Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* Title: OAWN_Invariants.thy | |
License: BSD 2-Clause. See LICENSE. | |
Author: Timothy Bourke | |
*) | |
section "Generic open invariants on sequential AWN processes" | |
theory OAWN_Invariants | |
imports Invariants OInvariants | |
AWN_Cterms AWN_Labels AWN_Invariants | |
OAWN_SOS | |
begin | |
subsection "Open invariants via labelled control terms" | |
lemma oseqp_sos_subterms: | |
assumes "wellformed \<Gamma>" | |
and "\<exists>pn. p \<in> subterms (\<Gamma> pn)" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
shows "\<exists>pn. p' \<in> subterms (\<Gamma> pn)" | |
using assms | |
proof (induct p) | |
fix p1 p2 | |
assume IH1: "\<exists>pn. p1 \<in> subterms (\<Gamma> pn) \<Longrightarrow> | |
((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow> | |
\<exists>pn. p' \<in> subterms (\<Gamma> pn)" | |
and IH2: "\<exists>pn. p2 \<in> subterms (\<Gamma> pn) \<Longrightarrow> | |
((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow> | |
\<exists>pn. p' \<in> subterms (\<Gamma> pn)" | |
and "\<exists>pn. p1 \<oplus> p2 \<in> subterms (\<Gamma> pn)" | |
and "((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
from \<open>\<exists>pn. p1 \<oplus> p2 \<in> subterms (\<Gamma> pn)\<close> obtain pn | |
where "p1 \<in> subterms (\<Gamma> pn)" | |
and "p2 \<in> subterms (\<Gamma> pn)" by auto | |
from \<open>((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i\<close> | |
have "((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i | |
\<or> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by auto | |
thus "\<exists>pn. p' \<in> subterms (\<Gamma> pn)" | |
proof | |
assume "((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
with \<open>p1 \<in> subterms (\<Gamma> pn)\<close> show ?thesis by (auto intro: IH1) | |
next | |
assume "((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
with \<open>p2 \<in> subterms (\<Gamma> pn)\<close> show ?thesis by (auto intro: IH2) | |
qed | |
qed auto | |
lemma oreachable_subterms: | |
assumes "wellformed \<Gamma>" | |
and "control_within \<Gamma> (init A)" | |
and "trans A = oseqp_sos \<Gamma> i" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
shows "\<exists>pn. p \<in> subterms (\<Gamma> pn)" | |
using assms(4) | |
proof (induct rule: oreachable_pair_induct) | |
fix \<sigma> p | |
assume "(\<sigma>, p) \<in> init A" | |
with \<open>control_within \<Gamma> (init A)\<close> show "\<exists>pn. p \<in> subterms (\<Gamma> pn)" .. | |
next | |
fix \<sigma> p a \<sigma>' p' | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "\<exists>pn. p \<in> subterms (\<Gamma> pn)" | |
and 3: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
moreover from 3 and \<open>trans A = oseqp_sos \<Gamma> i\<close> | |
have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp | |
ultimately show "\<exists>pn. p' \<in> subterms (\<Gamma> pn)" | |
using \<open>wellformed \<Gamma>\<close> | |
by (auto elim: oseqp_sos_subterms) | |
qed | |
lemma onl_oinvariantI [intro]: | |
assumes init: "\<And>\<sigma> p l. \<lbrakk> (\<sigma>, p) \<in> init A; l \<in> labels \<Gamma> p \<rbrakk> \<Longrightarrow> P (\<sigma>, l)" | |
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; | |
\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l); | |
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> \<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)" | |
and step: "\<And>\<sigma> p a \<sigma>' p' l'. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; | |
\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l); | |
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; | |
l' \<in> labels \<Gamma> p'; | |
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', l')" | |
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
proof | |
fix \<sigma> p | |
assume "(\<sigma>, p) \<in> init A" | |
hence "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" using init by simp | |
thus "onl \<Gamma> P (\<sigma>, p)" .. | |
next | |
fix \<sigma> p a \<sigma>' p' | |
assume rp: "(\<sigma>, p) \<in> oreachable A S U" | |
and "onl \<Gamma> P (\<sigma>, p)" | |
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
from \<open>onl \<Gamma> P (\<sigma>, p)\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" .. | |
with rp tr \<open>S \<sigma> \<sigma>' a\<close> have "\<forall>l'\<in>labels \<Gamma> p'. P (\<sigma>', l')" by (auto elim: step) | |
thus "onl \<Gamma> P (\<sigma>', p')" .. | |
next | |
fix \<sigma> \<sigma>' p | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "onl \<Gamma> P (\<sigma>, p)" | |
and "U \<sigma> \<sigma>'" | |
from \<open>onl \<Gamma> P (\<sigma>, p)\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" by auto | |
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)" | |
using \<open>U \<sigma> \<sigma>'\<close> by (rule other) | |
thus "onl \<Gamma> P (\<sigma>', p)" by auto | |
qed | |
lemma global_oinvariantI [intro]: | |
assumes init: "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P \<sigma>" | |
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma>; U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>'" | |
and step: "\<And>\<sigma> p a \<sigma>' p'. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; | |
P \<sigma>; | |
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; | |
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P \<sigma>'" | |
shows "A \<Turnstile> (S, U \<rightarrow>) (\<lambda>(\<sigma>, _). P \<sigma>)" | |
proof | |
fix \<sigma> p | |
assume "(\<sigma>, p) \<in> init A" | |
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)" | |
by simp (erule init) | |
next | |
fix \<sigma> p a \<sigma>' p' | |
assume rp: "(\<sigma>, p) \<in> oreachable A S U" | |
and "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)" | |
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
from \<open>(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)\<close> have "P \<sigma>" by simp | |
with rp have "P \<sigma>'" | |
using tr \<open>S \<sigma> \<sigma>' a\<close> by (rule step) | |
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>', p')" by simp | |
next | |
fix \<sigma> \<sigma>' p | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)" | |
and "U \<sigma> \<sigma>'" | |
hence "P \<sigma>'" by simp (erule other) | |
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>', p)" by simp | |
qed | |
lemma onl_oinvariantD [dest]: | |
assumes "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "l \<in> labels \<Gamma> p" | |
shows "P (\<sigma>, l)" | |
using assms unfolding onl_def by auto | |
lemma onl_oinvariant_weakenD [dest]: | |
assumes "A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "l \<in> labels \<Gamma> p" | |
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a" | |
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'" | |
shows "P (\<sigma>, l)" | |
proof - | |
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'" | |
by (rule oreachable_weakenE) | |
(erule weakenS, erule weakenU) | |
with \<open>A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P\<close> show "P (\<sigma>, l)" | |
using \<open>l \<in> labels \<Gamma> p\<close> .. | |
qed | |
lemma onl_oinvariant_initD [dest]: | |
assumes invP: "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
and init: "(\<sigma>, p) \<in> init A" | |
and pnl: "l \<in> labels \<Gamma> p" | |
shows "P (\<sigma>, l)" | |
proof - | |
from init have "(\<sigma>, p) \<in> oreachable A S U" .. | |
with invP show ?thesis using pnl .. | |
qed | |
lemma onl_oinvariant_sterms: | |
assumes wf: "wellformed \<Gamma>" | |
and il: "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
and rp: "(\<sigma>, p) \<in> oreachable A S U" | |
and "p'\<in>sterms \<Gamma> p" | |
and "l\<in>labels \<Gamma> p'" | |
shows "P (\<sigma>, l)" | |
proof - | |
from wf \<open>p'\<in>sterms \<Gamma> p\<close> \<open>l\<in>labels \<Gamma> p'\<close> have "l\<in>labels \<Gamma> p" | |
by (rule labels_sterms_labels) | |
with il rp show "P (\<sigma>, l)" .. | |
qed | |
lemma onl_oinvariant_sterms_weaken: | |
assumes wf: "wellformed \<Gamma>" | |
and il: "A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P" | |
and rp: "(\<sigma>, p) \<in> oreachable A S U" | |
and "p'\<in>sterms \<Gamma> p" | |
and "l\<in>labels \<Gamma> p'" | |
and weakenS: "\<And>\<sigma> \<sigma>' a. S \<sigma> \<sigma>' a \<Longrightarrow> S' \<sigma> \<sigma>' a" | |
and weakenU: "\<And>\<sigma> \<sigma>'. U \<sigma> \<sigma>' \<Longrightarrow> U' \<sigma> \<sigma>'" | |
shows "P (\<sigma>, l)" | |
proof - | |
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'" | |
by (rule oreachable_weakenE) | |
(erule weakenS, erule weakenU) | |
with assms(1-2) show ?thesis using assms(4-5) | |
by (rule onl_oinvariant_sterms) | |
qed | |
lemma otrans_from_sterms: | |
assumes "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
and "wellformed \<Gamma>" | |
shows "\<exists>p'\<in>sterms \<Gamma> p. ((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
using assms by (induction p rule: sterms_pinduct [OF \<open>wellformed \<Gamma>\<close>]) auto | |
lemma otrans_from_sterms': | |
assumes "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
and "wellformed \<Gamma>" | |
and "p' \<in> sterms \<Gamma> p" | |
shows "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
using assms by (induction p rule: sterms_pinduct [OF \<open>wellformed \<Gamma>\<close>]) auto | |
lemma otrans_to_dterms: | |
assumes "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
and "wellformed \<Gamma>" | |
shows "\<forall>r\<in>sterms \<Gamma> q. r \<in> dterms \<Gamma> p" | |
using assms by (induction q) auto | |
theorem cterms_includes_sterms_of_oseq_reachable: | |
assumes "wellformed \<Gamma>" | |
and "control_within \<Gamma> (init A)" | |
and "trans A = oseqp_sos \<Gamma> i" | |
shows "\<Union>(sterms \<Gamma> ` snd ` oreachable A S U) \<subseteq> cterms \<Gamma>" | |
proof | |
fix qs | |
assume "qs \<in> \<Union>(sterms \<Gamma> ` snd ` oreachable A S U)" | |
then obtain \<xi> and q where *: "(\<xi>, q) \<in> oreachable A S U" | |
and **: "qs \<in> sterms \<Gamma> q" by auto | |
from * have "\<And>x. x \<in> sterms \<Gamma> q \<Longrightarrow> x \<in> cterms \<Gamma>" | |
proof (induction rule: oreachable_pair_induct) | |
fix \<sigma> p q | |
assume "(\<sigma>, p) \<in> init A" | |
and "q \<in> sterms \<Gamma> p" | |
from \<open>control_within \<Gamma> (init A)\<close> and \<open>(\<sigma>, p) \<in> init A\<close> | |
obtain pn where "p \<in> subterms (\<Gamma> pn)" by auto | |
with \<open>wellformed \<Gamma>\<close> show "q \<in> cterms \<Gamma>" using \<open>q\<in>sterms \<Gamma> p\<close> | |
by (rule subterms_sterms_in_cterms) | |
next | |
fix p \<sigma> a \<sigma>' q x | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and IH: "\<And>x. x \<in> sterms \<Gamma> p \<Longrightarrow> x \<in> cterms \<Gamma>" | |
and "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
and "x \<in> sterms \<Gamma> q" | |
from this(3) and \<open>trans A = oseqp_sos \<Gamma> i\<close> | |
have step: "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp | |
from step \<open>wellformed \<Gamma>\<close> obtain ps | |
where ps: "ps \<in> sterms \<Gamma> p" | |
and step': "((\<sigma>, ps), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
by (rule otrans_from_sterms [THEN bexE]) | |
from ps have "ps \<in> cterms \<Gamma>" by (rule IH) | |
moreover from step' \<open>wellformed \<Gamma>\<close> \<open>x \<in> sterms \<Gamma> q\<close> have "x \<in> dterms \<Gamma> ps" | |
by (rule otrans_to_dterms [rule_format]) | |
ultimately show "x \<in> cterms \<Gamma>" by (rule ctermsDI) | |
qed | |
thus "qs \<in> cterms \<Gamma>" using ** . | |
qed | |
corollary oseq_reachable_in_cterms: | |
assumes "wellformed \<Gamma>" | |
and "control_within \<Gamma> (init A)" | |
and "trans A = oseqp_sos \<Gamma> i" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "p' \<in> sterms \<Gamma> p" | |
shows "p' \<in> cterms \<Gamma>" | |
using assms(1-3) | |
proof (rule cterms_includes_sterms_of_oseq_reachable [THEN subsetD]) | |
from assms(4-5) show "p' \<in> \<Union>(sterms \<Gamma> ` snd ` oreachable A S U)" | |
by (auto elim!: rev_bexI) | |
qed | |
lemma oseq_invariant_ctermI: | |
assumes wf: "wellformed \<Gamma>" | |
and cw: "control_within \<Gamma> (init A)" | |
and sl: "simple_labels \<Gamma>" | |
and sp: "trans A = oseqp_sos \<Gamma> i" | |
and init: "\<And>\<sigma> p l. \<lbrakk> | |
(\<sigma>, p) \<in> init A; | |
l\<in>labels \<Gamma> p | |
\<rbrakk> \<Longrightarrow> P (\<sigma>, l)" | |
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> | |
(\<sigma>, p) \<in> oreachable A S U; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)" | |
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp. \<lbrakk> | |
p\<in>cterms \<Gamma>; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A; | |
l'\<in>labels \<Gamma> q; | |
(\<sigma>, pp)\<in>oreachable A S U; | |
p\<in>sterms \<Gamma> pp; | |
(\<sigma>', q)\<in>oreachable A S U; | |
S \<sigma> \<sigma>' a | |
\<rbrakk> \<Longrightarrow> P (\<sigma>', l')" | |
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
proof | |
fix \<sigma> p l | |
assume "(\<sigma>, p) \<in> init A" | |
and *: "l \<in> labels \<Gamma> p" | |
with init show "P (\<sigma>, l)" by auto | |
next | |
fix \<sigma> p a \<sigma>' q l' | |
assume sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and pl: "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" | |
and tr: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
and A6: "l' \<in> labels \<Gamma> q" | |
and "S \<sigma> \<sigma>' a" | |
thus "P (\<sigma>', l')" | |
proof - | |
from sr and tr and \<open>S \<sigma> \<sigma>' a\<close> have A7: "(\<sigma>', q) \<in> oreachable A S U" | |
by - (rule oreachable_local') | |
from tr and sp have tr': "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp | |
then obtain p' where "p' \<in> sterms \<Gamma> p" | |
and A4: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
by (blast dest: otrans_from_sterms [OF _ wf]) | |
from wf cw sp sr this(1) have A1: "p'\<in>cterms \<Gamma>" | |
by (rule oseq_reachable_in_cterms) | |
from labels_not_empty [OF wf] obtain ll where A2: "ll\<in>labels \<Gamma> p'" | |
by blast | |
with \<open>p'\<in>sterms \<Gamma> p\<close> have "ll\<in>labels \<Gamma> p" | |
by (rule labels_sterms_labels [OF wf]) | |
with pl have A3: "P (\<sigma>, ll)" by simp | |
from sr \<open>p'\<in>sterms \<Gamma> p\<close> | |
obtain pp where A7: "(\<sigma>, pp)\<in>oreachable A S U" | |
and A8: "p'\<in>sterms \<Gamma> pp" | |
by auto | |
from sr tr \<open>S \<sigma> \<sigma>' a\<close> have A9: "(\<sigma>', q)\<in>oreachable A S U" | |
by - (rule oreachable_local') | |
from sp and \<open>((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i\<close> | |
have A5: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" by simp | |
from A1 A2 A3 A4 A5 A6 A7 A8 A9 \<open>S \<sigma> \<sigma>' a\<close> show ?thesis by (rule local) | |
qed | |
next | |
fix \<sigma> \<sigma>' p l | |
assume sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" | |
and "U \<sigma> \<sigma>'" | |
show "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)" | |
proof | |
fix l | |
assume "l\<in>labels \<Gamma> p" | |
with \<open>\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)\<close> have "P (\<sigma>, l)" .. | |
with sr and \<open>l\<in>labels \<Gamma> p\<close> | |
show "P (\<sigma>', l)" using \<open>U \<sigma> \<sigma>'\<close> by (rule other) | |
qed | |
qed | |
lemma oseq_invariant_ctermsI: | |
assumes wf: "wellformed \<Gamma>" | |
and cw: "control_within \<Gamma> (init A)" | |
and sl: "simple_labels \<Gamma>" | |
and sp: "trans A = oseqp_sos \<Gamma> i" | |
and init: "\<And>\<sigma> p l. \<lbrakk> | |
(\<sigma>, p) \<in> init A; | |
l\<in>labels \<Gamma> p | |
\<rbrakk> \<Longrightarrow> P (\<sigma>, l)" | |
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> | |
wellformed \<Gamma>; | |
(\<sigma>, p) \<in> oreachable A S U; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)" | |
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp pn. \<lbrakk> | |
wellformed \<Gamma>; | |
p\<in>ctermsl (\<Gamma> pn); | |
not_call p; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A; | |
l'\<in>labels \<Gamma> q; | |
(\<sigma>, pp)\<in>oreachable A S U; | |
p\<in>sterms \<Gamma> pp; | |
(\<sigma>', q)\<in>oreachable A S U; | |
S \<sigma> \<sigma>' a | |
\<rbrakk> \<Longrightarrow> P (\<sigma>', l')" | |
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
proof (rule oseq_invariant_ctermI [OF wf cw sl sp]) | |
fix \<sigma> p l | |
assume "(\<sigma>, p) \<in> init A" | |
and "l \<in> labels \<Gamma> p" | |
thus "P (\<sigma>, l)" by (rule init) | |
next | |
fix \<sigma> \<sigma>' p l | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "l \<in> labels \<Gamma> p" | |
and "P (\<sigma>, l)" | |
and "U \<sigma> \<sigma>'" | |
with wf show "P (\<sigma>', l)" by (rule other) | |
next | |
fix p l \<sigma> a q l' \<sigma>' pp | |
assume "p \<in> cterms \<Gamma>" | |
and otherassms: "l \<in> labels \<Gamma> p" | |
"P (\<sigma>, l)" | |
"((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
"((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
"l' \<in> labels \<Gamma> q" | |
"(\<sigma>, pp) \<in> oreachable A S U" | |
"p \<in> sterms \<Gamma> pp" | |
"(\<sigma>', q) \<in> oreachable A S U" | |
"S \<sigma> \<sigma>' a" | |
from this(1) obtain pn where "p \<in> ctermsl(\<Gamma> pn)" | |
and "not_call p" | |
unfolding cterms_def' [OF wf] by auto | |
with wf show "P (\<sigma>', l')" | |
using otherassms by (rule local) | |
qed | |
subsection "Open step invariants via labelled control terms" | |
lemma onll_ostep_invariantI [intro]: | |
assumes *: "\<And>\<sigma> p l a \<sigma>' p' l'. \<lbrakk> (\<sigma>, p)\<in>oreachable A S U; | |
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A; | |
S \<sigma> \<sigma>' a; | |
l \<in>labels \<Gamma> p; | |
l'\<in>labels \<Gamma> p' \<rbrakk> | |
\<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))" | |
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
proof | |
fix \<sigma> p \<sigma>' p' a | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
hence "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" by (auto elim!: *) | |
thus "onll \<Gamma> P ((\<sigma>, p), a, (\<sigma>', p'))" .. | |
qed | |
lemma onll_ostep_invariantE [elim]: | |
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and lp: "l \<in>labels \<Gamma> p" | |
and lp': "l'\<in>labels \<Gamma> p'" | |
shows "P ((\<sigma>, l), a, (\<sigma>', l'))" | |
proof - | |
from assms(1-4) have "onll \<Gamma> P ((\<sigma>, p), a, (\<sigma>', p'))" .. | |
with lp lp' show "P ((\<sigma>, l), a, (\<sigma>', l'))" by auto | |
qed | |
lemma onll_ostep_invariantD [dest]: | |
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
shows "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" | |
using assms by auto | |
lemma onll_ostep_invariant_weakenD [dest]: | |
assumes "A \<Turnstile>\<^sub>A (S', U' \<rightarrow>) onll \<Gamma> P" | |
and "(\<sigma>, p) \<in> oreachable A S U" | |
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S' \<sigma> \<sigma>' a" | |
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a" | |
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'" | |
shows "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" | |
proof - | |
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'" | |
by (rule oreachable_weakenE) | |
(erule weakenS, erule weakenU) | |
with \<open>A \<Turnstile>\<^sub>A (S', U' \<rightarrow>) onll \<Gamma> P\<close> show ?thesis | |
using \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A\<close> and \<open>S' \<sigma> \<sigma>' a\<close> .. | |
qed | |
lemma onll_ostep_to_invariantI [intro]: | |
assumes sinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> Q" | |
and wf: "wellformed \<Gamma>" | |
and init: "\<And>\<sigma> l p. \<lbrakk> (\<sigma>, p) \<in> init A; l\<in>labels \<Gamma> p \<rbrakk> \<Longrightarrow> P (\<sigma>, l)" | |
and other: "\<And>\<sigma> \<sigma>' p l. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)" | |
and local: "\<And>\<sigma> p l \<sigma>' l' a. | |
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U; | |
l\<in>labels \<Gamma> p; | |
P (\<sigma>, l); | |
Q ((\<sigma>, l), a, (\<sigma>', l')); | |
S \<sigma> \<sigma>' a\<rbrakk> \<Longrightarrow> P (\<sigma>', l')" | |
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P" | |
proof | |
fix \<sigma> p l | |
assume "(\<sigma>, p) \<in> init A" and "l\<in>labels \<Gamma> p" | |
thus "P (\<sigma>, l)" by (rule init) | |
next | |
fix \<sigma> p a \<sigma>' p' l' | |
assume sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and lp: "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" | |
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and lp': "l' \<in> labels \<Gamma> p'" | |
show "P (\<sigma>', l')" | |
proof - | |
from lp obtain l where "l\<in>labels \<Gamma> p" and "P (\<sigma>, l)" | |
using labels_not_empty [OF wf] by auto | |
from sinv sr tr \<open>S \<sigma> \<sigma>' a\<close> this(1) lp' have "Q ((\<sigma>, l), a, (\<sigma>', l'))" .. | |
with sr \<open>l\<in>labels \<Gamma> p\<close> \<open>P (\<sigma>, l)\<close> show "P (\<sigma>', l')" using \<open>S \<sigma> \<sigma>' a\<close> by (rule local) | |
qed | |
next | |
fix \<sigma> \<sigma>' p l | |
assume "(\<sigma>, p) \<in> oreachable A S U" | |
and "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" | |
and "U \<sigma> \<sigma>'" | |
show "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)" | |
proof | |
fix l | |
assume "l\<in>labels \<Gamma> p" | |
with \<open>\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)\<close> have "P (\<sigma>, l)" .. | |
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> and \<open>l\<in>labels \<Gamma> p\<close> | |
show "P (\<sigma>', l)" using \<open>U \<sigma> \<sigma>'\<close> by (rule other) | |
qed | |
qed | |
lemma onll_ostep_invariant_sterms: | |
assumes wf: "wellformed \<Gamma>" | |
and si: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and sos: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and "l'\<in>labels \<Gamma> q" | |
and "p'\<in>sterms \<Gamma> p" | |
and "l\<in>labels \<Gamma> p'" | |
shows "P ((\<sigma>, l), a, (\<sigma>', l'))" | |
proof - | |
from wf \<open>p'\<in>sterms \<Gamma> p\<close> \<open>l\<in>labels \<Gamma> p'\<close> have "l\<in>labels \<Gamma> p" | |
by (rule labels_sterms_labels) | |
with si sr sos \<open>S \<sigma> \<sigma>' a\<close> show "P ((\<sigma>, l), a, (\<sigma>', l'))" using \<open>l'\<in>labels \<Gamma> q\<close> .. | |
qed | |
lemma oseq_step_invariant_sterms: | |
assumes inv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and wf: "wellformed \<Gamma>" | |
and sp: "trans A = oseqp_sos \<Gamma> i" | |
and "l'\<in>labels \<Gamma> q" | |
and sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and tr: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and "p'\<in>sterms \<Gamma> p" | |
shows "\<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" | |
proof | |
from assms(3, 6) have "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp | |
hence "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
using wf \<open>p'\<in>sterms \<Gamma> p\<close> by (rule otrans_from_sterms') | |
with assms(3) have trp: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" by simp | |
fix l assume "l \<in> labels \<Gamma> p'" | |
with wf inv sr trp \<open>S \<sigma> \<sigma>' a\<close> \<open>l'\<in>labels \<Gamma> q\<close> \<open>p'\<in>sterms \<Gamma> p\<close> | |
show "P ((\<sigma>, l), a, (\<sigma>', l'))" | |
by - (erule(7) onll_ostep_invariant_sterms) | |
qed | |
lemma oseq_step_invariant_sterms_weaken: | |
assumes inv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and wf: "wellformed \<Gamma>" | |
and sp: "trans A = oseqp_sos \<Gamma> i" | |
and "l'\<in>labels \<Gamma> q" | |
and sr: "(\<sigma>, p) \<in> oreachable A S' U'" | |
and tr: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" | |
and "S' \<sigma> \<sigma>' a" | |
and "p'\<in>sterms \<Gamma> p" | |
and weakenS: "\<And>\<sigma> \<sigma>' a. S' \<sigma> \<sigma>' a \<Longrightarrow> S \<sigma> \<sigma>' a" | |
and weakenU: "\<And>\<sigma> \<sigma>'. U' \<sigma> \<sigma>' \<Longrightarrow> U \<sigma> \<sigma>'" | |
shows "\<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" | |
proof - | |
from \<open>S' \<sigma> \<sigma>' a\<close> have "S \<sigma> \<sigma>' a" by (rule weakenS) | |
from \<open>(\<sigma>, p) \<in> oreachable A S' U'\<close> | |
have Ir: "(\<sigma>, p) \<in> oreachable A S U" | |
by (rule oreachable_weakenE) | |
(erule weakenS, erule weakenU) | |
with assms(1-4) show ?thesis | |
using tr \<open>S \<sigma> \<sigma>' a\<close> \<open>p'\<in>sterms \<Gamma> p\<close> | |
by (rule oseq_step_invariant_sterms) | |
qed | |
lemma onll_ostep_invariant_any_sterms: | |
assumes wf: "wellformed \<Gamma>" | |
and si: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
and sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and sos: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and "l'\<in>labels \<Gamma> q" | |
shows "\<forall>p'\<in>sterms \<Gamma> p. \<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" | |
by (intro ballI) (rule onll_ostep_invariant_sterms [OF assms]) | |
lemma oseq_step_invariant_ctermI [intro]: | |
assumes wf: "wellformed \<Gamma>" | |
and cw: "control_within \<Gamma> (init A)" | |
and sl: "simple_labels \<Gamma>" | |
and sp: "trans A = oseqp_sos \<Gamma> i" | |
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp. \<lbrakk> | |
p\<in>cterms \<Gamma>; | |
l\<in>labels \<Gamma> p; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A; | |
l'\<in>labels \<Gamma> q; | |
(\<sigma>, pp) \<in> oreachable A S U; | |
p\<in>sterms \<Gamma> pp; | |
(\<sigma>', q) \<in> oreachable A S U; | |
S \<sigma> \<sigma>' a | |
\<rbrakk> \<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))" | |
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
proof | |
fix \<sigma> p l a \<sigma>' q l' | |
assume sr: "(\<sigma>, p) \<in> oreachable A S U" | |
and tr: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
and "S \<sigma> \<sigma>' a" | |
and pl: "l \<in> labels \<Gamma> p" | |
and A5: "l' \<in> labels \<Gamma> q" | |
from this(2) and sp have "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp | |
then obtain p' where "p' \<in> sterms \<Gamma> p" | |
and A3: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
by (blast dest: otrans_from_sterms [OF _ wf]) | |
from this(2) and sp have A4: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" by simp | |
from wf cw sp sr \<open>p'\<in>sterms \<Gamma> p\<close> have A1: "p'\<in>cterms \<Gamma>" | |
by (rule oseq_reachable_in_cterms) | |
from sr \<open>p'\<in>sterms \<Gamma> p\<close> | |
obtain pp where A6: "(\<sigma>, pp)\<in>oreachable A S U" | |
and A7: "p'\<in>sterms \<Gamma> pp" | |
by auto | |
from sr tr \<open>S \<sigma> \<sigma>' a\<close> have A8: "(\<sigma>', q)\<in>oreachable A S U" | |
by - (erule(2) oreachable_local') | |
from wf cw sp sr have "\<exists>pn. p \<in> subterms (\<Gamma> pn)" | |
by (rule oreachable_subterms) | |
with sl wf have "\<forall>p'\<in>sterms \<Gamma> p. l \<in> labels \<Gamma> p'" | |
using pl by (rule simple_labels_in_sterms) | |
with \<open>p' \<in> sterms \<Gamma> p\<close> have "l \<in> labels \<Gamma> p'" by simp | |
with A1 show "P ((\<sigma>, l), a, (\<sigma>', l'))" using A3 A4 A5 A6 A7 A8 \<open>S \<sigma> \<sigma>' a\<close> | |
by (rule local) | |
qed | |
lemma oseq_step_invariant_ctermsI [intro]: | |
assumes wf: "wellformed \<Gamma>" | |
and "control_within \<Gamma> (init A)" | |
and "simple_labels \<Gamma>" | |
and "trans A = oseqp_sos \<Gamma> i" | |
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp pn. \<lbrakk> | |
wellformed \<Gamma>; | |
p\<in>ctermsl (\<Gamma> pn); | |
not_call p; | |
l\<in>labels \<Gamma> p; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i; | |
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A; | |
l'\<in>labels \<Gamma> q; | |
(\<sigma>, pp) \<in> oreachable A S U; | |
p\<in>sterms \<Gamma> pp; | |
(\<sigma>', q) \<in> oreachable A S U; | |
S \<sigma> \<sigma>' a | |
\<rbrakk> \<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))" | |
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P" | |
using assms(1-4) proof (rule oseq_step_invariant_ctermI) | |
fix p l \<sigma> a q l' \<sigma>' pp | |
assume "p \<in> cterms \<Gamma>" | |
and otherassms: "l \<in> labels \<Gamma> p" | |
"((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" | |
"((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" | |
"l' \<in> labels \<Gamma> q" | |
"(\<sigma>, pp) \<in> oreachable A S U" | |
"p \<in> sterms \<Gamma> pp" | |
"(\<sigma>', q) \<in> oreachable A S U" | |
"S \<sigma> \<sigma>' a" | |
from this(1) obtain pn where "p \<in> ctermsl(\<Gamma> pn)" | |
and "not_call p" | |
unfolding cterms_def' [OF wf] by auto | |
with wf show "P ((\<sigma>, l), a, (\<sigma>', l'))" | |
using otherassms by (rule local) | |
qed | |
lemma open_seqp_action [elim]: | |
assumes "wellformed \<Gamma>" | |
and "((\<sigma> i, p), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
shows "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
proof - | |
from assms obtain ps where "ps\<in>sterms \<Gamma> p" | |
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
by - (drule trans_from_sterms, auto) | |
thus ?thesis | |
proof (induction p) | |
fix p1 p2 | |
assume "\<lbrakk> ps \<in> sterms \<Gamma> p1; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk> | |
\<Longrightarrow> ((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "\<lbrakk> ps \<in> sterms \<Gamma> p2; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk> | |
\<Longrightarrow> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "ps \<in> sterms \<Gamma> (p1 \<oplus> p2)" | |
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
with assms(1) show "((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
by simp (metis oseqp_sos.ochoiceT1 oseqp_sos.ochoiceT2) | |
next | |
fix l fip fmsg p1 p2 | |
assume IH1: "\<lbrakk> ps \<in> sterms \<Gamma> p1; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk> | |
\<Longrightarrow> ((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and IH2: "\<lbrakk> ps \<in> sterms \<Gamma> p2; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk> | |
\<Longrightarrow> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
and "ps \<in> sterms \<Gamma> ({l}unicast(fip, fmsg). p1 \<triangleright> p2)" | |
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
from this(3-4) have "((\<sigma> i, {l}unicast(fip, fmsg). p1 \<triangleright> p2), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
by simp | |
thus "((\<sigma>, {l}unicast(fip, fmsg). p1 \<triangleright> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
proof (rule seqp_unicastTE) | |
assume "a = unicast (fip (\<sigma> i)) (fmsg (\<sigma> i))" | |
and "\<sigma>' i = \<sigma> i" | |
and "p' = p1" | |
thus ?thesis by auto | |
next | |
assume "a = \<not>unicast (fip (\<sigma> i))" | |
and "\<sigma>' i = \<sigma> i" | |
and "p' = p2" | |
thus ?thesis by auto | |
qed | |
next | |
fix p | |
assume "ps \<in> sterms \<Gamma> (call(p))" | |
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>" | |
with assms(1) have "((\<sigma>, ps), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
by (cases ps) auto | |
with assms(1) \<open>ps \<in> sterms \<Gamma> (call(p))\<close> have "((\<sigma>, \<Gamma> p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" | |
by - (rule otrans_from_sterms', simp_all) | |
thus "((\<sigma>, call(p)), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by auto | |
qed auto | |
qed | |
end | |