM_SIMP_TAC[ADD1; PHI_PRIMEPOW_SUC; ADD_SUB]);;
let PHI_PRIMEPOW_ALT = prove
(`!p k. prime p
==> phi(p EXP k) = if k = 0 then 1 else p EXP (k - 1) * (p - 1)`,
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[PHI_PRIMEPOW] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[RIGHT_SUB_DISTRIB] THEN
REWRITE_TAC[MULT_CLAUSES; GSYM(CONJUNCT2 EXP)] THEN
ASM_SIMP_TAC[ARITH_RULE `~(k = 0) ==> SUC(k - 1) = k`]);;
let PHI_2 = prove
(`phi 2 = 1`,
SIMP_TAC[PHI_PRIME; PRIME_2] THEN CONV_TAC NUM_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Multiplicativity property. *)
(* ------------------------------------------------------------------------- *)
let PHI_MULTIPLICATIVE = prove
(`!a b. coprime(a,b) ==> phi(a * b) = phi(a) * phi(b)`,
REPEAT STRIP_TAC THEN
MAP_EVERY ASM_CASES_TAC [`a = 0`; `b = 0`] THEN
ASM_REWRITE_TAC[PHI_0; MULT_CLAUSES] THEN
SIMP_TAC[PHI_ALT; GSYM CARD_PRODUCT; PHI_FINITE_LEMMA] THEN
CONV_TAC SYM_CONV THEN MATCH_MP_TAC CARD_IMAGE_INJ_EQ THEN
EXISTS_TAC `\p. p MOD a,p MOD b` THEN
REWRITE_TAC[PHI_FINITE_LEMMA; IN_ELIM_PAIR_THM] THEN
ASM_SIMP_TAC[IN_ELIM_THM; COPRIME_LMOD; DIVISION] THEN CONJ_TAC THENL
[MESON_TAC[COPRIME_LMUL2; COPRIME_RMUL2]; ALL_TAC] THEN
X_GEN_TAC `pp:num#num` THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN STRIP_TAC THEN
ASM_REWRITE_TAC[PAIR_EQ; GSYM CONJ_ASSOC] THEN MP_TAC(SPECL
[`a:num`; `b:num`; `m:num`; `n:num`] CHINESE_REMAINDER_COPRIME_UNIQUE) THEN
ASM_SIMP_TAC[CONG; MOD_LT]);;
(* ------------------------------------------------------------------------- *)
(* Even-ness of phi for most arguments. *)
(* ------------------------------------------------------------------------- *)
let EVEN_PHI = prove
(`!n. 3 <= n ==> EVEN(phi n)`,
REWRITE_TAC[ARITH_RULE `3 <= n <=> 1 < n /\ ~(n = 2)`; IMP_CONJ] THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN
SIMP_TAC[PHI_PRIMEPOW; PHI_MULTIPLICATIVE; EVEN_MULT; EVEN_SUB] THEN
CONJ_TAC THENL [MESON_TAC[COPRIME_REFL; ARITH_RULE `~(2 = 1)`]; ALL_TAC] THEN
REWRITE_TAC[EVEN_EXP] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP PRIME_ODD) THEN ASM_REWRITE_TAC[] THENL
[ASM_CASES_TAC `k = 1` THEN ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC;
ASM_REWRITE_TAC[GSYM NOT_ODD]]);;
let EVEN_PHI_EQ = prove
(`!n. EVEN(phi n) <=> n = 0 \/ 3 <= n`,
GEN_TAC THEN EQ_TAC THENL
[ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[ARITH_RULE `~(n = 0 \/ 3 <= n) <=> n = 1 \/ n = 2`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[PHI_1; PHI_2] THEN CONV_TAC NUM_REDUCE_CONV;
STRIP_TAC THEN ASM_SIMP_TAC[PHI_0; EVEN_PHI; EVEN]]);;
let ODD_PHI_EQ = prove
(`!n. ODD(phi n) <=> n = 1 \/ n = 2`,
REWRITE_TAC[GSYM NOT_EVEN; EVEN_PHI_EQ] THEN ARITH_TAC);;
let PHI_EQ_PRIME = prove
(`!p. phi p = p - 1 <=> p = 0 \/ prime p`,
GEN_TAC THEN ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PHI_0; ARITH] THEN
ASM_CASES_TAC `p = 1` THEN ASM_REWRITE_TAC[PHI_1; PRIME_1; ARITH] THEN
EQ_TAC THEN REWRITE_TAC[PHI_PRIME] THEN
SUBGOAL_THEN `1 < p` MP_TAC THENL
[ASM_ARITH_TAC; POP_ASSUM_LIST(K ALL_TAC)] THEN
SPEC_TAC(`p:num`,`n:num`) THEN
MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
[MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
STRIP_TAC THEN ASM_SIMP_TAC[PHI_MULTIPLICATIVE] THEN
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN
MATCH_MP_TAC(ARITH_RULE
`~(m = 0 /\ n = 0) /\ (m + 1) * (n + 1) <= k ==> ~(m * n = k - 1)`) THEN
ASM_SIMP_TAC[PHI_EQ_0; ARITH_RULE `1 < n ==> ~(n = 0)`] THEN
MATCH_MP_TAC LE_MULT2 THEN CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE
`~(n = 0) /\ m <= n - 1 ==> m + 1 <= n`) THEN
(CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC PHI_LIMIT_STRONG]) THEN
ASM_ARITH_TAC;
MAP_EVERY X_GEN_TAC [`p:num`; `k:num`] THEN
SIMP_TAC[PHI_PRIMEPOW; PRIME_EXP] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
`p EXP k - p EXP k1 = p EXP k - 1
==> ~(p EXP k = 0) /\ p EXP k1 <= p EXP k ==> p EXP k1 = 1`)) THEN
REWRITE_TAC[EXP_EQ_0; LE_EXP; EXP_EQ_1; ARITH_RULE `k - 1 <= k`] THEN
ASM_REWRITE_TAC[ARITH_RULE `k - 1 = 0 <=> k = 0 \/ k = 1`] THEN
ASM_MESON_TAC[PRIME_0; PRIME_1]]);;
let PHI_LIMIT_COMPOSITE = prove
(`!n. ~prime n /\ ~(n = 0) /\ ~(n = 1) ==> phi n < n - 1`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[LT_LE; PHI_LIMIT_STRONG; PHI_EQ_PRIME]);;
(* ------------------------------------------------------------------------- *)
(* Some iteration theorems. *)
(* ------------------------------------------------------------------------- *)
let NPRODUCT_MOD = prove
(`!s a:A->num n.
FINITE s /\ ~(n = 0)
==> (nproduct s (\m. a(m) MOD n) == nproduct s a) (mod n)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[nproduct] THEN
MP_TAC(SPEC `\x y. (x == y) (mod n)`
(MATCH_MP ITERATE_RELATED MONOIDAL_MUL)) THEN
SIMP_TAC[NEUTRAL_MUL; CONG_MULT; CONG_REFL] THEN DISCH_THEN MATCH_MP_TAC THEN
ASM_SIMP_TAC[CONG_MOD]);;
let NPRODUCT_CMUL = prove
(`!s a c.
FINITE s
==> nproduct s (\m. c * a(m)) = c EXP (CARD s) * nproduct s a`,
REWRITE_TAC[nproduct; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_SIMP_TAC[ITERATE_CLAUSES; MONOIDAL_MUL; NEUTRAL_MUL; CARD_CLAUSES;
EXP; MULT_CLAUSES] THEN
REWRITE_TAC[MULT_AC]);;
let ITERATE_OVER_COPRIME = prove
(`!op f n k.
monoidal(op) /\ coprime(k,n) /\
(!x y. (x == y) (mod n) ==> f x = f y)
==> iterate op {d | coprime(d,n) /\ d < n} (\m. f(k * m)) =
iterate op {d | coprime(d,n) /\ d < n} f`,
let lemma = prove
(`~(n = 0) ==> ((a * x MOD n == b) (mod n) <=> (a * x == b) (mod n))`,
MESON_TAC[CONG_REFL; CONG_SYM; CONG_TRANS; CONG_MULT; CONG_MOD]) in
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_SIMP_TAC[LT; SET_RULE `{x | F} = {}`; ITERATE_CLAUSES]; ALL_TAC] THEN
STRIP_TAC THEN SUBGOAL_THEN `?m. (k * m == 1) (mod n)` CHOOSE_TAC THENL
[ASM_MESON_TAC[CONG_SOLVE; MULT_SYM; CONG_SYM]; ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_EQ_GENERAL_INVERSES) THEN
MAP_EVERY EXISTS_TAC [`\x. (k * x) MOD n`; `\x. (m * x) MOD n`] THEN
REWRITE_TAC[IN_ELIM_THM] THEN
ASM_SIMP_TAC[COPRIME_LMOD; CONG_MOD_LT; CONG_LMOD; DIVISION; lemma;
COPRIME_LMUL] THEN
REPEAT STRIP_TAC THEN
TRY(FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_SIMP_TAC[CONG_LMOD]) THEN
UNDISCH_TAC `(k * m == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
let ITERATE_ITERATE_DIVISORS = prove
(`!op:A->A->A f x.
monoidal op
==> iterate op (1..x) (\n. iterate op {d | d divides n} (f n)) =
iterate op (1..x)
(\n. iterate op (1..(x DIV n)) (\k. f (k * n) n))`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[ITERATE_ITERATE_PRODUCT; FINITE_NUMSEG; FINITE_DIVISORS;
IN_NUMSEG; LE_1] THEN
MATCH_MP_TAC(REWRITE_RULE[RIGHT_IMP_FORALL_THM; IMP_IMP]
ITERATE_EQ_GENERAL_INVERSES) THEN
MAP_EVERY EXISTS_TAC [`\(n,d). d,n DIV d`; `\(n:num,k). n * k,n`] THEN
ASM_SIMP_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN CONJ_TAC THEN
REWRITE_TAC[IN_ELIM_THM] THEN X_GEN_TAC `n:num` THENL
[X_GEN_TAC `k:num` THEN SIMP_TAC[DIV_MULT; LE_1; GSYM LE_RDIV_EQ] THEN
SIMP_TAC[MULT_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
DISCH_THEN(K ALL_TAC) THEN NUMBER_TAC;
X_GEN_TAC `d:num` THEN ASM_CASES_TAC `d = 0` THEN
ASM_REWRITE_TAC[DIVIDES_ZERO] THENL [ARITH_TAC; ALL_TAC] THEN
STRIP_TAC THEN ASM_SIMP_TAC[DIV_MONO] THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[DIVIDES_DIV_MULT; MULT_SYM]] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN
ASM_SIMP_TAC[DIV_EQ_0; ARITH_RULE `1 <= x <=> ~(x = 0)`] THEN
ASM_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* Fermat's Little theorem / Fermat-Euler theorem. *)
(* ------------------------------------------------------------------------- *)
let FERMAT_LITTLE = prove
(`!a n. coprime(a,n) ==> (a EXP (phi n) == 1) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_SIMP_TAC[COPRIME_0; PHI_0; CONG_MOD_0] THEN CONV_TAC NUM_REDUCE_CONV THEN
DISCH_TAC THEN MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `nproduct {m | coprime (m,n) /\ m < n} (\m. m)` THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[PHI_ALT; MULT_CLAUSES] THEN
SIMP_TAC[IN_ELIM_THM; ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_NPRODUCT;
PHI_FINITE_LEMMA; GSYM NPRODUCT_CMUL] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN MATCH_MP_TAC CONG_TRANS THEN
EXISTS_TAC `nproduct {m | coprime(m,n) /\ m < n} (\m. (a * m) MOD n)` THEN
ASM_SIMP_TAC[NPRODUCT_MOD; PHI_FINITE_LEMMA] THEN
MP_TAC(ISPECL [`( * ):num->num->num`; `\x. x MOD n`; `n:num`; `a:num`]
ITERATE_OVER_COPRIME) THEN
ASM_SIMP_TAC[MONOIDAL_MUL; GSYM CONG; GSYM nproduct] THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[CONG_SYM] THEN
MATCH_MP_TAC NPRODUCT_MOD THEN ASM_SIMP_TAC[PHI_FINITE_LEMMA]);;
let FERMAT_LITTLE_PRIME = prove
(`!a p. prime p /\ coprime(a,p) ==> (a EXP (p - 1) == 1) (mod p)`,
MESON_TAC[FERMAT_LITTLE; PHI_PRIME_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Lucas's theorem. *)
(* ------------------------------------------------------------------------- *)
let LUCAS_COPRIME_LEMMA = prove
(`!m n a. ~(m = 0) /\ (a EXP m == 1) (mod n) ==> coprime(a,n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[CONG_MOD_0; EXP_EQ_1] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[COPRIME_1];
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[COPRIME_1] THEN
REPEAT STRIP_TAC THEN
REWRITE_TAC[coprime] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN
SUBGOAL_THEN `1 MOD n = 1` SUBST1_TAC THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_TAC THEN
SUBGOAL_THEN `d divides (a EXP m) MOD n` MP_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[DIVIDES_ONE]] THEN
MATCH_MP_TAC DIVIDES_ADD_REVR THEN
EXISTS_TAC `a EXP m DIV n * n` THEN
ASM_SIMP_TAC[GSYM DIVISION; DIVIDES_LMUL] THEN
SUBGOAL_THEN `m = SUC(m - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `~(m = 0)` THEN ARITH_TAC;
ASM_SIMP_TAC[EXP; DIVIDES_RMUL]]);;
let LUCAS_WEAK = prove
(`!a n. 2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(!m. 0 < m /\ m < n - 1 ==> ~(a EXP m == 1) (mod n))
==> prime(n)`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GSYM PHI_PRIME_EQ; PHI_LIMIT_STRONG; GSYM LE_ANTISYM;
ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `phi n`) THEN
SUBGOAL_THEN `coprime(a,n)` (fun th -> SIMP_TAC[FERMAT_LITTLE; th]) THENL
[MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN EXISTS_TAC `n - 1` THEN
ASM_SIMP_TAC [ARITH_RULE `2 <= n ==> ~(n - 1 = 0)`]; ALL_TAC] THEN
REWRITE_TAC[GSYM NOT_LT] THEN
MATCH_MP_TAC(TAUT `a ==> ~(a /\ b) ==> ~b`) THEN
ASM_SIMP_TAC[PHI_LOWERBOUND_1; ARITH_RULE `1 <= n ==> 0 < n`]);;
let LUCAS = prove
(`!a n. 2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides (n - 1)
==> ~(a EXP ((n - 1) DIV p) == 1) (mod n))
==> prime(n)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN
MATCH_MP_TAC LUCAS_WEAK THEN EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[TAUT `a ==> ~b <=> ~(a /\ b)`; GSYM NOT_EXISTS_THM] THEN
ONCE_REWRITE_TAC[num_WOP] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `0 < n ==> ~(n = 0)`)) THEN
SUBGOAL_THEN `m divides (n - 1)` MP_TAC THENL
[REWRITE_TAC[divides] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
ASM_SIMP_TAC[GSYM MOD_EQ_0] THEN
MATCH_MP_TAC(ARITH_RULE `~(0 < n) ==> (n = 0)`) THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `(n - 1) MOD m`) THEN
ASM_SIMP_TAC[DIVISION] THEN CONJ_TAC THENL
[MATCH_MP_TAC LT_TRANS THEN EXISTS_TAC `m:num` THEN
ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN
MATCH_MP_TAC CONG_MULT_LCANCEL THEN
EXISTS_TAC `a EXP ((n - 1) DIV m * m)` THEN CONJ_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC LUCAS_COPRIME_LEMMA THEN
EXISTS_TAC `m:num` THEN ASM_SIMP_TAC[]; ALL_TAC] THEN
REWRITE_TAC[GSYM EXP_ADD] THEN
ASM_SIMP_TAC[GSYM DIVISION] THEN REWRITE_TAC[MULT_CLAUSES] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM EXP_EXP] THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `((a EXP m) MOD n) EXP ((n - 1) DIV m) MOD n` THEN
CONJ_TAC THENL [ALL_TAC; ASM_SIMP_TAC[MOD_EXP_MOD]] THEN
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[MOD_EXP_MOD] THEN
REWRITE_TAC[EXP_ONE]; ALL_TAC] THEN
REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `~(r = 1)` MP_TAC THENL
[UNDISCH_TAC `m < m * r` THEN CONV_TAC CONTRAPOS_CONV THEN
SIMP_TAC[MULT_CLAUSES; LT_REFL]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` MP_TAC) THEN STRIP_TAC THEN
UNDISCH_TAC `!p. prime p /\ p divides m * r
==> ~(a EXP ((m * r) DIV p) == 1) (mod n)` THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN ASM_SIMP_TAC[DIVIDES_LMUL] THEN
SUBGOAL_THEN `(m * r) DIV p = m * (r DIV p)` SUBST1_TAC THENL
[MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
UNDISCH_TAC `prime p` THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
ASM_SIMP_TAC[ARITH_RULE `~(p = 0) ==> 0 < p`] THEN
DISCH_TAC THEN REWRITE_TAC[ADD_CLAUSES; GSYM MULT_ASSOC] THEN
AP_TERM_TAC THEN UNDISCH_TAC `p divides r` THEN
REWRITE_TAC[divides] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
ASM_SIMP_TAC[DIV_MULT] THEN REWRITE_TAC[MULT_AC]; ALL_TAC] THEN
UNDISCH_TAC `(a EXP m == 1) (mod n)` THEN
ASM_SIMP_TAC[CONG] THEN
DISCH_THEN(MP_TAC o C AP_THM `r DIV p` o AP_TERM `(EXP)`) THEN
DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
ASM_SIMP_TAC[MOD_EXP_MOD] THEN
REWRITE_TAC[EXP_EXP; EXP_ONE]);;
(* ------------------------------------------------------------------------- *)
(* Definition of the order of a number mod n (always 0 in non-coprime case). *)
(* ------------------------------------------------------------------------- *)
let order = new_definition
`order n a = @d. !k. (a EXP k == 1) (mod n) <=> d divides k`;;
let EXP_ITER = prove
(`!x n. x EXP n = ITER n (\y. x * y) (1)`,
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ITER; EXP]);;
let ORDER_DIVIDES = prove
(`!n a d. (a EXP d == 1) (mod n) <=> order(n) a divides d`,
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[order] THEN CONV_TAC SELECT_CONV THEN
MP_TAC(ISPECL [`\x y:num. (x == y) (mod n)`; `\x:num. a * x`; `1`]
ORDER_EXISTENCE_ITER) THEN
REWRITE_TAC[GSYM EXP_ITER] THEN DISCH_THEN MATCH_MP_TAC THEN
NUMBER_TAC);;
let ORDER = prove
(`!n a. (a EXP (order(n) a) == 1) (mod n)`,
REWRITE_TAC[ORDER_DIVIDES; DIVIDES_REFL]);;
let ORDER_UNIQUE_ALT = prove
(`!n a d. order n a = d <=> !k. (a EXP k == 1) (mod n) <=> d divides k`,
REWRITE_TAC[ORDER_DIVIDES; GSYM DIVIDES_ANTISYM] THEN
MESON_TAC[DIVIDES_REFL; DIVIDES_TRANS]);;
let ORDER_MINIMAL = prove
(`!n a m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
REWRITE_TAC[ORDER_DIVIDES] THEN REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP DIVIDES_LE) THEN ASM_ARITH_TAC);;
let ORDER_WORKS = prove
(`!n a. (a EXP (order(n) a) == 1) (mod n) /\
!m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_1 = prove
(`!n. order n 1 = 1`,
REWRITE_TAC[GSYM DIVIDES_ONE; GSYM ORDER_DIVIDES; EXP_1; CONG_REFL]);;
let ORDER_EQ_0 = prove
(`!n a. order(n) a = 0 <=> ~coprime(n,a)`,
REPEAT GEN_TAC THEN EQ_TAC THEN DISCH_TAC THENL
[ONCE_REWRITE_TAC[COPRIME_SYM] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP FERMAT_LITTLE) THEN
ASM_REWRITE_TAC[ORDER_DIVIDES; DIVIDES_ZERO; PHI_EQ_0] THEN
ASM_MESON_TAC[COPRIME_0; ORDER_1; ARITH_RULE `~(1 = 0)`];
MP_TAC(SPECL [`n:num`; `a:num`] ORDER) THEN
SPEC_TAC(`order n a`,`m:num`) THEN INDUCT_TAC THEN REWRITE_TAC[] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (TAUT
`~p ==> (q ==> p) ==> q ==> r`)) THEN
REWRITE_TAC[EXP] THEN CONV_TAC NUMBER_RULE]);;
let ORDER_EQ_1 = prove
(`!n a. order n a = 1 <=> (a == 1) (mod n)`,
REWRITE_TAC[ORDER_UNIQUE_ALT; DIVIDES_1] THEN
MESON_TAC[CONG_EXP_1; EXP_1]);;
let ORDER_UNIQUE_PRIME = prove
(`!n a p.
prime p
==> (order n a = p <=> ~((a == 1) (mod n)) /\ (a EXP p == 1) (mod n))`,
SIMP_TAC[ORDER_DIVIDES] THEN REWRITE_TAC[GSYM ORDER_EQ_1] THEN
REWRITE_TAC[prime] THEN
MESON_TAC[NUMBER_RULE `1 divides n /\ n divides n`]);;
let ORDER_CONG = prove
(`!n a b. (a == b) (mod n) ==> order n a = order n b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[order] THEN
AP_TERM_TAC THEN ABS_TAC THEN
ASM_MESON_TAC[CONG_EXP; CONG_REFL; CONG_SYM; CONG_TRANS]);;
let ORDER_MOD = prove
(`!p n. order p (n MOD p) = order p n`,
REPEAT GEN_TAC THEN MATCH_MP_TAC ORDER_CONG THEN
REWRITE_TAC[CONG_LMOD; CONG_REFL]);;
let COPRIME_ORDER = prove
(`!n a. coprime(n,a)
==> order(n) a > 0 /\
(a EXP (order(n) a) == 1) (mod n) /\
!m. 0 < m /\ m < order(n) a ==> ~((a EXP m == 1) (mod n))`,
SIMP_TAC[ARITH_RULE `n > 0 <=> ~(n = 0)`; ORDER_EQ_0] THEN
MESON_TAC[ORDER; ORDER_MINIMAL]);;
let ORDER_DIVIDES_PHI = prove
(`!a n. coprime(n,a) ==> (order n a) divides (phi n)`,
MESON_TAC[ORDER_DIVIDES; FERMAT_LITTLE; COPRIME_SYM]);;
let ORDER_LE_PHI = prove
(`!n. ~(n = 0) ==> order n a <= phi n`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `order n a = 0` THEN ASM_REWRITE_TAC[LE_0] THEN
MATCH_MP_TAC DIVIDES_LE_IMP THEN ASM_REWRITE_TAC[PHI_EQ_0] THEN
MATCH_MP_TAC ORDER_DIVIDES_PHI THEN
ASM_MESON_TAC[ORDER_EQ_0]);;
let ORDER_DIVIDES_EXPDIFF = prove
(`!a n d e. coprime(n,a)
==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`,
SUBGOAL_THEN
`!a n d e. coprime(n,a) /\ e <= d
==> ((a EXP d == a EXP e) (mod n) <=> (d == e) (mod (order n a)))`
(fun th -> MESON_TAC[th; LE_CASES; CONG_SYM]) THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [LE_EXISTS]) THEN
DISCH_THEN(X_CHOOSE_THEN `c:num` SUBST1_TAC) THEN
SUBST1_TAC(ARITH_RULE `e = e + 0`) THEN
REWRITE_TAC[ARITH_RULE `(e + 0) + c = e + c`] THEN
REWRITE_TAC[EXP_ADD] THEN
ASM_SIMP_TAC[CONG_ADD_LCANCEL_EQ; COPRIME_EXP;
ONCE_REWRITE_RULE[COPRIME_SYM] CONG_MULT_LCANCEL_EQ] THEN
REWRITE_TAC[EXP; CONG_0_DIVIDES; ORDER_DIVIDES]);;
let ORDER_UNIQUE = prove
(`!n a k. 0 < k /\
(a EXP k == 1) (mod n) /\
(!m. 0 < m /\ m < k ==> ~(a EXP m == 1) (mod n))
==> order n a = k`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `order n a`) THEN
MP_TAC(ISPECL [`n:num`; `a:num`] ORDER_WORKS) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
ASM_REWRITE_TAC[] THEN ASM_CASES_TAC `order n a = 0` THEN
ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_ARITH_TAC] THEN
FIRST_X_ASSUM(ASSUME_TAC o GEN_REWRITE_RULE I [ORDER_EQ_0]) THEN
MP_TAC(ISPECL [`n:num`; `a:num`; `k:num`] COPRIME_REXP) THEN
ASM_SIMP_TAC[LE_1; LT] THEN
UNDISCH_TAC `(a EXP k == 1) (mod n)` THEN CONV_TAC NUMBER_RULE);;
let ORDER_MUL_LCM = prove
(`!m n a. coprime(m,n) ==> order (m * n) a = lcm(order m a,order n a)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[ORDER_UNIQUE_ALT] THEN
ASM_SIMP_TAC[NUMBER_RULE
`coprime(m,n)
==> ((x == y) (mod (m * n)) <=>
(x == y) (mod m) /\ (x == y) (mod n))`] THEN
REWRITE_TAC[ORDER_DIVIDES; LCM_DIVIDES]);;
let ORDER_EXP_GEN = prove
(`!p a k. order p (a EXP k) =
if k = 0 then 1 else order p a DIV gcd(order p a,k)`,
REPEAT GEN_TAC THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ORDER_1; EXP] THEN
ASM_CASES_TAC `order p a = 0` THENL
[ASM_REWRITE_TAC[DIV_0; ORDER_EQ_0; COPRIME_REXP] THEN
ASM_REWRITE_TAC[GSYM ORDER_EQ_0];
ALL_TAC] THEN
REWRITE_TAC[ORDER_UNIQUE_ALT; EXP_EXP] THEN
X_GEN_TAC `j:num` THEN REWRITE_TAC[ORDER_DIVIDES] THEN
MP_TAC(NUMBER_RULE `gcd(order p a,k) divides order p a`) THEN
GEN_REWRITE_TAC LAND_CONV [divides] THEN
ABBREV_TAC `d = gcd(order p a,k)` THEN
ASM_CASES_TAC `d = 0` THENL [ASM_MESON_TAC[GCD_ZERO]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_TAC `e:num`) THEN ASM_SIMP_TAC[DIV_MULT] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC NUMBER_RULE);;
let ORDER_EXP = prove
(`!p a k. ~(k = 0) /\ k divides order p a
==> order p (a EXP k) = order p a DIV k`,
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[ORDER_EXP_GEN] THEN
AP_TERM_TAC THEN ASM_REWRITE_TAC[GSYM DIVIDES_GCD_RIGHT]);;
let ORDER_INVERSE_MOD = prove
(`!n a. coprime(n,a) ==> order n (inverse_mod n a) = order n a`,
REPEAT STRIP_TAC THEN REWRITE_TAC[order] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `d:num` THEN REWRITE_TAC[] THEN
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN
X_GEN_TAC `k:num` THEN REWRITE_TAC[] THEN AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC(NUMBER_RULE
`(a * b == 1) (mod n) ==> ((a == 1) (mod n) <=> (b == 1) (mod n))`) THEN
REWRITE_TAC[GSYM MULT_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN
ASM_REWRITE_TAC[INVERSE_MOD_LMUL_EQ]);;
let ORDER_MUL_DIVIDES = prove
(`!p a b. order p (a * b) divides order p a * order p b`,
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
REWRITE_TAC[MULT_EXP] THEN MATCH_MP_TAC CONG_MULT_1 THEN
REWRITE_TAC[ORDER_DIVIDES] THEN NUMBER_TAC);;
let ORDER_MUL_EQ = prove
(`!p a b. coprime(order p a,order p b)
==> order p (a * b) = order p a * order p b`,
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM DIVIDES_ANTISYM] THEN
ASM_SIMP_TAC[ORDER_MUL_DIVIDES] THEN
MATCH_MP_TAC(NUMBER_RULE
`(a:num) divides (b * c) /\ b divides (a * c) /\ coprime(a,b)
==> (a * b) divides c`) THEN
ASM_REWRITE_TAC[GSYM ORDER_DIVIDES] THEN CONJ_TAC THEN
MATCH_MP_TAC CONG_TRANS THENL
[EXISTS_TAC `(a * b) EXP (order p b * order p (a * b))`;
EXISTS_TAC `(a * b) EXP (order p a * order p (a * b))`] THEN
(CONJ_TAC THENL
[ALL_TAC;
GEN_REWRITE_TAC (RATOR_CONV o LAND_CONV o RAND_CONV) [MULT_SYM] THEN
REWRITE_TAC[GSYM EXP_EXP] THEN MATCH_MP_TAC CONG_EXP_1 THEN
REWRITE_TAC[ORDER_WORKS]]) THEN
REWRITE_TAC[GSYM EXP_EXP] THEN MATCH_MP_TAC CONG_EXP THEN
REWRITE_TAC[MULT_EXP] THENL
[MATCH_MP_TAC(NUMBER_RULE `(b == 1) (mod n) ==> (a == a * b) (mod n)`);
MATCH_MP_TAC(NUMBER_RULE `(a == 1) (mod n) ==> (b == a * b) (mod n)`)] THEN
REWRITE_TAC[ORDER_WORKS]);;
let ORDER_LCM_EXISTS = prove
(`!p a b. ?c. order p c = lcm(order p a,order p b)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `order p a = 0` THENL
[ASM_MESON_TAC[LCM_0]; ALL_TAC] THEN
ASM_CASES_TAC `order p b = 0` THENL
[ASM_MESON_TAC[LCM_0]; ALL_TAC] THEN
MP_TAC(SPECL [`order p a`; `order p b`]
LCM_COPRIME_DECOMP) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`m:num`; `n:num`] THEN
REWRITE_TAC[divides; IMP_CONJ; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `m':num` THEN DISCH_TAC THEN
X_GEN_TAC `n':num` THEN DISCH_TAC THEN DISCH_TAC THEN
DISCH_THEN(fun th -> SUBST1_TAC(SYM th) THEN ASSUME_TAC(SYM th)) THEN
EXISTS_TAC `a EXP m' * b EXP n'` THEN
SUBGOAL_THEN
`order p (a EXP m') = m /\ order p (b EXP n') = n`
(fun th -> ASM_SIMP_TAC[th; ORDER_MUL_EQ]) THEN
ASM_SIMP_TAC[ORDER_EXP_GEN] THEN CONJ_TAC THEN
(COND_CASES_TAC THENL [ASM_MESON_TAC[MULT_CLAUSES]; ALL_TAC]) THEN
REWRITE_TAC[NUMBER_RULE `gcd(a * b:num,a) = a /\ gcd(a * b,b) = b`] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN ASM_SIMP_TAC[DIV_MULT]);;
let ORDER_DIVIDES_MAXIMAL = prove
(`!p. ~(p = 1)
==> ?n. coprime(p,n) /\
!m. coprime(p,m) ==> order p m divides order p n`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THEN
ASM_SIMP_TAC[COPRIME_0; DIVIDES_REFL; UNWIND_THM2] THEN
MP_TAC(fst(EQ_IMP_RULE(ISPEC `IMAGE (order p) {k | k < p}` num_MAX))) THEN
REWRITE_TAC[MESON[IN] `IMAGE f s x <=> x IN IMAGE f s`] THEN
SIMP_TAC[GSYM num_FINITE; FINITE_IMAGE; FINITE_NUMSEG_LT] THEN
REWRITE_TAC[MEMBER_NOT_EMPTY; IMAGE_EQ_EMPTY] THEN
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN
ANTS_TAC THENL [ASM_MESON_TAC[LE_1]; ALL_TAC] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `1`) THEN
ANTS_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`a <= b ==> ~(a = 0) ==> ~(b = 0)`)) THEN
REWRITE_TAC[ORDER_EQ_0; COPRIME_1] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `m:num` THEN DISCH_TAC THEN
MP_TAC(SPECL [`p:num`; `m:num`; `n:num`] ORDER_LCM_EXISTS) THEN
DISCH_THEN(X_CHOOSE_TAC `q:num`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `q MOD p`) THEN
ASM_REWRITE_TAC[ORDER_MOD; MOD_LT_EQ] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`a:num <= b ==> b <= a ==> a = b`)) THEN
ASM_REWRITE_TAC[LE_LCM; GSYM DIVIDES_LCM_RIGHT; ORDER_EQ_0]);;
let POWER_RESIDUE_MODULO_COPRIME = prove
(`!n a k. coprime(n,a) /\ coprime(k,phi n)
==> ?x. (x EXP k == a) (mod n)`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `1` o MATCH_MP CONG_SOLVE) THEN
DISCH_THEN(X_CHOOSE_TAC `l:num`) THEN EXISTS_TAC `a EXP l` THEN
REWRITE_TAC[EXP_EXP] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN
ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP ORDER_DIVIDES_PHI) THEN
POP_ASSUM MP_TAC THEN NUMBER_TAC);;
let POWER_RESIDUE_MODULO_PRIME = prove
(`!p a k. prime p /\ ~(p divides a) /\ coprime(k,p - 1)
==> ?x. (x EXP k == a) (mod p)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC POWER_RESIDUE_MODULO_COPRIME THEN
ASM_SIMP_TAC[PHI_PRIME; PRIME_COPRIME_EQ]);;
let INJECTIVE_EXP_MODULO = prove
(`!n a b k.
coprime(k,phi n) /\
coprime(n,a) /\ coprime(n,b) /\
(a EXP k == b EXP k) (mod n)
==> (a == b) (mod n)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?l. (k * l == 1) (mod phi n)` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[CONG_SOLVE]; ALL_TAC] THEN
SUBGOAL_THEN `(a EXP k EXP l == b EXP k EXP l) (mod n)` MP_TAC THENL
[ASM_MESON_TAC[CONG_EXP]; ALL_TAC] THEN
MATCH_MP_TAC(NUMBER_RULE
`(a':num == a) (mod n) /\ (b' == b) (mod n)
==> (a' == b') (mod n) ==> (a == b) (mod n)`) THEN
CONJ_TAC THEN GEN_REWRITE_TAC LAND_CONV [GSYM EXP_1] THEN
ASM_SIMP_TAC[ORDER_DIVIDES_EXPDIFF; EXP_EXP] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (NUMBER_RULE
`(a:num == b) (mod d) ==> e divides d ==> (a == b) (mod e)`)) THEN
ASM_SIMP_TAC[ORDER_DIVIDES_PHI]);;
(* ------------------------------------------------------------------------- *)
(* Properties of primitive roots (when they exist). *)
(* ------------------------------------------------------------------------- *)
let PRIMITIVE_ROOT_IMP_COPRIME = prove
(`!n g. order n g = phi n ==> n = 0 \/ coprime(n,g)`,
MESON_TAC[ORDER_EQ_0; PHI_EQ_0]);;
let PRIMITIVE_ROOT_IMP_PRIME = prove
(`!p g. order p g = p - 1 ==> p = 0 \/ prime p`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THENL
[ASM_REWRITE_TAC[]; REWRITE_TAC[GSYM PHI_EQ_PRIME]] THEN
ASM_CASES_TAC `p = 1` THEN
ASM_REWRITE_TAC[SUB_REFL; ORDER_EQ_0; COPRIME_1] THEN
MATCH_MP_TAC(ARITH_RULE
`h <= p - 1 /\ g <= h ==> g = p - 1 ==> h = p - 1`) THEN
ASM_SIMP_TAC[PHI_LIMIT_STRONG; ORDER_LE_PHI]);;
let PRIMITIVE_ROOT_IMAGE = prove
(`!n g. order n g = phi n
==> IMAGE (\i. (g EXP i) MOD n) {i | i < phi n} =
{a | coprime(a,n) /\ a < n}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[PHI_0; CONJUNCT1 LT; EMPTY_GSPEC; IMAGE_CLAUSES] THEN
DISCH_TAC THEN
SUBGOAL_THEN `coprime(n:num,g)` ASSUME_TAC THENL
[ASM_MESON_TAC[ORDER_EQ_0; PHI_EQ_0];
ALL_TAC] THEN
MATCH_MP_TAC SUBSET_ANTISYM THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
ASM_REWRITE_TAC[COPRIME_LMOD; COPRIME_LEXP; MOD_LT_EQ] THEN
ASM_MESON_TAC[COPRIME_SYM];
DISCH_TAC] THEN
REWRITE_TAC[SET_RULE
`t SUBSET IMAGE f s <=> !y. y IN t ==> ?x. x IN s /\ f x = y`] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SURJECTIVE_IFF_INJECTIVE_GEN o snd) THEN
ASM_REWRITE_TAC[FINITE_NUMSEG_LT; GSYM PHI_ALT; CARD_NUMSEG_LT] THEN
ANTS_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{i:num | i < n}` THEN
REWRITE_TAC[FINITE_NUMSEG_LT] THEN SET_TAC[];
DISCH_THEN SUBST1_TAC] THEN
ASM_SIMP_TAC[IN_ELIM_THM; GSYM CONG; ORDER_DIVIDES_EXPDIFF] THEN
MESON_TAC[CONG_IMP_EQ]);;
let PRIMITIVE_ROOT_IMAGE_PRIME = prove
(`!p g. order p g = p - 1
==> IMAGE (\i. (g EXP i) MOD p) {i | i < p - 1} =
{a | 0 < a /\ a < p}`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = 0` THEN
ASM_REWRITE_TAC[ARITH; CONJUNCT1 LT; EMPTY_GSPEC; IMAGE_CLAUSES] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_IMP_PRIME) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
MP_TAC(SPECL [`p:num`; `g:num`] PRIMITIVE_ROOT_IMAGE) THEN
ASM_SIMP_TAC[PHI_PRIME] THEN DISCH_THEN SUBST1_TAC THEN
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN X_GEN_TAC `a:num` THEN
ASM_CASES_TAC `a:num < p` THEN ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_SIMP_TAC[PRIME_COPRIME_EQ] THEN
ASM_CASES_TAC `a = 0` THEN ASM_REWRITE_TAC[LT_REFL; DIVIDES_0] THEN
ASM_REWRITE_TAC[ARITH_RULE `0 < a <=> ~(a = 0)`] THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE_STRONG) THEN
ASM_ARITH_TAC);;
let PRIMITIVE_ROOT_SURJECTIVE = prove
(`!n g a. ~(n = 0) /\ order n g = phi n /\ coprime(a,n)
==> ?m. m < phi n /\ (a == g EXP m) (mod n)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_IMAGE) THEN
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
`IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN
DISCH_THEN(MP_TAC o SPEC `a MOD n`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; COPRIME_LMOD; MOD_LT_EQ] THEN
MESON_TAC[CONG]);;
let PRIMITIVE_ROOT_SURJECTIVE_ALT = prove
(`!n g a. order n g = phi n /\ coprime(a,n)
==> ?m. (a == g EXP m) (mod n)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL
[ALL_TAC; ASM_MESON_TAC[PRIMITIVE_ROOT_SURJECTIVE]] THEN
ASM_SIMP_TAC[COPRIME_0; CONG_MOD_0] THEN MESON_TAC[EXP]);;
let PRIMITIVE_ROOT_SURJECTIVE_PRIME = prove
(`!p g a. ~(p = 0) /\ order p g = p - 1 /\ coprime(a,p)
==> ?m. m < p - 1 /\ (a == g EXP m) (mod p)`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIMITIVE_ROOT_IMAGE_PRIME) THEN
DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
`IMAGE f s = t ==> !y. y IN t ==> ?x. x IN s /\ f x = y`)) THEN
DISCH_THEN(MP_TAC o SPEC `a MOD p`) THEN
ASM_REWRITE_TAC[IN_ELIM_THM; COPRIME_LMOD; MOD_LT_EQ] THEN
REWRITE_TAC[CONG; ARITH_RULE `0 < n <=> ~(n = 0)`; GSYM DIVIDES_MOD] THEN
ASM_MESON_TAC[PRIME_COPRIME_EQ; COPRIME_SYM; PRIMITIVE_ROOT_IMP_PRIME]);;
let PRIMITIVE_ROOT_SURJECTIVE_PRIME_ALT = prove
(`!p g a. order p g = p - 1 /\ coprime(a,p)
==> ?m. (a == g EXP m) (mod p)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `p = 0` THENL
[ALL_TAC; ASM_MESON_TAC[PRIMITIVE_ROOT_SURJECTIVE_PRIME]] THEN
ASM_SIMP_TAC[COPRIME_0; CONG_MOD_0] THEN MESON_TAC[EXP]);;
(* ------------------------------------------------------------------------- *)
(* Another trivial primality characterization. *)
(* ------------------------------------------------------------------------- *)
let PRIME_DIVISOR_SQRT = prove
(`!n. prime(n) <=> ~(n = 1) /\ !d. d divides n /\ d EXP 2 <= n ==> (d = 1)`,
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [prime] THEN
ASM_CASES_TAC `n = 1` THEN ASM_SIMP_TAC[DIVIDES_ONE] THEN
ASM_CASES_TAC `n = 0` THENL
[ASM_REWRITE_TAC[DIVIDES_0; LE; EXP_EQ_0; ARITH_EQ] THEN
MATCH_MP_TAC(TAUT `~a /\ ~b ==> (a <=> b)`) THEN CONJ_TAC THENL
[DISCH_THEN(MP_TAC o SPEC `2`) THEN REWRITE_TAC[ARITH];
DISCH_THEN(MP_TAC o SPEC `0`) THEN REWRITE_TAC[ARITH]];
ALL_TAC] THEN
EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `d:num` THEN STRIP_TAC THENL
[ASM_CASES_TAC `d = n:num` THENL
[ALL_TAC; ASM_MESON_TAC[]] THEN
UNDISCH_TAC `d EXP 2 <= n` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[EXP_2; ARITH_RULE `~(n * n <= n) <=> n * 1 < n * n`] THEN
ASM_REWRITE_TAC[LT_MULT_LCANCEL] THEN
MAP_EVERY UNDISCH_TAC [`~(n = 0)`; `~(n = 1)`] THEN ARITH_TAC;
ALL_TAC] THEN
UNDISCH_TAC `d divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `e:num` SUBST_ALL_TAC) THEN
SUBGOAL_THEN `d EXP 2 <= d * e \/ e EXP 2 <= d * e` MP_TAC THENL
[REWRITE_TAC[EXP_2; LE_MULT_LCANCEL; LE_MULT_RCANCEL] THEN ARITH_TAC;
ALL_TAC] THEN
DISCH_THEN DISJ_CASES_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPEC `d:num`);
FIRST_X_ASSUM(MP_TAC o SPEC `e:num`)] THEN
ASM_SIMP_TAC[DIVIDES_RMUL; DIVIDES_LMUL; DIVIDES_REFL; MULT_CLAUSES]);;
let PRIME_PRIME_FACTOR_SQRT = prove
(`!n. prime n <=>
~(n = 0) /\ ~(n = 1) /\ ~(?p. prime p /\ p divides n /\ p EXP 2 <= n)`,
GEN_TAC THEN ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PRIME_1] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[PRIME_0] THEN
GEN_REWRITE_TAC LAND_CONV [PRIME_DIVISOR_SQRT] THEN
EQ_TAC THENL [MESON_TAC[PRIME_1]; ALL_TAC] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
ASM_REWRITE_TAC[] THEN X_GEN_TAC `d:num` THEN STRIP_TAC THEN
ASM_CASES_TAC `d = 1` THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
CONJ_TAC THENL [ASM_MESON_TAC[DIVIDES_TRANS]; ALL_TAC] THEN
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `d EXP 2` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[num_CONV `2`; EXP_MONO_LE; NOT_SUC] THEN
ASM_MESON_TAC[DIVIDES_LE; DIVIDES_ZERO]);;
(* ------------------------------------------------------------------------- *)
(* Pocklington theorem. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_LEMMA = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> coprime(a EXP ((n - 1) DIV p) - 1,n))
==> !p. prime p /\ p divides n ==> (p == 1) (mod q)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `order p (a EXP r) = q` ASSUME_TAC THENL
[ALL_TAC;
SUBGOAL_THEN `coprime(a EXP r,p)` (MP_TAC o MATCH_MP FERMAT_LITTLE) THENL
[ALL_TAC;
ASM_REWRITE_TAC[ORDER_DIVIDES] THEN
SUBGOAL_THEN `phi p = p - 1` SUBST1_TAC THENL
[ASM_MESON_TAC[PHI_PRIME_EQ]; ALL_TAC] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(p - 1 = q * d) ==> ~(p = 0) ==> (p + q * 0 = 1 + q * d)`)) THEN
REWRITE_TAC[nat_mod; cong] THEN ASM_MESON_TAC[PRIME_0]] THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN MATCH_MP_TAC COPRIME_EXP THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[coprime; NOT_FORALL_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `d = p:num` SUBST_ALL_TAC THENL
[ASM_MESON_TAC[prime]; ALL_TAC] THEN
SUBGOAL_THEN `p divides (a EXP (n - 1))` ASSUME_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`2 <= n ==> (n - 1 = SUC(n - 2))`)) THEN
REWRITE_TAC[EXP] THEN ASM_SIMP_TAC[DIVIDES_RMUL];
ALL_TAC] THEN
REWRITE_TAC[cong; nat_mod] THEN
SUBGOAL_THEN `~(p divides 1)` MP_TAC THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
ASM_MESON_TAC[DIVIDES_RMUL; DIVIDES_ADD; DIVIDES_ADD_REVL]] THEN
SUBGOAL_THEN `(order p (a EXP r)) divides q` MP_TAC THENL
[REWRITE_TAC[GSYM ORDER_DIVIDES; EXP_EXP] THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN
UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `b:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[cong; nat_mod] THEN MESON_TAC[MULT_AC];
ALL_TAC] THEN
REWRITE_TAC[divides; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `d:num` THEN
ASM_CASES_TAC `d = 1` THEN ASM_SIMP_TAC[MULT_CLAUSES] THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `P:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `P divides q` ASSUME_TAC THENL
[ASM_MESON_TAC[DIVIDES_LMUL]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `P:num`) THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `~a ==> a ==> b`) THEN
UNDISCH_TAC `P divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num` SUBST_ALL_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
SUBGOAL_THEN `~(P = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
ASM_SIMP_TAC[DIV_MULT] THEN
UNDISCH_TAC `P divides d` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `t:num` SUBST_ALL_TAC) THEN
UNDISCH_TAC `order p (a EXP r) * P * t = P * s` THEN
ONCE_REWRITE_TAC[ARITH_RULE
`(a * p * b = p * c) <=> (p * a * b = p * c)`] THEN
REWRITE_TAC[EQ_MULT_LCANCEL] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN REWRITE_TAC[coprime] THEN
DISCH_THEN(MP_TAC o SPEC `p:num`) THEN REWRITE_TAC[NOT_IMP] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[PRIME_1]] THEN
ASM_REWRITE_TAC[] THEN
ONCE_REWRITE_TAC[AC MULT_AC `(d * t) * r = r * d * t`] THEN
REWRITE_TAC[EXP_MULT] THEN
MATCH_MP_TAC CONG_1_DIVIDES THEN
MATCH_MP_TAC CONG_TRANS THEN EXISTS_TAC `1 EXP t` THEN
SIMP_TAC[CONG_EXP; ORDER] THEN REWRITE_TAC[EXP_ONE; CONG_REFL]);;
let POCKLINGTON = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> coprime(a EXP ((n - 1) DIV p) - 1,n))
==> prime(n)`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[PRIME_PRIME_FACTOR_SQRT] THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
MP_TAC(SPECL [`a:num`; `n:num`; `q:num`; `r:num`] POCKLINGTON_LEMMA) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `p EXP 2 <= q EXP 2` MP_TAC THENL
[ASM_MESON_TAC[LE_TRANS]; ALL_TAC] THEN
REWRITE_TAC[num_CONV `2`; EXP_MONO_LE; NOT_SUC] THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP CONG_1_DIVIDES) THEN
DISCH_THEN(MP_TAC o MATCH_MP DIVIDES_LE) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_GE_2) THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Variant for application, to separate the exponentiation. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_ALT = prove
(`!a n q r.
2 <= n /\ (n - 1 = q * r) /\ n <= q EXP 2 /\
(a EXP (n - 1) == 1) (mod n) /\
(!p. prime(p) /\ p divides q
==> ?b. (a EXP ((n - 1) DIV p) == b) (mod n) /\
coprime(b - 1,n))
==> prime(n)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
ASM_REWRITE_TAC[] THEN
X_GEN_TAC `p:num` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `p:num`) THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `b:num` STRIP_ASSUME_TAC) THEN
SUBGOAL_THEN `(a EXP ((q * r) DIV p) - 1 == b - 1) (mod n)`
(fun th -> ASM_MESON_TAC[CONG_COPRIME; COPRIME_SYM; th]) THEN
MATCH_MP_TAC CONG_SUB THEN ASM_REWRITE_TAC[CONG_REFL] THEN
REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`; EXP_EQ_0] THEN
SUBGOAL_THEN `~(a = 0)` ASSUME_TAC THENL
[DISCH_TAC THEN UNDISCH_TAC `(a EXP (n - 1) == 1) (mod n)` THEN
SIMP_TAC[ARITH_RULE `2 <= n ==> (n - 1 = SUC(n - 2))`;
ASSUME `a = 0`; ASSUME `2 <= n`] THEN
REWRITE_TAC[MULT_CLAUSES; EXP] THEN
ONCE_REWRITE_TAC[CONG_SYM] THEN
REWRITE_TAC[CONG_0_DIVIDES; DIVIDES_ONE] THEN
UNDISCH_TAC `2 <= n` THEN ARITH_TAC;
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
UNDISCH_TAC `(a EXP ((q * r) DIV p) == b) (mod n)` THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[CONG_0_DIVIDES] THEN
SUBGOAL_THEN `~(n divides (a EXP (n - 1)))` MP_TAC THENL
[ASM_MESON_TAC[CONG_DIVIDES; DIVIDES_ONE; ARITH_RULE `~(2 <= 1)`];
ALL_TAC] THEN
ASM_REWRITE_TAC[CONTRAPOS_THM] THEN UNDISCH_TAC `p divides q` THEN
GEN_REWRITE_TAC LAND_CONV [divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
ASM_SIMP_TAC[DIV_MULT] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [EXP_MULT] THEN
SUBGOAL_THEN `p = SUC(p - 1)` SUBST1_TAC THENL
[UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN
REWRITE_TAC[EXP; DIVIDES_RMUL]);;
(* ------------------------------------------------------------------------- *)
(* Prime factorizations. *)
(* ------------------------------------------------------------------------- *)
let primefact = new_definition
`primefact ps n <=> (ITLIST (*) ps 1 = n) /\ !p. MEM p ps ==> prime(p)`;;
let PRIMEFACT = prove
(`!n. ~(n = 0) ==> ?ps. primefact ps n`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[] THENL
[REPEAT DISCH_TAC THEN EXISTS_TAC `[]:num list` THEN
REWRITE_TAC[primefact; ITLIST; MEM]; ALL_TAC] THEN
DISCH_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
MATCH_MP PRIME_FACTOR) THEN
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` SUBST_ALL_TAC) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
UNDISCH_TAC `~(p * m = 0)` THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN DISCH_TAC THEN
GEN_REWRITE_TAC (funpow 3 LAND_CONV) [ARITH_RULE `n = 1 * n`] THEN
ASM_REWRITE_TAC[LT_MULT_RCANCEL] THEN
SUBGOAL_THEN `1 < p` (fun th -> REWRITE_TAC[th]) THENL
[MATCH_MP_TAC(ARITH_RULE `~(p = 0) /\ ~(p = 1) ==> 1 < p`) THEN
REPEAT STRIP_TAC THEN UNDISCH_TAC `prime p` THEN
ASM_REWRITE_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN
REWRITE_TAC[primefact] THEN
DISCH_THEN(X_CHOOSE_THEN `ps:num list` ASSUME_TAC) THEN
EXISTS_TAC `CONS (p:num) ps` THEN
ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]);;
let PRIMAFACT_CONTAINS = prove
(`!ps n. primefact ps n ==> !p. prime p /\ p divides n ==> MEM p ps`,
REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
POP_ASSUM(SUBST1_TAC o SYM) THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
REWRITE_TAC[ITLIST; MEM] THENL
[ASM_MESON_TAC[DIVIDES_ONE; PRIME_1]; ALL_TAC] THEN
STRIP_TAC THEN GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC(CONJUNCT1 th) THEN MP_TAC th) THEN
DISCH_THEN(DISJ_CASES_TAC o MATCH_MP PRIME_DIVPROD) THEN
ASM_MESON_TAC[prime; PRIME_1]);;
let PRIMEFACT_VARIANT = prove
(`!ps n. primefact ps n <=> (ITLIST (*) ps 1 = n) /\ ALL prime ps`,
REPEAT GEN_TAC THEN REWRITE_TAC[primefact] THEN AP_TERM_TAC THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
ASM_REWRITE_TAC[MEM; ALL] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of Lucas theorem. *)
(* ------------------------------------------------------------------------- *)
let LUCAS_PRIMEFACT = prove
(`2 <= n /\
(a EXP (n - 1) == 1) (mod n) /\
(ITLIST (*) ps 1 = n - 1) /\
ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps
==> prime n`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC LUCAS THEN
EXISTS_TAC `a:num` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `primefact ps (n - 1)` MP_TAC THENL
[ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)` THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
X_GEN_TAC `p:num` THEN DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN UNDISCH_TAC
`ALL (\p. prime p /\ ~(a EXP ((n - 1) DIV p) == 1) (mod n)) ps` THEN
SPEC_TAC(`ps:num list`,`ps:num list`) THEN LIST_INDUCT_TAC THEN
SIMP_TAC[ALL; MEM] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Variant of Pocklington theorem. *)
(* ------------------------------------------------------------------------- *)
let POCKLINGTON_PRIMEFACT = prove
(`2 <= n /\ (q * r = n - 1) /\ n <= q * q
==> ((a EXP r) MOD n = b)
==> (ITLIST (*) ps 1 = q)
==> ((b EXP q) MOD n = 1)
==> ALL (\p. prime p /\
coprime((b EXP (q DIV p)) MOD n - 1,n)) ps
==> prime n`,
DISCH_THEN(fun th -> DISCH_THEN(SUBST1_TAC o SYM) THEN MP_TAC th) THEN
SIMP_TAC[MOD_EXP_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
SIMP_TAC[ONCE_REWRITE_RULE[MULT_SYM] EXP_EXP] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC POCKLINGTON THEN
MAP_EVERY EXISTS_TAC [`a:num`; `q:num`; `r:num`] THEN
ASM_REWRITE_TAC[EXP_2] THEN CONJ_TAC THENL
[MP_TAC(SPECL [`a EXP (n - 1)`; `n:num`] DIVISION) THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
STRIP_TAC THEN ABBREV_TAC `Q = a EXP (n - 1) DIV n` THEN
ONCE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[cong; nat_mod] THEN
MAP_EVERY EXISTS_TAC [`0`; `Q:num`] THEN ARITH_TAC;
ALL_TAC] THEN
SUBGOAL_THEN `primefact ps q` MP_TAC THENL
[ASM_REWRITE_TAC[PRIMEFACT_VARIANT] THEN MATCH_MP_TAC ALL_IMP THEN
EXISTS_TAC `\p. prime p /\ coprime(a EXP (q DIV p * r) MOD n - 1,n)` THEN
ASM_SIMP_TAC[]; ALL_TAC] THEN
DISCH_THEN(ASSUME_TAC o MATCH_MP PRIMAFACT_CONTAINS) THEN
X_GEN_TAC `p:num` THEN
DISCH_THEN(fun th -> STRIP_ASSUME_TAC th THEN MP_TAC th) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM ALL_MEM]) THEN
DISCH_THEN(ANTE_RES_THEN MP_TAC) THEN
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> a /\ b ==> c`) THEN
DISCH_TAC THEN ONCE_REWRITE_TAC[COPRIME_SYM] THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_0]; ALL_TAC] THEN
SUBGOAL_THEN `q DIV p * r = (n - 1) DIV p` SUBST1_TAC THENL
[UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC) THEN
UNDISCH_THEN `(p * d) * r = n - 1` (SUBST1_TAC o SYM) THEN
ASM_SIMP_TAC[DIV_MULT; GSYM MULT_ASSOC];
ALL_TAC] THEN
MATCH_MP_TAC CONG_COPRIME THEN MATCH_MP_TAC CONG_SUB THEN
ASM_SIMP_TAC[CONG_MOD; ARITH_RULE `2 <= n ==> ~(n = 0)`; CONG_REFL] THEN
MATCH_MP_TAC(ARITH_RULE `a <= b /\ ~(a = 0) ==> 1 <= a /\ 1 <= b`) THEN
ASM_SIMP_TAC[MOD_LE; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
ASM_SIMP_TAC[MOD_EQ_0; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
DISCH_THEN(X_CHOOSE_THEN `s:num` MP_TAC) THEN
DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(EXP)`) THEN
REWRITE_TAC[EXP_EXP] THEN
SUBGOAL_THEN `(n - 1) DIV p * p = n - 1` SUBST1_TAC THENL
[SUBST1_TAC(SYM(ASSUME `q * r = n - 1`)) THEN
UNDISCH_TAC `p divides q` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST1_TAC) THEN
REWRITE_TAC[GSYM MULT_ASSOC] THEN
ASM_MESON_TAC[DIV_MULT; MULT_AC; PRIME_0];
ALL_TAC] THEN
DISCH_THEN(MP_TAC o C AP_THM `n:num` o AP_TERM `(MOD)`) THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(p = 0) ==> (p = SUC(p - 1))`)) THEN
ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[EXP; GSYM MULT_ASSOC] THEN
ASM_SIMP_TAC[MOD_MULT; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
REWRITE_TAC[ARITH_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Utility functions. *)
(* ------------------------------------------------------------------------- *)
let even_num n =
mod_num n num_2 =/ num_0;;
let odd_num = not o even_num;;
(* ------------------------------------------------------------------------- *)
(* Least p >= 0 with x <= 2^p. *)
(* ------------------------------------------------------------------------- *)
let log2 =
let rec log2 x y =
if x </ num_1 then y
else log2 (quo_num x num_2) (y +/ num_1) in
fun x -> log2 (x -/ num_1) num_0;;
(* ------------------------------------------------------------------------- *)
(* Raise number to power (x^m) modulo n. *)
(* ------------------------------------------------------------------------- *)
let rec powermod x m n =
if m =/ num_0 then num_1 else
let y = powermod x (quo_num m num_2) n in
let z = mod_num (y */ y) n in
if even_num m then z else
mod_num (x */ z) n;;
(* ------------------------------------------------------------------------- *)
(* Make a call to PARI/GP to factor a number into (probable) primes. *)
(* ------------------------------------------------------------------------- *)
let factor =
let suck_file s = let data = string_of_file s in Sys.remove s; data in
let extract_output s =
let l0 = explode s in
let l0' = rev l0 in
let l1 = snd(chop_list(index "]" l0') l0') in
let l2 = "["::rev(fst(chop_list(index "[" l1) l1)) in
let tm = parse_term (implode l2) in
map ((dest_numeral F_F dest_numeral) o dest_pair) (dest_list tm) in
fun n ->
if n =/ num_1 then [] else
let filename = Filename.temp_file "pocklington" ".out" in
let s = "echo 'print(factorint(" ^
(string_of_num n) ^
")) \n quit' | gp >" ^ filename ^ " 2>/dev/null" in
if Sys.command s = 0 then
let output = suck_file filename in
extract_output output
else
failwith "factor: Call to GP/PARI failed";;
(* ------------------------------------------------------------------------- *)
(* Alternative giving multiset instead of set plus indices. *)
(* Also just use a stupid algorithm for small enough numbers or if PARI/GP *)
(* is not installed. I should really write a better factoring algorithm. *)
(* ------------------------------------------------------------------------- *)
let PARI_THRESHOLD = pow2 25;;
let multifactor =
let rec findfactor m n =
if mod_num n m =/ num_0 then m
else if m */ m >/ n then n
else findfactor (m +/ num_1) n in
let rec stupidfactor n =
let p = findfactor num_2 n in
if p =/ n then [n] else p::(stupidfactor(quo_num n p)) in
let rec multilist l =
if l = [] then [] else
let (x,n) = hd l in
replicate x (Num.int_of_num n) @ multilist (tl l) in
fun n -> try if n </ PARI_THRESHOLD then failwith ""
else multilist (factor n)
with Failure _ -> sort (</) (stupidfactor n);;
(* ------------------------------------------------------------------------- *)
(* Recursive creation of Pratt primality certificates. *)
(* ------------------------------------------------------------------------- *)
type certificate =
Prime_2
| Primroot_and_factors of
((num * num list) * num * (num * certificate) list);;
let find_primitive_root =
let rec find_primitive_root a m ms n =
if gcd_num a n =/ num_1 &&
powermod a m n =/ num_1 &&
forall (fun k -> powermod a k n <>/ num_1) ms
then a
else find_primitive_root (a +/ num_1) m ms n in
let find_primitive_root_from_2 = find_primitive_root num_2 in
fun m ms n ->
if n </ num_2 then failwith "find_primitive_root: input too small"
else find_primitive_root_from_2 m ms n;;
let uniq_num =
let rec uniq x l =
match l with
[] -> raise Unchanged
| (h::t) -> if x =/ h then
try uniq x t
with Unchanged -> l
else x::(uniq h t) in
fun l -> if l = [] then [] else uniq (hd l) (tl l);;
let setify_num s =
let s' = sort (<=/) s in
try uniq_num s' with Unchanged -> s';;
let general_certify_prime factorizer =
let rec cert_prime n =
if n <=/ num_2 then
if n =/ num_2 then Prime_2
else failwith "certify_prime: not a prime!"
else
let m = n -/ num_1 in
let pfact = factorizer m in
let primes = setify_num pfact in
let ms = map (fun d -> div_num m d) primes in
let a = find_primitive_root m ms n in
Primroot_and_factors((n,pfact),a,map (fun n -> n,cert_prime n) primes) in
fun n -> if length(factorizer n) = 1 then cert_prime n
else failwith "guided_certify_prime: input is not a prime";;
let certify_prime = general_certify_prime multifactor;;
(* ------------------------------------------------------------------------- *)
(* HOL checking of primality certificate, using Pocklington shortcut. *)
(* ------------------------------------------------------------------------- *)
let prime_theorem_cache = ref [];;
let rec lookup_under_num n l =
if l = [] then failwith "lookup_under_num" else
let h = hd l in
if fst h =/ n then snd h
else lookup_under_num n (tl l);;
let rec split_factors q qs ps n =
if q */ q >=/ n then rev qs,ps
else split_factors (q */ hd ps) (hd ps :: qs) (tl ps) n;;
let check_certificate =
let n_tm = `n:num`
and a_tm = `a:num`
and q_tm = `q:num`
and r_tm = `r:num`
and b_tm = `b:num`
and ps_tm = `ps:num list`
and conv_itlist =
GEN_REWRITE_CONV TOP_DEPTH_CONV [ITLIST] THENC NUM_REDUCE_CONV
and conv_all =
GEN_REWRITE_CONV TOP_DEPTH_CONV
[ALL; BETA_THM; TAUT `a /\ T <=> a`] THENC
GEN_REWRITE_CONV DEPTH_CONV
[TAUT `(a /\ a /\ b <=> a /\ b) /\ (a /\ a <=> a)`]
and subarith_conv =
let gconv_net = itlist (uncurry net_of_conv)
[`a - b`,NUM_SUB_CONV;
`a DIV b`,NUM_DIV_CONV;
`(a EXP b) MOD c`,EXP_MOD_CONV;
`coprime(a,b)`,COPRIME_CONV;
`p /\ T`,REWR_CONV(TAUT `p /\ T <=> p`);
`T /\ p`,REWR_CONV(TAUT `T /\ p <=> p`)]
empty_net in
DEPTH_CONV(REWRITES_CONV gconv_net) in
let rec check_certificate cert =
match cert with
Prime_2 ->
PRIME_2
| Primroot_and_factors((n,ps),a,ncerts) ->
try lookup_under_num n (!prime_theorem_cache) with Failure _ ->
let qs,rs = split_factors num_1 [] (rev ps) n in
let q = itlist ( */ ) qs num_1
and r = itlist ( */ ) rs num_1 in
let th1 = INST [mk_numeral n,n_tm;
mk_flist (map mk_numeral qs),ps_tm;
mk_numeral q,q_tm;
mk_numeral r,r_tm;
mk_numeral a,a_tm]
POCKLINGTON_PRIMEFACT in
let th2 = MP th1 (EQT_ELIM(NUM_REDUCE_CONV(lhand(concl th1)))) in
let tha = EXP_MOD_CONV(lhand(lhand(concl th2))) in
let thb = MP (INST [rand(concl tha),b_tm] th2) tha in
let th3 = MP thb (EQT_ELIM(conv_itlist (lhand(concl thb)))) in
let th4 = MP th3 (EXP_MOD_CONV (lhand(lhand(concl th3)))) in
let th5 = conv_all(lhand(concl th4)) in
let th6 = TRANS th5 (subarith_conv(rand(concl th5))) in
let th7 = IMP_TRANS (snd(EQ_IMP_RULE th6)) th4 in
let ants = conjuncts(lhand(concl th7)) in
let certs =
map (fun t -> lookup_under_num (dest_numeral(rand t)) ncerts)
ants in
let ths = map check_certificate certs in
let fth = MP th7 (end_itlist CONJ ths) in
prime_theorem_cache := (n,fth)::(!prime_theorem_cache); fth in
check_certificate;;
(* ------------------------------------------------------------------------- *)
(* Hence a primality-proving rule. *)
(* ------------------------------------------------------------------------- *)
let PROVE_PRIME = check_certificate o certify_prime;;
(* ------------------------------------------------------------------------- *)
(* Rule to generate prime factorization theorems. *)
(* ------------------------------------------------------------------------- *)
let PROVE_PRIMEFACT =
let pth = SPEC_ALL PRIMEFACT_VARIANT
and start_CONV = PURE_REWRITE_CONV[ITLIST; ALL] THENC NUM_REDUCE_CONV
and ps_tm = `ps:num list`
and n_tm = `n:num` in
fun n ->
let pfact = multifactor n in
let th1 = INST [mk_flist(map mk_numeral pfact),ps_tm;
mk_numeral n,n_tm] pth in
let th2 = TRANS th1 (start_CONV(rand(concl th1))) in
let ths = map PROVE_PRIME pfact in
EQ_MP (SYM th2) (end_itlist CONJ ths);;
(* ------------------------------------------------------------------------- *)
(* Conversion for truth or falsity of primality assertion. *)
(* ------------------------------------------------------------------------- *)
let PRIME_TEST =
let NOT_PRIME_THM = prove
(`((m = 1) <=> F) ==> ((m = p) <=> F) ==> (m * n = p) ==> (prime(p) <=> F)`,
MESON_TAC[prime; divides])
and m_tm = `m:num` and n_tm = `n:num` and p_tm = `p:num` in
fun tm ->
let p = dest_numeral tm in
if p =/ num_0 then EQF_INTRO PRIME_0
else if p =/ num_1 then EQF_INTRO PRIME_1 else
let pfact = multifactor p in
if length pfact = 1 then
(remark ("proving that " ^ string_of_num p ^ " is prime");
EQT_INTRO(PROVE_PRIME p))
else
(remark ("proving that " ^ string_of_num p ^ " is composite");
let m = hd pfact and n = end_itlist ( */ ) (tl pfact) in
let th0 = INST [mk_numeral m,m_tm; mk_numeral n,n_tm; mk_numeral p,p_tm]
NOT_PRIME_THM in
let th1 = MP th0 (NUM_EQ_CONV (lhand(lhand(concl th0)))) in
let th2 = MP th1 (NUM_EQ_CONV (lhand(lhand(concl th1)))) in
MP th2 (NUM_MULT_CONV(lhand(lhand(concl th2)))));;
let PRIME_CONV =
let prime_tm = `prime` in
fun tm0 ->
let ptm,tm = dest_comb tm0 in
if ptm <> prime_tm then failwith "expected term of form prime(n)"
else PRIME_TEST tm;;
(* ------------------------------------------------------------------------- *)
(* A version where the hereditary sub-factors are given by the user. *)
(* This makes the rule usable without separate factoring software, *)
(* and faster even where it is available. *)
(* ------------------------------------------------------------------------- *)
let extract_primes_from_certificate =
let rec extr cert acc =
match cert with
Prime_2 -> num_2::acc
| Primroot_and_factors((p,_),_,l) ->
itlist (fun (q,d) a -> extr d (q::a)) l (p::acc) in
fun n ->
uniq(map string_of_num (sort (</) (extr (certify_prime n) [])));;
let guided_certify_prime hints =
let rec guidedfactor n =
if exists (fun p -> p =/ n) hints then [n] else
let p = find (fun p -> mod_num n p =/ num_0) hints in
p::(guidedfactor (quo_num n p)) in
general_certify_prime guidedfactor;;
let GUIDED_PROVE_PRIME hints = check_certificate o guided_certify_prime hints;;
let PRIME_RULE =
let prime_tm = `prime` in
fun hints tm0 ->
let ptm,tm = dest_comb tm0 in
if ptm <> prime_tm then failwith "expected term of form prime(n)" else
let n = dest_numeral tm in
GUIDED_PROVE_PRIME (map num_of_string hints @ [n]) n;;
(* ------------------------------------------------------------------------- *)
(* Example. *)
(* ------------------------------------------------------------------------- *)
map (time PRIME_TEST o mk_small_numeral) (0--50);;
time PRIME_TEST `65535`;;
time PRIME_TEST `65536`;;
time PRIME_TEST `65537`;;
time PROVE_PRIMEFACT (Int 222);;
time PROVE_PRIMEFACT (Int 151);;
(* ------------------------------------------------------------------------- *)
(* The "Landau trick" in Erdos's proof of Chebyshev-Bertrand theorem. *)
(* ------------------------------------------------------------------------- *)
map (time PRIME_TEST o mk_small_numeral)
[3; 5; 7; 13; 23; 43; 83; 163; 317; 631; 1259; 2503; 4001];;