Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: AWN.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Terms of the Algebra for Wireless Networks" | |
theory AWN | |
imports Lib | |
begin | |
subsection "Sequential Processes" | |
type_synonym ip = nat | |
type_synonym data = nat | |
text \<open> | |
Most of AWN is independent of the type of messages, but the closed layer turns | |
newpkt actions into the arrival of newpkt messages. We use a type class to maintain | |
some abstraction (and independence from the definition of particular protocols). | |
\<close> | |
class msg = | |
fixes newpkt :: "data \<times> ip \<Rightarrow> 'a" | |
and eq_newpkt :: "'a \<Rightarrow> bool" | |
assumes eq_newpkt_eq [simp]: "eq_newpkt (newpkt (d, i))" | |
text \<open> | |
Sequential process terms abstract over the types of data states (@{typ 's}), | |
messages (@{typ 'm}), process names (@{typ 'p}),and labels (@{typ 'l}). | |
\<close> | |
datatype (dead 's, dead 'm, dead 'p, 'l) seqp = | |
GUARD "'l" "'s \<Rightarrow> 's set" "('s, 'm, 'p, 'l) seqp" | |
| ASSIGN "'l" "'s \<Rightarrow> 's" "('s, 'm, 'p, 'l) seqp" | |
| CHOICE "('s, 'm, 'p, 'l) seqp" "('s, 'm, 'p, 'l) seqp" | |
| UCAST "'l" "'s \<Rightarrow> ip" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp" "('s, 'm, 'p, 'l) seqp" | |
| BCAST "'l" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp" | |
| GCAST "'l" "'s \<Rightarrow> ip set" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp" | |
| SEND "'l" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp" | |
| DELIVER "'l" "'s \<Rightarrow> data" "('s, 'm, 'p, 'l) seqp" | |
| RECEIVE "'l" "'m \<Rightarrow> 's \<Rightarrow> 's" "('s, 'm, 'p, 'l) seqp" | |
| CALL 'p | |
for map: labelmap | |
syntax | |
"_guard" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(\<open>unbreakable\<close>\<langle>_\<rangle>)//_" [0, 60] 60) | |
"_lguard" :: "['a, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("{_}(\<open>unbreakable\<close>\<langle>_\<rangle>)//_" [0, 0, 60] 60) | |
"_ifguard" :: "[pttrn, bool, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(\<open>unbreakable\<close>\<langle>_. _\<rangle>)//_" [0, 0, 60] 60) | |
"_bassign" :: "[pttrn, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(\<open>unbreakable\<close>\<lbrakk>_. _\<rbrakk>)//_" [0, 0, 60] 60) | |
"_lbassign" :: "['a, pttrn, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("{_}(\<open>unbreakable\<close>\<lbrakk>_. _\<rbrakk>)//_" [0, 0, 0, 60] 60) | |
"_assign" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("((\<open>unbreakable\<close>\<lbrakk>_\<rbrakk>))//_" [0, 60] 60) | |
"_lassign" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("({_}(\<open>unbreakable\<close>\<lbrakk>_\<rbrakk>))//_" [0, 0, 60] 60) | |
"_unicast" :: "['a, 'a, ('s, 'm, 'p, unit) seqp, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3unicast'((1(3_),/ (3_))') .//(_)/ (2\<triangleright> _))" [0, 0, 60, 60] 60) | |
"_lunicast" :: "['a, 'a, 'a, ('s, 'm, 'p, 'a) seqp, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}unicast'((1(3_),/ (3_))') .//(_)/ (2\<triangleright> _))" [0, 0, 0, 60, 60] 60) | |
"_bcast" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3broadcast'((1(_))') .)//_" [0, 60] 60) | |
"_lbcast" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}broadcast'((1(_))') .)//_" [0, 0, 60] 60) | |
"_gcast" :: "['a, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3groupcast'((1(_),/ (_))') .)//_" [0, 0, 60] 60) | |
"_lgcast" :: "['a, 'a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}groupcast'((1(_),/ (_))') .)//_" [0, 0, 0, 60] 60) | |
"_send" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3send'((_)') .)//_" [0, 60] 60) | |
"_lsend" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}send'((_)') .)//_" [0, 0, 60] 60) | |
"_deliver" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3deliver'((_)') .)//_" [0, 60] 60) | |
"_ldeliver" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}deliver'((_)') .)//_" [0, 0, 60] 60) | |
"_receive" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp" | |
("(3receive'((_)') .)//_" [0, 60] 60) | |
"_lreceive" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp" | |
("(3{_}receive'((_)') .)//_" [0, 0, 60] 60) | |
translations | |
"_guard f p" \<rightleftharpoons> "CONST GUARD () f p" | |
"_lguard l f p" \<rightleftharpoons> "CONST GUARD l f p" | |
"_ifguard \<xi> e p" \<rightharpoonup> "CONST GUARD () (\<lambda>\<xi>. if e then {\<xi>} else {}) p" | |
"_assign f p" \<rightleftharpoons> "CONST ASSIGN () f p" | |
"_lassign l f p" \<rightleftharpoons> "CONST ASSIGN l f p" | |
"_bassign \<xi> e p" \<rightleftharpoons> "CONST ASSIGN () (\<lambda>\<xi>. e) p" | |
"_lbassign l \<xi> e p" \<rightleftharpoons> "CONST ASSIGN l (\<lambda>\<xi>. e) p" | |
"_unicast fip fmsg p q" \<rightleftharpoons> "CONST UCAST () fip fmsg p q" | |
"_lunicast l fip fmsg p q" \<rightleftharpoons> "CONST UCAST l fip fmsg p q" | |
"_bcast fmsg p" \<rightleftharpoons> "CONST BCAST () fmsg p" | |
"_lbcast l fmsg p" \<rightleftharpoons> "CONST BCAST l fmsg p" | |
"_gcast fipset fmsg p" \<rightleftharpoons> "CONST GCAST () fipset fmsg p" | |
"_lgcast l fipset fmsg p" \<rightleftharpoons> "CONST GCAST l fipset fmsg p" | |
"_send fmsg p" \<rightleftharpoons> "CONST SEND () fmsg p" | |
"_lsend l fmsg p" \<rightleftharpoons> "CONST SEND l fmsg p" | |
"_deliver fdata p" \<rightleftharpoons> "CONST DELIVER () fdata p" | |
"_ldeliver l fdata p" \<rightleftharpoons> "CONST DELIVER l fdata p" | |
"_receive fmsg p" \<rightleftharpoons> "CONST RECEIVE () fmsg p" | |
"_lreceive l fmsg p" \<rightleftharpoons> "CONST RECEIVE l fmsg p" | |
notation "CHOICE" ("((_)//\<oplus>//(_))" [56, 55] 55) | |
and "CALL" ("(3call'((3_)'))" [0] 60) | |
definition not_call :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> bool" | |
where "not_call p \<equiv> \<forall>pn. p \<noteq> call(pn)" | |
lemma not_call_simps [simp]: | |
"\<And>l fg p. not_call ({l}\<langle>fg\<rangle> p)" | |
"\<And>l fa p. not_call ({l}\<lbrakk>fa\<rbrakk> p)" | |
"\<And>p1 p2. not_call (p1 \<oplus> p2)" | |
"\<And>l fip fmsg p q. not_call ({l}unicast(fip, fmsg).p \<triangleright> q)" | |
"\<And>l fmsg p. not_call ({l}broadcast(fmsg).p)" | |
"\<And>l fips fmsg p. not_call ({l}groupcast(fips, fmsg).p)" | |
"\<And>l fmsg p. not_call ({l}send(fmsg).p)" | |
"\<And>l fdata p. not_call ({l}deliver(fdata).p)" | |
"\<And>l fmsg p. not_call ({l}receive(fmsg).p)" | |
"\<And>l pn. \<not>(not_call (call(pn)))" | |
unfolding not_call_def by auto | |
definition not_choice :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> bool" | |
where "not_choice p \<equiv> \<forall>p1 p2. p \<noteq> p1 \<oplus> p2" | |
lemma not_choice_simps [simp]: | |
"\<And>l fg p. not_choice ({l}\<langle>fg\<rangle> p)" | |
"\<And>l fa p. not_choice ({l}\<lbrakk>fa\<rbrakk> p)" | |
"\<And>p1 p2. \<not>(not_choice (p1 \<oplus> p2))" | |
"\<And>l fip fmsg p q. not_choice ({l}unicast(fip, fmsg).p \<triangleright> q)" | |
"\<And>l fmsg p. not_choice ({l}broadcast(fmsg).p)" | |
"\<And>l fips fmsg p. not_choice ({l}groupcast(fips, fmsg).p)" | |
"\<And>l fmsg p. not_choice ({l}send(fmsg).p)" | |
"\<And>l fdata p. not_choice ({l}deliver(fdata).p)" | |
"\<And>l fmsg p. not_choice ({l}receive(fmsg).p)" | |
"\<And>l pn. not_choice (call(pn))" | |
unfolding not_choice_def by auto | |
lemma seqp_congs: | |
"\<And>l fg p. {l}\<langle>fg\<rangle> p = {l}\<langle>fg\<rangle> p" | |
"\<And>l fa p. {l}\<lbrakk>fa\<rbrakk> p = {l}\<lbrakk>fa\<rbrakk> p" | |
"\<And>p1 p2. p1 \<oplus> p2 = p1 \<oplus> p2" | |
"\<And>l fip fmsg p q. {l}unicast(fip, fmsg).p \<triangleright> q = {l}unicast(fip, fmsg).p \<triangleright> q" | |
"\<And>l fmsg p. {l}broadcast(fmsg).p = {l}broadcast(fmsg).p" | |
"\<And>l fips fmsg p. {l}groupcast(fips, fmsg).p = {l}groupcast(fips, fmsg).p" | |
"\<And>l fmsg p. {l}send(fmsg).p = {l}send(fmsg).p" | |
"\<And>l fdata p. {l}deliver(fdata).p = {l}deliver(fdata).p" | |
"\<And>l fmsg p. {l}receive(fmsg).p = {l}receive(fmsg).p" | |
"\<And>l pn. call(pn) = call(pn)" | |
by auto | |
text \<open>Remove data expressions from process terms.\<close> | |
fun seqp_skeleton :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> (unit, unit, 'p, 'l) seqp" | |
where | |
"seqp_skeleton ({l}\<langle>_\<rangle> p) = {l}\<langle>\<lambda>_. {()}\<rangle> (seqp_skeleton p)" | |
| "seqp_skeleton ({l}\<lbrakk>_\<rbrakk> p) = {l}\<lbrakk>\<lambda>_. ()\<rbrakk> (seqp_skeleton p)" | |
| "seqp_skeleton (p \<oplus> q) = (seqp_skeleton p) \<oplus> (seqp_skeleton q)" | |
| "seqp_skeleton ({l}unicast(_, _). p \<triangleright> q) = {l}unicast(\<lambda>_. 0, \<lambda>_. ()). (seqp_skeleton p) \<triangleright> (seqp_skeleton q)" | |
| "seqp_skeleton ({l}broadcast(_). p) = {l}broadcast(\<lambda>_. ()). (seqp_skeleton p)" | |
| "seqp_skeleton ({l}groupcast(_, _). p) = {l}groupcast(\<lambda>_. {}, \<lambda>_. ()). (seqp_skeleton p)" | |
| "seqp_skeleton ({l}send(_). p) = {l}send(\<lambda>_. ()). (seqp_skeleton p)" | |
| "seqp_skeleton ({l}deliver(_). p) = {l}deliver(\<lambda>_. 0). (seqp_skeleton p)" | |
| "seqp_skeleton ({l}receive(_). p) = {l}receive(\<lambda>_ _. ()). (seqp_skeleton p)" | |
| "seqp_skeleton (call(pn)) = call(pn)" | |
text \<open>Calculate the subterms of a term.\<close> | |
fun subterms :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> ('s, 'm, 'p, 'l) seqp set" | |
where | |
"subterms ({l}\<langle>fg\<rangle> p) = {{l}\<langle>fg\<rangle> p} \<union> subterms p" | |
| "subterms ({l}\<lbrakk>fa\<rbrakk> p) = {{l}\<lbrakk>fa\<rbrakk> p} \<union> subterms p" | |
| "subterms (p1 \<oplus> p2) = {p1 \<oplus> p2} \<union> subterms p1 \<union> subterms p2" | |
| "subterms ({l}unicast(fip, fmsg). p \<triangleright> q) = | |
{{l}unicast(fip, fmsg). p \<triangleright> q} \<union> subterms p \<union> subterms q" | |
| "subterms ({l}broadcast(fmsg). p) = {{l}broadcast(fmsg). p} \<union> subterms p" | |
| "subterms ({l}groupcast(fips, fmsg). p) = {{l}groupcast(fips, fmsg). p} \<union> subterms p" | |
| "subterms ({l}send(fmsg). p) = {{l}send(fmsg).p} \<union> subterms p" | |
| "subterms ({l}deliver(fdata). p) = {{l}deliver(fdata).p} \<union> subterms p" | |
| "subterms ({l}receive(fmsg). p) = {{l}receive(fmsg).p} \<union> subterms p" | |
| "subterms (call(pn)) = {call(pn)}" | |
lemma subterms_refl [simp]: "p \<in> subterms p" | |
by (cases p) simp_all | |
lemma subterms_trans [elim]: | |
assumes "q \<in> subterms p" | |
and "r \<in> subterms q" | |
shows "r \<in> subterms p" | |
using assms by (induction p) auto | |
lemma root_in_subterms [simp]: | |
"\<And>\<Gamma> pn. \<exists>pn'. \<Gamma> pn \<in> subterms (\<Gamma> pn')" | |
by (rule_tac x=pn in exI) simp | |
lemma deriv_in_subterms [elim, dest]: | |
"\<And>l f p q. {l}\<langle>f\<rangle> q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fa p q. {l}\<lbrakk>fa\<rbrakk> q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>p1 p2 p. p1 \<oplus> p2 \<in> subterms p \<Longrightarrow> p1 \<in> subterms p" | |
"\<And>p1 p2 p. p1 \<oplus> p2 \<in> subterms p \<Longrightarrow> p2 \<in> subterms p" | |
"\<And>l fip fmsg p q r. {l}unicast(fip, fmsg). q \<triangleright> r \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fip fmsg p q r. {l}unicast(fip, fmsg). q \<triangleright> r \<in> subterms p \<Longrightarrow> r \<in> subterms p" | |
"\<And>l fmsg p q. {l}broadcast(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fips fmsg p q. {l}groupcast(fips, fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fmsg p q. {l}send(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fdata p q. {l}deliver(fdata). q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
"\<And>l fmsg p q. {l}receive(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p" | |
by auto | |
subsection "Actions" | |
text \<open> | |
There are two sorts of \<open>\<tau>\<close> actions in AWN: one at the level of individual processes | |
(within nodes), and one at the network level (outside nodes). We define a class so that | |
we can ignore this distinction whenever it is not critical. | |
\<close> | |
class tau = | |
fixes tau :: "'a" ("\<tau>") | |
subsubsection "Sequential Actions (and related predicates)" | |
datatype 'm seq_action = | |
broadcast 'm | |
| groupcast "ip set" 'm | |
| unicast ip 'm | |
| notunicast ip ("\<not>unicast _" [1000] 60) | |
| send 'm | |
| deliver data | |
| receive 'm | |
| seq_tau ("\<tau>\<^sub>s") | |
instantiation "seq_action" :: (type) tau | |
begin | |
definition step_seq_tau [simp]: "\<tau> \<equiv> \<tau>\<^sub>s" | |
instance .. | |
end | |
definition recvmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool" | |
where "recvmsg P a \<equiv> case a of receive m \<Rightarrow> P m | |
| _ \<Rightarrow> True" | |
lemma recvmsg_simps[simp]: | |
"\<And>m. recvmsg P (broadcast m) = True" | |
"\<And>ips m. recvmsg P (groupcast ips m) = True" | |
"\<And>ip m. recvmsg P (unicast ip m) = True" | |
"\<And>ip. recvmsg P (notunicast ip) = True" | |
"\<And>m. recvmsg P (send m) = True" | |
"\<And>d. recvmsg P (deliver d) = True" | |
"\<And>m. recvmsg P (receive m) = P m" | |
" recvmsg P \<tau>\<^sub>s = True" | |
unfolding recvmsg_def by simp_all | |
lemma recvmsgTT [simp]: "recvmsg TT a" | |
by (cases a) simp_all | |
lemma recvmsgE [elim]: | |
assumes "recvmsg (R \<sigma>) a" | |
and "\<And>m. R \<sigma> m \<Longrightarrow> R \<sigma>' m" | |
shows "recvmsg (R \<sigma>') a" | |
using assms(1) by (cases a) (auto elim!: assms(2)) | |
definition anycast :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool" | |
where "anycast P a \<equiv> case a of broadcast m \<Rightarrow> P m | |
| groupcast _ m \<Rightarrow> P m | |
| unicast _ m \<Rightarrow> P m | |
| _ \<Rightarrow> True" | |
lemma anycast_simps [simp]: | |
"\<And>m. anycast P (broadcast m) = P m" | |
"\<And>ips m. anycast P (groupcast ips m) = P m" | |
"\<And>ip m. anycast P (unicast ip m) = P m" | |
"\<And>ip. anycast P (notunicast ip) = True" | |
"\<And>m. anycast P (send m) = True" | |
"\<And>d. anycast P (deliver d) = True" | |
"\<And>m. anycast P (receive m) = True" | |
" anycast P \<tau>\<^sub>s = True" | |
unfolding anycast_def by simp_all | |
definition orecvmsg :: "((ip \<Rightarrow> 's) \<Rightarrow> 'm \<Rightarrow> bool) \<Rightarrow> (ip \<Rightarrow> 's) \<Rightarrow> 'm seq_action \<Rightarrow> bool" | |
where "orecvmsg P \<sigma> a \<equiv> (case a of receive m \<Rightarrow> P \<sigma> m | |
| _ \<Rightarrow> True)" | |
lemma orecvmsg_simps [simp]: | |
"\<And>m. orecvmsg P \<sigma> (broadcast m) = True" | |
"\<And>ips m. orecvmsg P \<sigma> (groupcast ips m) = True" | |
"\<And>ip m. orecvmsg P \<sigma> (unicast ip m) = True" | |
"\<And>ip. orecvmsg P \<sigma> (notunicast ip) = True" | |
"\<And>m. orecvmsg P \<sigma> (send m) = True" | |
"\<And>d. orecvmsg P \<sigma> (deliver d) = True" | |
"\<And>m. orecvmsg P \<sigma> (receive m) = P \<sigma> m" | |
" orecvmsg P \<sigma> \<tau>\<^sub>s = True" | |
unfolding orecvmsg_def by simp_all | |
lemma orecvmsgEI [elim]: | |
"\<lbrakk> orecvmsg P \<sigma> a; \<And>\<sigma> a. P \<sigma> a \<Longrightarrow> Q \<sigma> a \<rbrakk> \<Longrightarrow> orecvmsg Q \<sigma> a" | |
by (cases a) simp_all | |
lemma orecvmsg_stateless_recvmsg [elim]: | |
"orecvmsg (\<lambda>_. P) \<sigma> a \<Longrightarrow> recvmsg P a" | |
by (cases a) simp_all | |
lemma orecvmsg_recv_weaken [elim]: | |
"\<lbrakk> orecvmsg P \<sigma> a; \<And>\<sigma> a. P \<sigma> a \<Longrightarrow> Q a \<rbrakk> \<Longrightarrow> recvmsg Q a" | |
by (cases a) simp_all | |
lemma orecvmsg_recvmsg [elim]: | |
"orecvmsg P \<sigma> a \<Longrightarrow> recvmsg (P \<sigma>) a" | |
by (cases a) simp_all | |
definition sendmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool" | |
where "sendmsg P a \<equiv> case a of send m \<Rightarrow> P m | _ \<Rightarrow> True" | |
lemma sendmsg_simps [simp]: | |
"\<And>m. sendmsg P (broadcast m) = True" | |
"\<And>ips m. sendmsg P (groupcast ips m) = True" | |
"\<And>ip m. sendmsg P (unicast ip m) = True" | |
"\<And>ip. sendmsg P (notunicast ip) = True" | |
"\<And>m. sendmsg P (send m) = P m" | |
"\<And>d. sendmsg P (deliver d) = True" | |
"\<And>m. sendmsg P (receive m) = True" | |
" sendmsg P \<tau>\<^sub>s = True" | |
unfolding sendmsg_def by simp_all | |
type_synonym ('s, 'm, 'p, 'l) seqp_env = "'p \<Rightarrow> ('s, 'm, 'p, 'l) seqp" | |
subsubsection "Node Actions (and related predicates)" | |
datatype 'm node_action = | |
node_cast "ip set" 'm ("_:*cast'(_')" [200, 200] 200) | |
| node_deliver ip data ("_:deliver'(_')" [200, 200] 200) | |
| node_arrive "ip set" "ip set" 'm ("_\<not>_:arrive'(_')" [200, 200, 200] 200) | |
| node_connect ip ip ("connect'(_, _')" [200, 200] 200) | |
| node_disconnect ip ip ("disconnect'(_, _')" [200, 200] 200) | |
| node_newpkt ip data ip ("_:newpkt'(_, _')" [200, 200, 200] 200) | |
| node_tau ("\<tau>\<^sub>n") | |
instantiation "node_action" :: (type) tau | |
begin | |
definition step_node_tau [simp]: "\<tau> \<equiv> \<tau>\<^sub>n" | |
instance .. | |
end | |
definition arrivemsg :: "ip \<Rightarrow> ('m \<Rightarrow> bool) \<Rightarrow> 'm node_action \<Rightarrow> bool" | |
where "arrivemsg i P a \<equiv> case a of node_arrive ii ni m \<Rightarrow> ((ii = {i} \<longrightarrow> P m)) | |
| _ \<Rightarrow> True" | |
lemma arrivemsg_simps[simp]: | |
"\<And>R m. arrivemsg i P (R:*cast(m)) = True" | |
"\<And>d m. arrivemsg i P (d:deliver(m)) = True" | |
"\<And>i ii ni m. arrivemsg i P (ii\<not>ni:arrive(m)) = (ii = {i} \<longrightarrow> P m)" | |
"\<And>i1 i2. arrivemsg i P (connect(i1, i2)) = True" | |
"\<And>i1 i2. arrivemsg i P (disconnect(i1, i2)) = True" | |
"\<And>i i' d di. arrivemsg i P (i':newpkt(d, di)) = True" | |
" arrivemsg i P \<tau>\<^sub>n = True" | |
unfolding arrivemsg_def by simp_all | |
lemma arrivemsgTT [simp]: "arrivemsg i TT = TT" | |
by (rule ext) (clarsimp simp: arrivemsg_def split: node_action.split) | |
definition oarrivemsg :: "((ip \<Rightarrow> 's) \<Rightarrow> 'm \<Rightarrow> bool) \<Rightarrow> (ip \<Rightarrow> 's) \<Rightarrow> 'm node_action \<Rightarrow> bool" | |
where "oarrivemsg P \<sigma> a \<equiv> case a of node_arrive ii ni m \<Rightarrow> P \<sigma> m | _ \<Rightarrow> True" | |
lemma oarrivemsg_simps[simp]: | |
"\<And>R m. oarrivemsg P \<sigma> (R:*cast(m)) = True" | |
"\<And>d m. oarrivemsg P \<sigma> (d:deliver(m)) = True" | |
"\<And>i ii ni m. oarrivemsg P \<sigma> (ii\<not>ni:arrive(m)) = P \<sigma> m" | |
"\<And>i1 i2. oarrivemsg P \<sigma> (connect(i1, i2)) = True" | |
"\<And>i1 i2. oarrivemsg P \<sigma> (disconnect(i1, i2)) = True" | |
"\<And>i i' d di. oarrivemsg P \<sigma> (i':newpkt(d, di)) = True" | |
" oarrivemsg P \<sigma> \<tau>\<^sub>n = True" | |
unfolding oarrivemsg_def by simp_all | |
lemma oarrivemsg_True [simp, intro]: "oarrivemsg (\<lambda>_ _. True) \<sigma> a" | |
by (cases a) auto | |
definition castmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm node_action \<Rightarrow> bool" | |
where "castmsg P a \<equiv> case a of _:*cast(m) \<Rightarrow> P m | |
| _ \<Rightarrow> True" | |
lemma castmsg_simps[simp]: | |
"\<And>R m. castmsg P (R:*cast(m)) = P m" | |
"\<And>d m. castmsg P (d:deliver(m)) = True" | |
"\<And>i ii ni m. castmsg P (ii\<not>ni:arrive(m)) = True" | |
"\<And>i1 i2. castmsg P (connect(i1, i2)) = True" | |
"\<And>i1 i2. castmsg P (disconnect(i1, i2)) = True" | |
"\<And>i i' d di. castmsg P (i':newpkt(d, di)) = True" | |
" castmsg P \<tau>\<^sub>n = True" | |
unfolding castmsg_def by simp_all | |
subsection "Networks" | |
datatype net_tree = | |
Node ip "ip set" ("\<langle>_; _\<rangle>") | |
| Subnet net_tree net_tree (infixl "\<parallel>" 90) | |
declare net_tree.induct [[induct del]] | |
lemmas net_tree_induct [induct type: net_tree] = net_tree.induct [rename_abs i R p1 p2] | |
datatype 's net_state = | |
NodeS ip 's "ip set" | |
| SubnetS "'s net_state" "'s net_state" | |
fun net_ips :: "'s net_state \<Rightarrow> ip set" | |
where | |
"net_ips (NodeS i s R) = {i}" | |
| "net_ips (SubnetS n1 n2) = net_ips n1 \<union> net_ips n2" | |
fun net_tree_ips :: "net_tree \<Rightarrow> ip set" | |
where | |
"net_tree_ips (p1 \<parallel> p2) = net_tree_ips p1 \<union> net_tree_ips p2" | |
| "net_tree_ips (\<langle>i; R\<rangle>) = {i}" | |
lemma net_tree_ips_commute: | |
"net_tree_ips (p1 \<parallel> p2) = net_tree_ips (p2 \<parallel> p1)" | |
by simp (rule Un_commute) | |
fun wf_net_tree :: "net_tree \<Rightarrow> bool" | |
where | |
"wf_net_tree (p1 \<parallel> p2) = (net_tree_ips p1 \<inter> net_tree_ips p2 = {} | |
\<and> wf_net_tree p1 \<and> wf_net_tree p2)" | |
| "wf_net_tree (\<langle>i; R\<rangle>) = True" | |
lemma wf_net_tree_children [elim]: | |
assumes "wf_net_tree (p1 \<parallel> p2)" | |
obtains "wf_net_tree p1" | |
and "wf_net_tree p2" | |
using assms by simp | |
fun netmap :: "'s net_state \<Rightarrow> ip \<Rightarrow> 's option" | |
where | |
"netmap (NodeS i p R\<^sub>i) = [i \<mapsto> p]" | |
| "netmap (SubnetS s t) = netmap s ++ netmap t" | |
lemma not_in_netmap [simp]: | |
assumes "i \<notin> net_ips ns" | |
shows "netmap ns i = None" | |
using assms by (induction ns) simp_all | |
lemma netmap_none_not_in_net_ips: | |
assumes "netmap ns i = None" | |
shows "i\<notin>net_ips ns" | |
using assms by (induction ns) auto | |
lemma net_ips_is_dom_netmap: "net_ips s = dom(netmap s)" | |
proof (induction s) | |
fix i R\<^sub>i and p :: 's | |
show "net_ips (NodeS i p R\<^sub>i) = dom (netmap (NodeS i p R\<^sub>i))" | |
by auto | |
next | |
fix s1 s2 :: "'s net_state" | |
assume "net_ips s1 = dom (netmap s1)" | |
and "net_ips s2 = dom (netmap s2)" | |
thus "net_ips (SubnetS s1 s2) = dom (netmap (SubnetS s1 s2))" | |
by auto | |
qed | |
lemma in_netmap [simp]: | |
assumes "i \<in> net_ips ns" | |
shows "netmap ns i \<noteq> None" | |
using assms by (auto simp add: net_ips_is_dom_netmap) | |
lemma netmap_subnets_same: | |
assumes "netmap s1 i = x" | |
and "netmap s2 i = x" | |
shows "netmap (SubnetS s1 s2) i = x" | |
using assms by simp (metis map_add_dom_app_simps(1) map_add_dom_app_simps(3)) | |
lemma netmap_subnets_samef: | |
assumes "netmap s1 = f" | |
and "netmap s2 = f" | |
shows "netmap (SubnetS s1 s2) = f" | |
using assms by simp (metis map_add_le_mapI map_le_antisym map_le_map_add map_le_refl) | |
lemma netmap_add_disjoint [elim]: | |
assumes "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" | |
and "net_ips s1 \<inter> net_ips s2 = {}" | |
shows "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i" | |
proof | |
fix i | |
assume "i \<in> net_ips s1" | |
hence "i \<in> dom(netmap s1)" by (simp add: net_ips_is_dom_netmap) | |
moreover with assms(2) have "i \<notin> dom(netmap s2)" by (auto simp add: net_ips_is_dom_netmap) | |
ultimately have "the (netmap s1 i) = the ((netmap s1 ++ netmap s2) i)" | |
by (simp add: map_add_dom_app_simps) | |
with assms(1) and \<open>i\<in>net_ips s1\<close> show "the (netmap s1 i) = \<sigma> i" by simp | |
qed | |
lemma netmap_add_disjoint2 [elim]: | |
assumes "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" | |
shows "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i" | |
using assms by (simp add: net_ips_is_dom_netmap) | |
(metis Un_iff map_add_dom_app_simps(1)) | |
lemma net_ips_netmap_subnet [elim]: | |
assumes "net_ips s1 \<inter> net_ips s2 = {}" | |
and "\<forall>i\<in>net_ips (SubnetS s1 s2). the (netmap (SubnetS s1 s2) i) = \<sigma> i" | |
shows "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i" | |
and "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i" | |
proof - | |
from assms(2) have "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" by auto | |
with assms(1) show "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i" | |
by - (erule(1) netmap_add_disjoint) | |
next | |
from assms(2) have "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" by auto | |
thus "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i" | |
by - (erule netmap_add_disjoint2) | |
qed | |
fun inoclosed :: "'s \<Rightarrow> 'm::msg node_action \<Rightarrow> bool" | |
where | |
"inoclosed _ (node_arrive ii ni m) = eq_newpkt m" | |
| "inoclosed _ (node_newpkt i d di) = False" | |
| "inoclosed _ _ = True" | |
lemma inclosed_simps [simp]: | |
"\<And>\<sigma> ii ni. inoclosed \<sigma> (ii\<not>ni:arrive(m)) = eq_newpkt m" | |
"\<And>\<sigma> d di. inoclosed \<sigma> (i:newpkt(d, di)) = False" | |
"\<And>\<sigma> R m. inoclosed \<sigma> (R:*cast(m)) = True" | |
"\<And>\<sigma> i d. inoclosed \<sigma> (i:deliver(d)) = True" | |
"\<And>\<sigma> i i'. inoclosed \<sigma> (connect(i, i')) = True" | |
"\<And>\<sigma> i i'. inoclosed \<sigma> (disconnect(i, i')) = True" | |
"\<And>\<sigma>. inoclosed \<sigma> (\<tau>) = True" | |
by auto | |
definition | |
netmask :: "ip set \<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l) \<Rightarrow> ((ip \<Rightarrow> 's option) \<times> 'l)" | |
where | |
"netmask I s \<equiv> (\<lambda>i. if i\<in>I then Some (fst s i) else None, snd s)" | |
lemma netmask_def' [simp]: | |
"netmask I (\<sigma>, \<zeta>) = (\<lambda>i. if i\<in>I then Some (\<sigma> i) else None, \<zeta>)" | |
unfolding netmask_def by auto | |
fun netgmap :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> (nat \<Rightarrow> 'g option) \<times> 'l net_state" | |
where | |
"netgmap sr (NodeS i s R) = ([i \<mapsto> fst (sr s)], NodeS i (snd (sr s)) R)" | |
| "netgmap sr (SubnetS s\<^sub>1 s\<^sub>2) = (let (\<sigma>\<^sub>1, ss) = netgmap sr s\<^sub>1 in | |
let (\<sigma>\<^sub>2, tt) = netgmap sr s\<^sub>2 in | |
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt))" | |
lemma dom_fst_netgmap [simp, intro]: "dom (fst (netgmap sr n)) = net_ips n" | |
proof (induction n) | |
fix i s R | |
show "dom (fst (netgmap sr (NodeS i s R))) = net_ips (NodeS i s R)" | |
by simp | |
next | |
fix n1 n2 | |
assume a1: "dom (fst (netgmap sr n1)) = net_ips n1" | |
and a2: "dom (fst (netgmap sr n2)) = net_ips n2" | |
obtain \<sigma>\<^sub>1 \<zeta>\<^sub>1 \<sigma>\<^sub>2 \<zeta>\<^sub>2 where nm1: "netgmap sr n1 = (\<sigma>\<^sub>1, \<zeta>\<^sub>1)" | |
and nm2: "netgmap sr n2 = (\<sigma>\<^sub>2, \<zeta>\<^sub>2)" | |
by (metis surj_pair) | |
hence "netgmap sr (SubnetS n1 n2) = (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS \<zeta>\<^sub>1 \<zeta>\<^sub>2)" by simp | |
hence "dom (fst (netgmap sr (SubnetS n1 n2))) = dom (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2)" by simp | |
also from a1 a2 nm1 nm2 have "dom (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2) = net_ips (SubnetS n1 n2)" by auto | |
finally show "dom (fst (netgmap sr (SubnetS n1 n2))) = net_ips (SubnetS n1 n2)" . | |
qed | |
lemma netgmap_pair_dom [elim]: | |
obtains \<sigma> \<zeta> where "netgmap sr n = (\<sigma>, \<zeta>)" | |
and "dom \<sigma> = net_ips n" | |
by (metis dom_fst_netgmap surjective_pairing) | |
lemma net_ips_netgmap [simp]: | |
"net_ips (snd (netgmap sr s)) = net_ips s" | |
proof (induction s) | |
fix s1 s2 | |
assume "net_ips (snd (netgmap sr s1)) = net_ips s1" | |
and "net_ips (snd (netgmap sr s2)) = net_ips s2" | |
thus "net_ips (snd (netgmap sr (SubnetS s1 s2))) = net_ips (SubnetS s1 s2)" | |
by (cases "netgmap sr s1", cases "netgmap sr s2") auto | |
qed simp | |
lemma some_the_fst_netgmap: | |
assumes "i \<in> net_ips s" | |
shows "Some (the (fst (netgmap sr s) i)) = fst (netgmap sr s) i" | |
using assms by (metis domIff dom_fst_netgmap option.collapse) | |
lemma fst_netgmap_none [simp]: | |
assumes "i \<notin> net_ips s" | |
shows "fst (netgmap sr s) i = None" | |
using assms by (metis domIff dom_fst_netgmap) | |
lemma fst_netgmap_subnet [simp]: | |
"fst (case netgmap sr s1 of (\<sigma>\<^sub>1, ss) \<Rightarrow> | |
case netgmap sr s2 of (\<sigma>\<^sub>2, tt) \<Rightarrow> | |
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt)) = (fst (netgmap sr s1) ++ fst (netgmap sr s2))" | |
by (metis (mono_tags) fst_conv netgmap_pair_dom split_conv) | |
lemma snd_netgmap_subnet [simp]: | |
"snd (case netgmap sr s1 of (\<sigma>\<^sub>1, ss) \<Rightarrow> | |
case netgmap sr s2 of (\<sigma>\<^sub>2, tt) \<Rightarrow> | |
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt)) = (SubnetS (snd (netgmap sr s1)) (snd (netgmap sr s2)))" | |
by (metis (lifting, no_types) Pair_inject split_beta' surjective_pairing) | |
lemma fst_netgmap_not_none [simp]: | |
assumes "i \<in> net_ips s" | |
shows "fst (netgmap sr s) i \<noteq> None" | |
using assms by (induction s) auto | |
lemma netgmap_netgmap_not_rhs [simp]: | |
assumes "i \<notin> net_ips s2" | |
shows "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = (fst (netgmap sr s1)) i" | |
proof - | |
from assms(1) have "i \<notin> dom (fst (netgmap sr s2))" by simp | |
thus ?thesis by (simp add: map_add_dom_app_simps) | |
qed | |
lemma netgmap_netgmap_rhs [simp]: | |
assumes "i \<in> net_ips s2" | |
shows "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = (fst (netgmap sr s2)) i" | |
using assms by (simp add: map_add_dom_app_simps) | |
lemma netgmap_netmask_subnets [elim]: | |
assumes "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))" | |
and "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))" | |
shows "fst (netgmap sr (SubnetS s1 s2)) | |
= fst (netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr (SubnetS s1 s2))))" | |
proof (rule ext) | |
fix i | |
have "i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 \<or> (i\<notin>net_tree_ips n1 \<union> net_tree_ips n2)" | |
by auto | |
thus "fst (netgmap sr (SubnetS s1 s2)) i | |
= fst (netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr (SubnetS s1 s2)))) i" | |
proof (elim disjE) | |
assume "i \<in> net_tree_ips n1" | |
with \<open>netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))\<close> | |
\<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close> | |
show ?thesis | |
by (cases "netgmap sr s1", cases "netgmap sr s2", clarsimp) | |
(metis (lifting, mono_tags) map_add_Some_iff) | |
next | |
assume "i \<in> net_tree_ips n2" | |
with \<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close> | |
show ?thesis | |
by simp (metis (lifting, mono_tags) fst_conv map_add_find_right) | |
next | |
assume "i\<notin>net_tree_ips n1 \<union> net_tree_ips n2" | |
with \<open>netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))\<close> | |
\<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close> | |
show ?thesis | |
by simp (metis (lifting, mono_tags) fst_conv) | |
qed | |
qed | |
lemma netgmap_netmask_subnets' [elim]: | |
assumes "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))" | |
and "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))" | |
and "s = SubnetS s1 s2" | |
shows "netgmap sr s = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr s))" | |
by (simp only: assms(3)) | |
(rule prod_eqI [OF netgmap_netmask_subnets [OF assms(1-2)]], simp) | |
lemma netgmap_subnet_split1: | |
assumes "netgmap sr (SubnetS s1 s2) = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, \<zeta>)" | |
and "net_tree_ips n1 \<inter> net_tree_ips n2 = {}" | |
and "net_ips s1 = net_tree_ips n1" | |
and "net_ips s2 = net_tree_ips n2" | |
shows "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))" | |
proof (rule prod_eqI) | |
show "fst (netgmap sr s1) = fst (netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1)))" | |
proof (rule ext, simp, intro conjI impI) | |
fix i | |
assume "i\<in>net_tree_ips n1" | |
with \<open>net_tree_ips n1 \<inter> net_tree_ips n2 = {}\<close> have "i\<notin>net_tree_ips n2" | |
by auto | |
from assms(1) [simplified prod_eq_iff] | |
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = | |
(if i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 then Some (\<sigma> i) else None)" | |
by simp | |
also from \<open>i\<notin>net_tree_ips n2\<close> and \<open>net_ips s2 = net_tree_ips n2\<close> | |
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = fst (netgmap sr s1) i" | |
by (metis dom_fst_netgmap map_add_dom_app_simps(3)) | |
finally show "fst (netgmap sr s1) i = Some (\<sigma> i)" | |
using \<open>i\<in>net_tree_ips n1\<close> by simp | |
next | |
fix i | |
assume "i \<notin> net_tree_ips n1" | |
with \<open>net_ips s1 = net_tree_ips n1\<close> have "i \<notin> net_ips s1" by simp | |
thus "fst (netgmap sr s1) i = None" by simp | |
qed | |
qed simp | |
lemma netgmap_subnet_split2: | |
assumes "netgmap sr (SubnetS s1 s2) = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, \<zeta>)" | |
and "net_ips s1 = net_tree_ips n1" | |
and "net_ips s2 = net_tree_ips n2" | |
shows "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))" | |
proof (rule prod_eqI) | |
show "fst (netgmap sr s2) = fst (netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2)))" | |
proof (rule ext, simp, intro conjI impI) | |
fix i | |
assume "i\<in>net_tree_ips n2" | |
from assms(1) [simplified prod_eq_iff] | |
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = | |
(if i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 then Some (\<sigma> i) else None)" | |
by simp | |
also from \<open>i\<in>net_tree_ips n2\<close> and \<open>net_ips s2 = net_tree_ips n2\<close> | |
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = fst (netgmap sr s2) i" | |
by (metis dom_fst_netgmap map_add_dom_app_simps(1)) | |
finally show "fst (netgmap sr s2) i = Some (\<sigma> i)" | |
using \<open>i\<in>net_tree_ips n2\<close> by simp | |
next | |
fix i | |
assume "i \<notin> net_tree_ips n2" | |
with \<open>net_ips s2 = net_tree_ips n2\<close> have "i \<notin> net_ips s2" by simp | |
thus "fst (netgmap sr s2) i = None" by simp | |
qed | |
qed simp | |
lemma netmap_fst_netgmap_rel: | |
shows "(\<lambda>i. map_option (fst o sr) (netmap s i)) = fst (netgmap sr s)" | |
proof (induction s) | |
fix ii s R | |
show "(\<lambda>i. map_option (fst \<circ> sr) (netmap (NodeS ii s R) i)) = fst (netgmap sr (NodeS ii s R))" | |
by auto | |
next | |
fix s1 s2 | |
assume a1: "(\<lambda>i. map_option (fst \<circ> sr) (netmap s1 i)) = fst (netgmap sr s1)" | |
and a2: "(\<lambda>i. map_option (fst \<circ> sr) (netmap s2 i)) = fst (netgmap sr s2)" | |
show "(\<lambda>i. map_option (fst \<circ> sr) (netmap (SubnetS s1 s2) i)) = fst (netgmap sr (SubnetS s1 s2))" | |
proof (rule ext) | |
fix i | |
from a1 a2 have "map_option (fst \<circ> sr) ((netmap s1 ++ netmap s2) i) | |
= (fst (netgmap sr s1) ++ fst (netgmap sr s2)) i" | |
by (metis fst_conv map_add_dom_app_simps(1) map_add_dom_app_simps(3) | |
net_ips_is_dom_netmap netgmap_pair_dom) | |
thus "map_option (fst \<circ> sr) (netmap (SubnetS s1 s2) i) = fst (netgmap sr (SubnetS s1 s2)) i" | |
by simp | |
qed | |
qed | |
lemma netmap_is_fst_netgmap: | |
assumes "netmap s' = netmap s" | |
shows "fst (netgmap sr s') = fst (netgmap sr s)" | |
using assms by (metis netmap_fst_netgmap_rel) | |
lemma netmap_is_fst_netgmap': | |
assumes "netmap s' i = netmap s i" | |
shows "fst (netgmap sr s') i = fst (netgmap sr s) i" | |
using assms by (metis netmap_fst_netgmap_rel) | |
lemma fst_netgmap_pair_fst [simp]: | |
"fst (netgmap (\<lambda>(p, q). (fst p, snd p, q)) s) = fst (netgmap fst s)" | |
by (induction s) auto | |
text \<open>Introduce streamlined alternatives to netgmap to simplify certain property | |
statements and thus make them easier to understand and to present.\<close> | |
fun netlift :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> (nat \<Rightarrow> 'g option)" | |
where | |
"netlift sr (NodeS i s R) = [i \<mapsto> fst (sr s)]" | |
| "netlift sr (SubnetS s t) = (netlift sr s) ++ (netlift sr t)" | |
lemma fst_netgmap_netlift: | |
"fst (netgmap sr s) = netlift sr s" | |
by (induction s) simp_all | |
fun netliftl :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> 'l net_state" | |
where | |
"netliftl sr (NodeS i s R) = NodeS i (snd (sr s)) R" | |
| "netliftl sr (SubnetS s t) = SubnetS (netliftl sr s) (netliftl sr t)" | |
lemma snd_netgmap_netliftl: | |
"snd (netgmap sr s) = netliftl sr s" | |
by (induction s) simp_all | |
lemma netgmap_netlift_netliftl: "netgmap sr s = (netlift sr s, netliftl sr s)" | |
by rule (simp_all add: fst_netgmap_netlift snd_netgmap_netliftl) | |
end | |