Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
37.9 kB
(* Title: AWN.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Terms of the Algebra for Wireless Networks"
theory AWN
imports Lib
begin
subsection "Sequential Processes"
type_synonym ip = nat
type_synonym data = nat
text \<open>
Most of AWN is independent of the type of messages, but the closed layer turns
newpkt actions into the arrival of newpkt messages. We use a type class to maintain
some abstraction (and independence from the definition of particular protocols).
\<close>
class msg =
fixes newpkt :: "data \<times> ip \<Rightarrow> 'a"
and eq_newpkt :: "'a \<Rightarrow> bool"
assumes eq_newpkt_eq [simp]: "eq_newpkt (newpkt (d, i))"
text \<open>
Sequential process terms abstract over the types of data states (@{typ 's}),
messages (@{typ 'm}), process names (@{typ 'p}),and labels (@{typ 'l}).
\<close>
datatype (dead 's, dead 'm, dead 'p, 'l) seqp =
GUARD "'l" "'s \<Rightarrow> 's set" "('s, 'm, 'p, 'l) seqp"
| ASSIGN "'l" "'s \<Rightarrow> 's" "('s, 'm, 'p, 'l) seqp"
| CHOICE "('s, 'm, 'p, 'l) seqp" "('s, 'm, 'p, 'l) seqp"
| UCAST "'l" "'s \<Rightarrow> ip" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp" "('s, 'm, 'p, 'l) seqp"
| BCAST "'l" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp"
| GCAST "'l" "'s \<Rightarrow> ip set" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp"
| SEND "'l" "'s \<Rightarrow> 'm" "('s, 'm, 'p, 'l) seqp"
| DELIVER "'l" "'s \<Rightarrow> data" "('s, 'm, 'p, 'l) seqp"
| RECEIVE "'l" "'m \<Rightarrow> 's \<Rightarrow> 's" "('s, 'm, 'p, 'l) seqp"
| CALL 'p
for map: labelmap
syntax
"_guard" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(\<open>unbreakable\<close>\<langle>_\<rangle>)//_" [0, 60] 60)
"_lguard" :: "['a, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("{_}(\<open>unbreakable\<close>\<langle>_\<rangle>)//_" [0, 0, 60] 60)
"_ifguard" :: "[pttrn, bool, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(\<open>unbreakable\<close>\<langle>_. _\<rangle>)//_" [0, 0, 60] 60)
"_bassign" :: "[pttrn, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(\<open>unbreakable\<close>\<lbrakk>_. _\<rbrakk>)//_" [0, 0, 60] 60)
"_lbassign" :: "['a, pttrn, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("{_}(\<open>unbreakable\<close>\<lbrakk>_. _\<rbrakk>)//_" [0, 0, 0, 60] 60)
"_assign" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("((\<open>unbreakable\<close>\<lbrakk>_\<rbrakk>))//_" [0, 60] 60)
"_lassign" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("({_}(\<open>unbreakable\<close>\<lbrakk>_\<rbrakk>))//_" [0, 0, 60] 60)
"_unicast" :: "['a, 'a, ('s, 'm, 'p, unit) seqp, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3unicast'((1(3_),/ (3_))') .//(_)/ (2\<triangleright> _))" [0, 0, 60, 60] 60)
"_lunicast" :: "['a, 'a, 'a, ('s, 'm, 'p, 'a) seqp, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}unicast'((1(3_),/ (3_))') .//(_)/ (2\<triangleright> _))" [0, 0, 0, 60, 60] 60)
"_bcast" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3broadcast'((1(_))') .)//_" [0, 60] 60)
"_lbcast" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}broadcast'((1(_))') .)//_" [0, 0, 60] 60)
"_gcast" :: "['a, 'a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3groupcast'((1(_),/ (_))') .)//_" [0, 0, 60] 60)
"_lgcast" :: "['a, 'a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}groupcast'((1(_),/ (_))') .)//_" [0, 0, 0, 60] 60)
"_send" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3send'((_)') .)//_" [0, 60] 60)
"_lsend" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}send'((_)') .)//_" [0, 0, 60] 60)
"_deliver" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3deliver'((_)') .)//_" [0, 60] 60)
"_ldeliver" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}deliver'((_)') .)//_" [0, 0, 60] 60)
"_receive" :: "['a, ('s, 'm, 'p, unit) seqp] \<Rightarrow> ('s, 'm, 'p, unit) seqp"
("(3receive'((_)') .)//_" [0, 60] 60)
"_lreceive" :: "['a, 'a, ('s, 'm, 'p, 'a) seqp] \<Rightarrow> ('s, 'm, 'p, 'a) seqp"
("(3{_}receive'((_)') .)//_" [0, 0, 60] 60)
translations
"_guard f p" \<rightleftharpoons> "CONST GUARD () f p"
"_lguard l f p" \<rightleftharpoons> "CONST GUARD l f p"
"_ifguard \<xi> e p" \<rightharpoonup> "CONST GUARD () (\<lambda>\<xi>. if e then {\<xi>} else {}) p"
"_assign f p" \<rightleftharpoons> "CONST ASSIGN () f p"
"_lassign l f p" \<rightleftharpoons> "CONST ASSIGN l f p"
"_bassign \<xi> e p" \<rightleftharpoons> "CONST ASSIGN () (\<lambda>\<xi>. e) p"
"_lbassign l \<xi> e p" \<rightleftharpoons> "CONST ASSIGN l (\<lambda>\<xi>. e) p"
"_unicast fip fmsg p q" \<rightleftharpoons> "CONST UCAST () fip fmsg p q"
"_lunicast l fip fmsg p q" \<rightleftharpoons> "CONST UCAST l fip fmsg p q"
"_bcast fmsg p" \<rightleftharpoons> "CONST BCAST () fmsg p"
"_lbcast l fmsg p" \<rightleftharpoons> "CONST BCAST l fmsg p"
"_gcast fipset fmsg p" \<rightleftharpoons> "CONST GCAST () fipset fmsg p"
"_lgcast l fipset fmsg p" \<rightleftharpoons> "CONST GCAST l fipset fmsg p"
"_send fmsg p" \<rightleftharpoons> "CONST SEND () fmsg p"
"_lsend l fmsg p" \<rightleftharpoons> "CONST SEND l fmsg p"
"_deliver fdata p" \<rightleftharpoons> "CONST DELIVER () fdata p"
"_ldeliver l fdata p" \<rightleftharpoons> "CONST DELIVER l fdata p"
"_receive fmsg p" \<rightleftharpoons> "CONST RECEIVE () fmsg p"
"_lreceive l fmsg p" \<rightleftharpoons> "CONST RECEIVE l fmsg p"
notation "CHOICE" ("((_)//\<oplus>//(_))" [56, 55] 55)
and "CALL" ("(3call'((3_)'))" [0] 60)
definition not_call :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> bool"
where "not_call p \<equiv> \<forall>pn. p \<noteq> call(pn)"
lemma not_call_simps [simp]:
"\<And>l fg p. not_call ({l}\<langle>fg\<rangle> p)"
"\<And>l fa p. not_call ({l}\<lbrakk>fa\<rbrakk> p)"
"\<And>p1 p2. not_call (p1 \<oplus> p2)"
"\<And>l fip fmsg p q. not_call ({l}unicast(fip, fmsg).p \<triangleright> q)"
"\<And>l fmsg p. not_call ({l}broadcast(fmsg).p)"
"\<And>l fips fmsg p. not_call ({l}groupcast(fips, fmsg).p)"
"\<And>l fmsg p. not_call ({l}send(fmsg).p)"
"\<And>l fdata p. not_call ({l}deliver(fdata).p)"
"\<And>l fmsg p. not_call ({l}receive(fmsg).p)"
"\<And>l pn. \<not>(not_call (call(pn)))"
unfolding not_call_def by auto
definition not_choice :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> bool"
where "not_choice p \<equiv> \<forall>p1 p2. p \<noteq> p1 \<oplus> p2"
lemma not_choice_simps [simp]:
"\<And>l fg p. not_choice ({l}\<langle>fg\<rangle> p)"
"\<And>l fa p. not_choice ({l}\<lbrakk>fa\<rbrakk> p)"
"\<And>p1 p2. \<not>(not_choice (p1 \<oplus> p2))"
"\<And>l fip fmsg p q. not_choice ({l}unicast(fip, fmsg).p \<triangleright> q)"
"\<And>l fmsg p. not_choice ({l}broadcast(fmsg).p)"
"\<And>l fips fmsg p. not_choice ({l}groupcast(fips, fmsg).p)"
"\<And>l fmsg p. not_choice ({l}send(fmsg).p)"
"\<And>l fdata p. not_choice ({l}deliver(fdata).p)"
"\<And>l fmsg p. not_choice ({l}receive(fmsg).p)"
"\<And>l pn. not_choice (call(pn))"
unfolding not_choice_def by auto
lemma seqp_congs:
"\<And>l fg p. {l}\<langle>fg\<rangle> p = {l}\<langle>fg\<rangle> p"
"\<And>l fa p. {l}\<lbrakk>fa\<rbrakk> p = {l}\<lbrakk>fa\<rbrakk> p"
"\<And>p1 p2. p1 \<oplus> p2 = p1 \<oplus> p2"
"\<And>l fip fmsg p q. {l}unicast(fip, fmsg).p \<triangleright> q = {l}unicast(fip, fmsg).p \<triangleright> q"
"\<And>l fmsg p. {l}broadcast(fmsg).p = {l}broadcast(fmsg).p"
"\<And>l fips fmsg p. {l}groupcast(fips, fmsg).p = {l}groupcast(fips, fmsg).p"
"\<And>l fmsg p. {l}send(fmsg).p = {l}send(fmsg).p"
"\<And>l fdata p. {l}deliver(fdata).p = {l}deliver(fdata).p"
"\<And>l fmsg p. {l}receive(fmsg).p = {l}receive(fmsg).p"
"\<And>l pn. call(pn) = call(pn)"
by auto
text \<open>Remove data expressions from process terms.\<close>
fun seqp_skeleton :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> (unit, unit, 'p, 'l) seqp"
where
"seqp_skeleton ({l}\<langle>_\<rangle> p) = {l}\<langle>\<lambda>_. {()}\<rangle> (seqp_skeleton p)"
| "seqp_skeleton ({l}\<lbrakk>_\<rbrakk> p) = {l}\<lbrakk>\<lambda>_. ()\<rbrakk> (seqp_skeleton p)"
| "seqp_skeleton (p \<oplus> q) = (seqp_skeleton p) \<oplus> (seqp_skeleton q)"
| "seqp_skeleton ({l}unicast(_, _). p \<triangleright> q) = {l}unicast(\<lambda>_. 0, \<lambda>_. ()). (seqp_skeleton p) \<triangleright> (seqp_skeleton q)"
| "seqp_skeleton ({l}broadcast(_). p) = {l}broadcast(\<lambda>_. ()). (seqp_skeleton p)"
| "seqp_skeleton ({l}groupcast(_, _). p) = {l}groupcast(\<lambda>_. {}, \<lambda>_. ()). (seqp_skeleton p)"
| "seqp_skeleton ({l}send(_). p) = {l}send(\<lambda>_. ()). (seqp_skeleton p)"
| "seqp_skeleton ({l}deliver(_). p) = {l}deliver(\<lambda>_. 0). (seqp_skeleton p)"
| "seqp_skeleton ({l}receive(_). p) = {l}receive(\<lambda>_ _. ()). (seqp_skeleton p)"
| "seqp_skeleton (call(pn)) = call(pn)"
text \<open>Calculate the subterms of a term.\<close>
fun subterms :: "('s, 'm, 'p, 'l) seqp \<Rightarrow> ('s, 'm, 'p, 'l) seqp set"
where
"subterms ({l}\<langle>fg\<rangle> p) = {{l}\<langle>fg\<rangle> p} \<union> subterms p"
| "subterms ({l}\<lbrakk>fa\<rbrakk> p) = {{l}\<lbrakk>fa\<rbrakk> p} \<union> subterms p"
| "subterms (p1 \<oplus> p2) = {p1 \<oplus> p2} \<union> subterms p1 \<union> subterms p2"
| "subterms ({l}unicast(fip, fmsg). p \<triangleright> q) =
{{l}unicast(fip, fmsg). p \<triangleright> q} \<union> subterms p \<union> subterms q"
| "subterms ({l}broadcast(fmsg). p) = {{l}broadcast(fmsg). p} \<union> subterms p"
| "subterms ({l}groupcast(fips, fmsg). p) = {{l}groupcast(fips, fmsg). p} \<union> subterms p"
| "subterms ({l}send(fmsg). p) = {{l}send(fmsg).p} \<union> subterms p"
| "subterms ({l}deliver(fdata). p) = {{l}deliver(fdata).p} \<union> subterms p"
| "subterms ({l}receive(fmsg). p) = {{l}receive(fmsg).p} \<union> subterms p"
| "subterms (call(pn)) = {call(pn)}"
lemma subterms_refl [simp]: "p \<in> subterms p"
by (cases p) simp_all
lemma subterms_trans [elim]:
assumes "q \<in> subterms p"
and "r \<in> subterms q"
shows "r \<in> subterms p"
using assms by (induction p) auto
lemma root_in_subterms [simp]:
"\<And>\<Gamma> pn. \<exists>pn'. \<Gamma> pn \<in> subterms (\<Gamma> pn')"
by (rule_tac x=pn in exI) simp
lemma deriv_in_subterms [elim, dest]:
"\<And>l f p q. {l}\<langle>f\<rangle> q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fa p q. {l}\<lbrakk>fa\<rbrakk> q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>p1 p2 p. p1 \<oplus> p2 \<in> subterms p \<Longrightarrow> p1 \<in> subterms p"
"\<And>p1 p2 p. p1 \<oplus> p2 \<in> subterms p \<Longrightarrow> p2 \<in> subterms p"
"\<And>l fip fmsg p q r. {l}unicast(fip, fmsg). q \<triangleright> r \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fip fmsg p q r. {l}unicast(fip, fmsg). q \<triangleright> r \<in> subterms p \<Longrightarrow> r \<in> subterms p"
"\<And>l fmsg p q. {l}broadcast(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fips fmsg p q. {l}groupcast(fips, fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fmsg p q. {l}send(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fdata p q. {l}deliver(fdata). q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
"\<And>l fmsg p q. {l}receive(fmsg). q \<in> subterms p \<Longrightarrow> q \<in> subterms p"
by auto
subsection "Actions"
text \<open>
There are two sorts of \<open>\<tau>\<close> actions in AWN: one at the level of individual processes
(within nodes), and one at the network level (outside nodes). We define a class so that
we can ignore this distinction whenever it is not critical.
\<close>
class tau =
fixes tau :: "'a" ("\<tau>")
subsubsection "Sequential Actions (and related predicates)"
datatype 'm seq_action =
broadcast 'm
| groupcast "ip set" 'm
| unicast ip 'm
| notunicast ip ("\<not>unicast _" [1000] 60)
| send 'm
| deliver data
| receive 'm
| seq_tau ("\<tau>\<^sub>s")
instantiation "seq_action" :: (type) tau
begin
definition step_seq_tau [simp]: "\<tau> \<equiv> \<tau>\<^sub>s"
instance ..
end
definition recvmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool"
where "recvmsg P a \<equiv> case a of receive m \<Rightarrow> P m
| _ \<Rightarrow> True"
lemma recvmsg_simps[simp]:
"\<And>m. recvmsg P (broadcast m) = True"
"\<And>ips m. recvmsg P (groupcast ips m) = True"
"\<And>ip m. recvmsg P (unicast ip m) = True"
"\<And>ip. recvmsg P (notunicast ip) = True"
"\<And>m. recvmsg P (send m) = True"
"\<And>d. recvmsg P (deliver d) = True"
"\<And>m. recvmsg P (receive m) = P m"
" recvmsg P \<tau>\<^sub>s = True"
unfolding recvmsg_def by simp_all
lemma recvmsgTT [simp]: "recvmsg TT a"
by (cases a) simp_all
lemma recvmsgE [elim]:
assumes "recvmsg (R \<sigma>) a"
and "\<And>m. R \<sigma> m \<Longrightarrow> R \<sigma>' m"
shows "recvmsg (R \<sigma>') a"
using assms(1) by (cases a) (auto elim!: assms(2))
definition anycast :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool"
where "anycast P a \<equiv> case a of broadcast m \<Rightarrow> P m
| groupcast _ m \<Rightarrow> P m
| unicast _ m \<Rightarrow> P m
| _ \<Rightarrow> True"
lemma anycast_simps [simp]:
"\<And>m. anycast P (broadcast m) = P m"
"\<And>ips m. anycast P (groupcast ips m) = P m"
"\<And>ip m. anycast P (unicast ip m) = P m"
"\<And>ip. anycast P (notunicast ip) = True"
"\<And>m. anycast P (send m) = True"
"\<And>d. anycast P (deliver d) = True"
"\<And>m. anycast P (receive m) = True"
" anycast P \<tau>\<^sub>s = True"
unfolding anycast_def by simp_all
definition orecvmsg :: "((ip \<Rightarrow> 's) \<Rightarrow> 'm \<Rightarrow> bool) \<Rightarrow> (ip \<Rightarrow> 's) \<Rightarrow> 'm seq_action \<Rightarrow> bool"
where "orecvmsg P \<sigma> a \<equiv> (case a of receive m \<Rightarrow> P \<sigma> m
| _ \<Rightarrow> True)"
lemma orecvmsg_simps [simp]:
"\<And>m. orecvmsg P \<sigma> (broadcast m) = True"
"\<And>ips m. orecvmsg P \<sigma> (groupcast ips m) = True"
"\<And>ip m. orecvmsg P \<sigma> (unicast ip m) = True"
"\<And>ip. orecvmsg P \<sigma> (notunicast ip) = True"
"\<And>m. orecvmsg P \<sigma> (send m) = True"
"\<And>d. orecvmsg P \<sigma> (deliver d) = True"
"\<And>m. orecvmsg P \<sigma> (receive m) = P \<sigma> m"
" orecvmsg P \<sigma> \<tau>\<^sub>s = True"
unfolding orecvmsg_def by simp_all
lemma orecvmsgEI [elim]:
"\<lbrakk> orecvmsg P \<sigma> a; \<And>\<sigma> a. P \<sigma> a \<Longrightarrow> Q \<sigma> a \<rbrakk> \<Longrightarrow> orecvmsg Q \<sigma> a"
by (cases a) simp_all
lemma orecvmsg_stateless_recvmsg [elim]:
"orecvmsg (\<lambda>_. P) \<sigma> a \<Longrightarrow> recvmsg P a"
by (cases a) simp_all
lemma orecvmsg_recv_weaken [elim]:
"\<lbrakk> orecvmsg P \<sigma> a; \<And>\<sigma> a. P \<sigma> a \<Longrightarrow> Q a \<rbrakk> \<Longrightarrow> recvmsg Q a"
by (cases a) simp_all
lemma orecvmsg_recvmsg [elim]:
"orecvmsg P \<sigma> a \<Longrightarrow> recvmsg (P \<sigma>) a"
by (cases a) simp_all
definition sendmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm seq_action \<Rightarrow> bool"
where "sendmsg P a \<equiv> case a of send m \<Rightarrow> P m | _ \<Rightarrow> True"
lemma sendmsg_simps [simp]:
"\<And>m. sendmsg P (broadcast m) = True"
"\<And>ips m. sendmsg P (groupcast ips m) = True"
"\<And>ip m. sendmsg P (unicast ip m) = True"
"\<And>ip. sendmsg P (notunicast ip) = True"
"\<And>m. sendmsg P (send m) = P m"
"\<And>d. sendmsg P (deliver d) = True"
"\<And>m. sendmsg P (receive m) = True"
" sendmsg P \<tau>\<^sub>s = True"
unfolding sendmsg_def by simp_all
type_synonym ('s, 'm, 'p, 'l) seqp_env = "'p \<Rightarrow> ('s, 'm, 'p, 'l) seqp"
subsubsection "Node Actions (and related predicates)"
datatype 'm node_action =
node_cast "ip set" 'm ("_:*cast'(_')" [200, 200] 200)
| node_deliver ip data ("_:deliver'(_')" [200, 200] 200)
| node_arrive "ip set" "ip set" 'm ("_\<not>_:arrive'(_')" [200, 200, 200] 200)
| node_connect ip ip ("connect'(_, _')" [200, 200] 200)
| node_disconnect ip ip ("disconnect'(_, _')" [200, 200] 200)
| node_newpkt ip data ip ("_:newpkt'(_, _')" [200, 200, 200] 200)
| node_tau ("\<tau>\<^sub>n")
instantiation "node_action" :: (type) tau
begin
definition step_node_tau [simp]: "\<tau> \<equiv> \<tau>\<^sub>n"
instance ..
end
definition arrivemsg :: "ip \<Rightarrow> ('m \<Rightarrow> bool) \<Rightarrow> 'm node_action \<Rightarrow> bool"
where "arrivemsg i P a \<equiv> case a of node_arrive ii ni m \<Rightarrow> ((ii = {i} \<longrightarrow> P m))
| _ \<Rightarrow> True"
lemma arrivemsg_simps[simp]:
"\<And>R m. arrivemsg i P (R:*cast(m)) = True"
"\<And>d m. arrivemsg i P (d:deliver(m)) = True"
"\<And>i ii ni m. arrivemsg i P (ii\<not>ni:arrive(m)) = (ii = {i} \<longrightarrow> P m)"
"\<And>i1 i2. arrivemsg i P (connect(i1, i2)) = True"
"\<And>i1 i2. arrivemsg i P (disconnect(i1, i2)) = True"
"\<And>i i' d di. arrivemsg i P (i':newpkt(d, di)) = True"
" arrivemsg i P \<tau>\<^sub>n = True"
unfolding arrivemsg_def by simp_all
lemma arrivemsgTT [simp]: "arrivemsg i TT = TT"
by (rule ext) (clarsimp simp: arrivemsg_def split: node_action.split)
definition oarrivemsg :: "((ip \<Rightarrow> 's) \<Rightarrow> 'm \<Rightarrow> bool) \<Rightarrow> (ip \<Rightarrow> 's) \<Rightarrow> 'm node_action \<Rightarrow> bool"
where "oarrivemsg P \<sigma> a \<equiv> case a of node_arrive ii ni m \<Rightarrow> P \<sigma> m | _ \<Rightarrow> True"
lemma oarrivemsg_simps[simp]:
"\<And>R m. oarrivemsg P \<sigma> (R:*cast(m)) = True"
"\<And>d m. oarrivemsg P \<sigma> (d:deliver(m)) = True"
"\<And>i ii ni m. oarrivemsg P \<sigma> (ii\<not>ni:arrive(m)) = P \<sigma> m"
"\<And>i1 i2. oarrivemsg P \<sigma> (connect(i1, i2)) = True"
"\<And>i1 i2. oarrivemsg P \<sigma> (disconnect(i1, i2)) = True"
"\<And>i i' d di. oarrivemsg P \<sigma> (i':newpkt(d, di)) = True"
" oarrivemsg P \<sigma> \<tau>\<^sub>n = True"
unfolding oarrivemsg_def by simp_all
lemma oarrivemsg_True [simp, intro]: "oarrivemsg (\<lambda>_ _. True) \<sigma> a"
by (cases a) auto
definition castmsg :: "('m \<Rightarrow> bool) \<Rightarrow> 'm node_action \<Rightarrow> bool"
where "castmsg P a \<equiv> case a of _:*cast(m) \<Rightarrow> P m
| _ \<Rightarrow> True"
lemma castmsg_simps[simp]:
"\<And>R m. castmsg P (R:*cast(m)) = P m"
"\<And>d m. castmsg P (d:deliver(m)) = True"
"\<And>i ii ni m. castmsg P (ii\<not>ni:arrive(m)) = True"
"\<And>i1 i2. castmsg P (connect(i1, i2)) = True"
"\<And>i1 i2. castmsg P (disconnect(i1, i2)) = True"
"\<And>i i' d di. castmsg P (i':newpkt(d, di)) = True"
" castmsg P \<tau>\<^sub>n = True"
unfolding castmsg_def by simp_all
subsection "Networks"
datatype net_tree =
Node ip "ip set" ("\<langle>_; _\<rangle>")
| Subnet net_tree net_tree (infixl "\<parallel>" 90)
declare net_tree.induct [[induct del]]
lemmas net_tree_induct [induct type: net_tree] = net_tree.induct [rename_abs i R p1 p2]
datatype 's net_state =
NodeS ip 's "ip set"
| SubnetS "'s net_state" "'s net_state"
fun net_ips :: "'s net_state \<Rightarrow> ip set"
where
"net_ips (NodeS i s R) = {i}"
| "net_ips (SubnetS n1 n2) = net_ips n1 \<union> net_ips n2"
fun net_tree_ips :: "net_tree \<Rightarrow> ip set"
where
"net_tree_ips (p1 \<parallel> p2) = net_tree_ips p1 \<union> net_tree_ips p2"
| "net_tree_ips (\<langle>i; R\<rangle>) = {i}"
lemma net_tree_ips_commute:
"net_tree_ips (p1 \<parallel> p2) = net_tree_ips (p2 \<parallel> p1)"
by simp (rule Un_commute)
fun wf_net_tree :: "net_tree \<Rightarrow> bool"
where
"wf_net_tree (p1 \<parallel> p2) = (net_tree_ips p1 \<inter> net_tree_ips p2 = {}
\<and> wf_net_tree p1 \<and> wf_net_tree p2)"
| "wf_net_tree (\<langle>i; R\<rangle>) = True"
lemma wf_net_tree_children [elim]:
assumes "wf_net_tree (p1 \<parallel> p2)"
obtains "wf_net_tree p1"
and "wf_net_tree p2"
using assms by simp
fun netmap :: "'s net_state \<Rightarrow> ip \<Rightarrow> 's option"
where
"netmap (NodeS i p R\<^sub>i) = [i \<mapsto> p]"
| "netmap (SubnetS s t) = netmap s ++ netmap t"
lemma not_in_netmap [simp]:
assumes "i \<notin> net_ips ns"
shows "netmap ns i = None"
using assms by (induction ns) simp_all
lemma netmap_none_not_in_net_ips:
assumes "netmap ns i = None"
shows "i\<notin>net_ips ns"
using assms by (induction ns) auto
lemma net_ips_is_dom_netmap: "net_ips s = dom(netmap s)"
proof (induction s)
fix i R\<^sub>i and p :: 's
show "net_ips (NodeS i p R\<^sub>i) = dom (netmap (NodeS i p R\<^sub>i))"
by auto
next
fix s1 s2 :: "'s net_state"
assume "net_ips s1 = dom (netmap s1)"
and "net_ips s2 = dom (netmap s2)"
thus "net_ips (SubnetS s1 s2) = dom (netmap (SubnetS s1 s2))"
by auto
qed
lemma in_netmap [simp]:
assumes "i \<in> net_ips ns"
shows "netmap ns i \<noteq> None"
using assms by (auto simp add: net_ips_is_dom_netmap)
lemma netmap_subnets_same:
assumes "netmap s1 i = x"
and "netmap s2 i = x"
shows "netmap (SubnetS s1 s2) i = x"
using assms by simp (metis map_add_dom_app_simps(1) map_add_dom_app_simps(3))
lemma netmap_subnets_samef:
assumes "netmap s1 = f"
and "netmap s2 = f"
shows "netmap (SubnetS s1 s2) = f"
using assms by simp (metis map_add_le_mapI map_le_antisym map_le_map_add map_le_refl)
lemma netmap_add_disjoint [elim]:
assumes "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i"
and "net_ips s1 \<inter> net_ips s2 = {}"
shows "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i"
proof
fix i
assume "i \<in> net_ips s1"
hence "i \<in> dom(netmap s1)" by (simp add: net_ips_is_dom_netmap)
moreover with assms(2) have "i \<notin> dom(netmap s2)" by (auto simp add: net_ips_is_dom_netmap)
ultimately have "the (netmap s1 i) = the ((netmap s1 ++ netmap s2) i)"
by (simp add: map_add_dom_app_simps)
with assms(1) and \<open>i\<in>net_ips s1\<close> show "the (netmap s1 i) = \<sigma> i" by simp
qed
lemma netmap_add_disjoint2 [elim]:
assumes "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i"
shows "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i"
using assms by (simp add: net_ips_is_dom_netmap)
(metis Un_iff map_add_dom_app_simps(1))
lemma net_ips_netmap_subnet [elim]:
assumes "net_ips s1 \<inter> net_ips s2 = {}"
and "\<forall>i\<in>net_ips (SubnetS s1 s2). the (netmap (SubnetS s1 s2) i) = \<sigma> i"
shows "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i"
and "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i"
proof -
from assms(2) have "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" by auto
with assms(1) show "\<forall>i\<in>net_ips s1. the (netmap s1 i) = \<sigma> i"
by - (erule(1) netmap_add_disjoint)
next
from assms(2) have "\<forall>i\<in>net_ips s1 \<union> net_ips s2. the ((netmap s1 ++ netmap s2) i) = \<sigma> i" by auto
thus "\<forall>i\<in>net_ips s2. the (netmap s2 i) = \<sigma> i"
by - (erule netmap_add_disjoint2)
qed
fun inoclosed :: "'s \<Rightarrow> 'm::msg node_action \<Rightarrow> bool"
where
"inoclosed _ (node_arrive ii ni m) = eq_newpkt m"
| "inoclosed _ (node_newpkt i d di) = False"
| "inoclosed _ _ = True"
lemma inclosed_simps [simp]:
"\<And>\<sigma> ii ni. inoclosed \<sigma> (ii\<not>ni:arrive(m)) = eq_newpkt m"
"\<And>\<sigma> d di. inoclosed \<sigma> (i:newpkt(d, di)) = False"
"\<And>\<sigma> R m. inoclosed \<sigma> (R:*cast(m)) = True"
"\<And>\<sigma> i d. inoclosed \<sigma> (i:deliver(d)) = True"
"\<And>\<sigma> i i'. inoclosed \<sigma> (connect(i, i')) = True"
"\<And>\<sigma> i i'. inoclosed \<sigma> (disconnect(i, i')) = True"
"\<And>\<sigma>. inoclosed \<sigma> (\<tau>) = True"
by auto
definition
netmask :: "ip set \<Rightarrow> ((ip \<Rightarrow> 's) \<times> 'l) \<Rightarrow> ((ip \<Rightarrow> 's option) \<times> 'l)"
where
"netmask I s \<equiv> (\<lambda>i. if i\<in>I then Some (fst s i) else None, snd s)"
lemma netmask_def' [simp]:
"netmask I (\<sigma>, \<zeta>) = (\<lambda>i. if i\<in>I then Some (\<sigma> i) else None, \<zeta>)"
unfolding netmask_def by auto
fun netgmap :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> (nat \<Rightarrow> 'g option) \<times> 'l net_state"
where
"netgmap sr (NodeS i s R) = ([i \<mapsto> fst (sr s)], NodeS i (snd (sr s)) R)"
| "netgmap sr (SubnetS s\<^sub>1 s\<^sub>2) = (let (\<sigma>\<^sub>1, ss) = netgmap sr s\<^sub>1 in
let (\<sigma>\<^sub>2, tt) = netgmap sr s\<^sub>2 in
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt))"
lemma dom_fst_netgmap [simp, intro]: "dom (fst (netgmap sr n)) = net_ips n"
proof (induction n)
fix i s R
show "dom (fst (netgmap sr (NodeS i s R))) = net_ips (NodeS i s R)"
by simp
next
fix n1 n2
assume a1: "dom (fst (netgmap sr n1)) = net_ips n1"
and a2: "dom (fst (netgmap sr n2)) = net_ips n2"
obtain \<sigma>\<^sub>1 \<zeta>\<^sub>1 \<sigma>\<^sub>2 \<zeta>\<^sub>2 where nm1: "netgmap sr n1 = (\<sigma>\<^sub>1, \<zeta>\<^sub>1)"
and nm2: "netgmap sr n2 = (\<sigma>\<^sub>2, \<zeta>\<^sub>2)"
by (metis surj_pair)
hence "netgmap sr (SubnetS n1 n2) = (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS \<zeta>\<^sub>1 \<zeta>\<^sub>2)" by simp
hence "dom (fst (netgmap sr (SubnetS n1 n2))) = dom (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2)" by simp
also from a1 a2 nm1 nm2 have "dom (\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2) = net_ips (SubnetS n1 n2)" by auto
finally show "dom (fst (netgmap sr (SubnetS n1 n2))) = net_ips (SubnetS n1 n2)" .
qed
lemma netgmap_pair_dom [elim]:
obtains \<sigma> \<zeta> where "netgmap sr n = (\<sigma>, \<zeta>)"
and "dom \<sigma> = net_ips n"
by (metis dom_fst_netgmap surjective_pairing)
lemma net_ips_netgmap [simp]:
"net_ips (snd (netgmap sr s)) = net_ips s"
proof (induction s)
fix s1 s2
assume "net_ips (snd (netgmap sr s1)) = net_ips s1"
and "net_ips (snd (netgmap sr s2)) = net_ips s2"
thus "net_ips (snd (netgmap sr (SubnetS s1 s2))) = net_ips (SubnetS s1 s2)"
by (cases "netgmap sr s1", cases "netgmap sr s2") auto
qed simp
lemma some_the_fst_netgmap:
assumes "i \<in> net_ips s"
shows "Some (the (fst (netgmap sr s) i)) = fst (netgmap sr s) i"
using assms by (metis domIff dom_fst_netgmap option.collapse)
lemma fst_netgmap_none [simp]:
assumes "i \<notin> net_ips s"
shows "fst (netgmap sr s) i = None"
using assms by (metis domIff dom_fst_netgmap)
lemma fst_netgmap_subnet [simp]:
"fst (case netgmap sr s1 of (\<sigma>\<^sub>1, ss) \<Rightarrow>
case netgmap sr s2 of (\<sigma>\<^sub>2, tt) \<Rightarrow>
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt)) = (fst (netgmap sr s1) ++ fst (netgmap sr s2))"
by (metis (mono_tags) fst_conv netgmap_pair_dom split_conv)
lemma snd_netgmap_subnet [simp]:
"snd (case netgmap sr s1 of (\<sigma>\<^sub>1, ss) \<Rightarrow>
case netgmap sr s2 of (\<sigma>\<^sub>2, tt) \<Rightarrow>
(\<sigma>\<^sub>1 ++ \<sigma>\<^sub>2, SubnetS ss tt)) = (SubnetS (snd (netgmap sr s1)) (snd (netgmap sr s2)))"
by (metis (lifting, no_types) Pair_inject split_beta' surjective_pairing)
lemma fst_netgmap_not_none [simp]:
assumes "i \<in> net_ips s"
shows "fst (netgmap sr s) i \<noteq> None"
using assms by (induction s) auto
lemma netgmap_netgmap_not_rhs [simp]:
assumes "i \<notin> net_ips s2"
shows "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = (fst (netgmap sr s1)) i"
proof -
from assms(1) have "i \<notin> dom (fst (netgmap sr s2))" by simp
thus ?thesis by (simp add: map_add_dom_app_simps)
qed
lemma netgmap_netgmap_rhs [simp]:
assumes "i \<in> net_ips s2"
shows "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = (fst (netgmap sr s2)) i"
using assms by (simp add: map_add_dom_app_simps)
lemma netgmap_netmask_subnets [elim]:
assumes "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))"
and "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))"
shows "fst (netgmap sr (SubnetS s1 s2))
= fst (netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr (SubnetS s1 s2))))"
proof (rule ext)
fix i
have "i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 \<or> (i\<notin>net_tree_ips n1 \<union> net_tree_ips n2)"
by auto
thus "fst (netgmap sr (SubnetS s1 s2)) i
= fst (netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr (SubnetS s1 s2)))) i"
proof (elim disjE)
assume "i \<in> net_tree_ips n1"
with \<open>netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))\<close>
\<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close>
show ?thesis
by (cases "netgmap sr s1", cases "netgmap sr s2", clarsimp)
(metis (lifting, mono_tags) map_add_Some_iff)
next
assume "i \<in> net_tree_ips n2"
with \<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close>
show ?thesis
by simp (metis (lifting, mono_tags) fst_conv map_add_find_right)
next
assume "i\<notin>net_tree_ips n1 \<union> net_tree_ips n2"
with \<open>netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))\<close>
\<open>netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))\<close>
show ?thesis
by simp (metis (lifting, mono_tags) fst_conv)
qed
qed
lemma netgmap_netmask_subnets' [elim]:
assumes "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))"
and "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))"
and "s = SubnetS s1 s2"
shows "netgmap sr s = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, snd (netgmap sr s))"
by (simp only: assms(3))
(rule prod_eqI [OF netgmap_netmask_subnets [OF assms(1-2)]], simp)
lemma netgmap_subnet_split1:
assumes "netgmap sr (SubnetS s1 s2) = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, \<zeta>)"
and "net_tree_ips n1 \<inter> net_tree_ips n2 = {}"
and "net_ips s1 = net_tree_ips n1"
and "net_ips s2 = net_tree_ips n2"
shows "netgmap sr s1 = netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1))"
proof (rule prod_eqI)
show "fst (netgmap sr s1) = fst (netmask (net_tree_ips n1) (\<sigma>, snd (netgmap sr s1)))"
proof (rule ext, simp, intro conjI impI)
fix i
assume "i\<in>net_tree_ips n1"
with \<open>net_tree_ips n1 \<inter> net_tree_ips n2 = {}\<close> have "i\<notin>net_tree_ips n2"
by auto
from assms(1) [simplified prod_eq_iff]
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i =
(if i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 then Some (\<sigma> i) else None)"
by simp
also from \<open>i\<notin>net_tree_ips n2\<close> and \<open>net_ips s2 = net_tree_ips n2\<close>
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = fst (netgmap sr s1) i"
by (metis dom_fst_netgmap map_add_dom_app_simps(3))
finally show "fst (netgmap sr s1) i = Some (\<sigma> i)"
using \<open>i\<in>net_tree_ips n1\<close> by simp
next
fix i
assume "i \<notin> net_tree_ips n1"
with \<open>net_ips s1 = net_tree_ips n1\<close> have "i \<notin> net_ips s1" by simp
thus "fst (netgmap sr s1) i = None" by simp
qed
qed simp
lemma netgmap_subnet_split2:
assumes "netgmap sr (SubnetS s1 s2) = netmask (net_tree_ips (n1 \<parallel> n2)) (\<sigma>, \<zeta>)"
and "net_ips s1 = net_tree_ips n1"
and "net_ips s2 = net_tree_ips n2"
shows "netgmap sr s2 = netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2))"
proof (rule prod_eqI)
show "fst (netgmap sr s2) = fst (netmask (net_tree_ips n2) (\<sigma>, snd (netgmap sr s2)))"
proof (rule ext, simp, intro conjI impI)
fix i
assume "i\<in>net_tree_ips n2"
from assms(1) [simplified prod_eq_iff]
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i =
(if i \<in> net_tree_ips n1 \<or> i \<in> net_tree_ips n2 then Some (\<sigma> i) else None)"
by simp
also from \<open>i\<in>net_tree_ips n2\<close> and \<open>net_ips s2 = net_tree_ips n2\<close>
have "(fst (netgmap sr s1) ++ fst (netgmap sr s2)) i = fst (netgmap sr s2) i"
by (metis dom_fst_netgmap map_add_dom_app_simps(1))
finally show "fst (netgmap sr s2) i = Some (\<sigma> i)"
using \<open>i\<in>net_tree_ips n2\<close> by simp
next
fix i
assume "i \<notin> net_tree_ips n2"
with \<open>net_ips s2 = net_tree_ips n2\<close> have "i \<notin> net_ips s2" by simp
thus "fst (netgmap sr s2) i = None" by simp
qed
qed simp
lemma netmap_fst_netgmap_rel:
shows "(\<lambda>i. map_option (fst o sr) (netmap s i)) = fst (netgmap sr s)"
proof (induction s)
fix ii s R
show "(\<lambda>i. map_option (fst \<circ> sr) (netmap (NodeS ii s R) i)) = fst (netgmap sr (NodeS ii s R))"
by auto
next
fix s1 s2
assume a1: "(\<lambda>i. map_option (fst \<circ> sr) (netmap s1 i)) = fst (netgmap sr s1)"
and a2: "(\<lambda>i. map_option (fst \<circ> sr) (netmap s2 i)) = fst (netgmap sr s2)"
show "(\<lambda>i. map_option (fst \<circ> sr) (netmap (SubnetS s1 s2) i)) = fst (netgmap sr (SubnetS s1 s2))"
proof (rule ext)
fix i
from a1 a2 have "map_option (fst \<circ> sr) ((netmap s1 ++ netmap s2) i)
= (fst (netgmap sr s1) ++ fst (netgmap sr s2)) i"
by (metis fst_conv map_add_dom_app_simps(1) map_add_dom_app_simps(3)
net_ips_is_dom_netmap netgmap_pair_dom)
thus "map_option (fst \<circ> sr) (netmap (SubnetS s1 s2) i) = fst (netgmap sr (SubnetS s1 s2)) i"
by simp
qed
qed
lemma netmap_is_fst_netgmap:
assumes "netmap s' = netmap s"
shows "fst (netgmap sr s') = fst (netgmap sr s)"
using assms by (metis netmap_fst_netgmap_rel)
lemma netmap_is_fst_netgmap':
assumes "netmap s' i = netmap s i"
shows "fst (netgmap sr s') i = fst (netgmap sr s) i"
using assms by (metis netmap_fst_netgmap_rel)
lemma fst_netgmap_pair_fst [simp]:
"fst (netgmap (\<lambda>(p, q). (fst p, snd p, q)) s) = fst (netgmap fst s)"
by (induction s) auto
text \<open>Introduce streamlined alternatives to netgmap to simplify certain property
statements and thus make them easier to understand and to present.\<close>
fun netlift :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> (nat \<Rightarrow> 'g option)"
where
"netlift sr (NodeS i s R) = [i \<mapsto> fst (sr s)]"
| "netlift sr (SubnetS s t) = (netlift sr s) ++ (netlift sr t)"
lemma fst_netgmap_netlift:
"fst (netgmap sr s) = netlift sr s"
by (induction s) simp_all
fun netliftl :: "('s \<Rightarrow> 'g \<times> 'l) \<Rightarrow> 's net_state \<Rightarrow> 'l net_state"
where
"netliftl sr (NodeS i s R) = NodeS i (snd (sr s)) R"
| "netliftl sr (SubnetS s t) = SubnetS (netliftl sr s) (netliftl sr t)"
lemma snd_netgmap_netliftl:
"snd (netgmap sr s) = netliftl sr s"
by (induction s) simp_all
lemma netgmap_netlift_netliftl: "netgmap sr s = (netlift sr s, netliftl sr s)"
by rule (simp_all add: fst_netgmap_netlift snd_netgmap_netliftl)
end