Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /afp /AWN /OAWN_Invariants.thy
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
36.7 kB
(* Title: OAWN_Invariants.thy
License: BSD 2-Clause. See LICENSE.
Author: Timothy Bourke
*)
section "Generic open invariants on sequential AWN processes"
theory OAWN_Invariants
imports Invariants OInvariants
AWN_Cterms AWN_Labels AWN_Invariants
OAWN_SOS
begin
subsection "Open invariants via labelled control terms"
lemma oseqp_sos_subterms:
assumes "wellformed \<Gamma>"
and "\<exists>pn. p \<in> subterms (\<Gamma> pn)"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
shows "\<exists>pn. p' \<in> subterms (\<Gamma> pn)"
using assms
proof (induct p)
fix p1 p2
assume IH1: "\<exists>pn. p1 \<in> subterms (\<Gamma> pn) \<Longrightarrow>
((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow>
\<exists>pn. p' \<in> subterms (\<Gamma> pn)"
and IH2: "\<exists>pn. p2 \<in> subterms (\<Gamma> pn) \<Longrightarrow>
((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i \<Longrightarrow>
\<exists>pn. p' \<in> subterms (\<Gamma> pn)"
and "\<exists>pn. p1 \<oplus> p2 \<in> subterms (\<Gamma> pn)"
and "((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
from \<open>\<exists>pn. p1 \<oplus> p2 \<in> subterms (\<Gamma> pn)\<close> obtain pn
where "p1 \<in> subterms (\<Gamma> pn)"
and "p2 \<in> subterms (\<Gamma> pn)" by auto
from \<open>((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i\<close>
have "((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i
\<or> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by auto
thus "\<exists>pn. p' \<in> subterms (\<Gamma> pn)"
proof
assume "((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
with \<open>p1 \<in> subterms (\<Gamma> pn)\<close> show ?thesis by (auto intro: IH1)
next
assume "((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
with \<open>p2 \<in> subterms (\<Gamma> pn)\<close> show ?thesis by (auto intro: IH2)
qed
qed auto
lemma oreachable_subterms:
assumes "wellformed \<Gamma>"
and "control_within \<Gamma> (init A)"
and "trans A = oseqp_sos \<Gamma> i"
and "(\<sigma>, p) \<in> oreachable A S U"
shows "\<exists>pn. p \<in> subterms (\<Gamma> pn)"
using assms(4)
proof (induct rule: oreachable_pair_induct)
fix \<sigma> p
assume "(\<sigma>, p) \<in> init A"
with \<open>control_within \<Gamma> (init A)\<close> show "\<exists>pn. p \<in> subterms (\<Gamma> pn)" ..
next
fix \<sigma> p a \<sigma>' p'
assume "(\<sigma>, p) \<in> oreachable A S U"
and "\<exists>pn. p \<in> subterms (\<Gamma> pn)"
and 3: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
moreover from 3 and \<open>trans A = oseqp_sos \<Gamma> i\<close>
have "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by simp
ultimately show "\<exists>pn. p' \<in> subterms (\<Gamma> pn)"
using \<open>wellformed \<Gamma>\<close>
by (auto elim: oseqp_sos_subterms)
qed
lemma onl_oinvariantI [intro]:
assumes init: "\<And>\<sigma> p l. \<lbrakk> (\<sigma>, p) \<in> init A; l \<in> labels \<Gamma> p \<rbrakk> \<Longrightarrow> P (\<sigma>, l)"
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U;
\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l);
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> \<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)"
and step: "\<And>\<sigma> p a \<sigma>' p' l'.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U;
\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l);
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A;
l' \<in> labels \<Gamma> p';
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P (\<sigma>', l')"
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
proof
fix \<sigma> p
assume "(\<sigma>, p) \<in> init A"
hence "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" using init by simp
thus "onl \<Gamma> P (\<sigma>, p)" ..
next
fix \<sigma> p a \<sigma>' p'
assume rp: "(\<sigma>, p) \<in> oreachable A S U"
and "onl \<Gamma> P (\<sigma>, p)"
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
from \<open>onl \<Gamma> P (\<sigma>, p)\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" ..
with rp tr \<open>S \<sigma> \<sigma>' a\<close> have "\<forall>l'\<in>labels \<Gamma> p'. P (\<sigma>', l')" by (auto elim: step)
thus "onl \<Gamma> P (\<sigma>', p')" ..
next
fix \<sigma> \<sigma>' p
assume "(\<sigma>, p) \<in> oreachable A S U"
and "onl \<Gamma> P (\<sigma>, p)"
and "U \<sigma> \<sigma>'"
from \<open>onl \<Gamma> P (\<sigma>, p)\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)" by auto
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)"
using \<open>U \<sigma> \<sigma>'\<close> by (rule other)
thus "onl \<Gamma> P (\<sigma>', p)" by auto
qed
lemma global_oinvariantI [intro]:
assumes init: "\<And>\<sigma> p. (\<sigma>, p) \<in> init A \<Longrightarrow> P \<sigma>"
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk> (\<sigma>, p) \<in> oreachable A S U; P \<sigma>; U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P \<sigma>'"
and step: "\<And>\<sigma> p a \<sigma>' p'.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U;
P \<sigma>;
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A;
S \<sigma> \<sigma>' a \<rbrakk> \<Longrightarrow> P \<sigma>'"
shows "A \<Turnstile> (S, U \<rightarrow>) (\<lambda>(\<sigma>, _). P \<sigma>)"
proof
fix \<sigma> p
assume "(\<sigma>, p) \<in> init A"
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)"
by simp (erule init)
next
fix \<sigma> p a \<sigma>' p'
assume rp: "(\<sigma>, p) \<in> oreachable A S U"
and "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)"
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
from \<open>(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)\<close> have "P \<sigma>" by simp
with rp have "P \<sigma>'"
using tr \<open>S \<sigma> \<sigma>' a\<close> by (rule step)
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>', p')" by simp
next
fix \<sigma> \<sigma>' p
assume "(\<sigma>, p) \<in> oreachable A S U"
and "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>, p)"
and "U \<sigma> \<sigma>'"
hence "P \<sigma>'" by simp (erule other)
thus "(\<lambda>(\<sigma>, _). P \<sigma>) (\<sigma>', p)" by simp
qed
lemma onl_oinvariantD [dest]:
assumes "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
and "(\<sigma>, p) \<in> oreachable A S U"
and "l \<in> labels \<Gamma> p"
shows "P (\<sigma>, l)"
using assms unfolding onl_def by auto
lemma onl_oinvariant_weakenD [dest]:
assumes "A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P"
and "(\<sigma>, p) \<in> oreachable A S U"
and "l \<in> labels \<Gamma> p"
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a"
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'"
shows "P (\<sigma>, l)"
proof -
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'"
by (rule oreachable_weakenE)
(erule weakenS, erule weakenU)
with \<open>A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P\<close> show "P (\<sigma>, l)"
using \<open>l \<in> labels \<Gamma> p\<close> ..
qed
lemma onl_oinvariant_initD [dest]:
assumes invP: "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
and init: "(\<sigma>, p) \<in> init A"
and pnl: "l \<in> labels \<Gamma> p"
shows "P (\<sigma>, l)"
proof -
from init have "(\<sigma>, p) \<in> oreachable A S U" ..
with invP show ?thesis using pnl ..
qed
lemma onl_oinvariant_sterms:
assumes wf: "wellformed \<Gamma>"
and il: "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
and rp: "(\<sigma>, p) \<in> oreachable A S U"
and "p'\<in>sterms \<Gamma> p"
and "l\<in>labels \<Gamma> p'"
shows "P (\<sigma>, l)"
proof -
from wf \<open>p'\<in>sterms \<Gamma> p\<close> \<open>l\<in>labels \<Gamma> p'\<close> have "l\<in>labels \<Gamma> p"
by (rule labels_sterms_labels)
with il rp show "P (\<sigma>, l)" ..
qed
lemma onl_oinvariant_sterms_weaken:
assumes wf: "wellformed \<Gamma>"
and il: "A \<Turnstile> (S', U' \<rightarrow>) onl \<Gamma> P"
and rp: "(\<sigma>, p) \<in> oreachable A S U"
and "p'\<in>sterms \<Gamma> p"
and "l\<in>labels \<Gamma> p'"
and weakenS: "\<And>\<sigma> \<sigma>' a. S \<sigma> \<sigma>' a \<Longrightarrow> S' \<sigma> \<sigma>' a"
and weakenU: "\<And>\<sigma> \<sigma>'. U \<sigma> \<sigma>' \<Longrightarrow> U' \<sigma> \<sigma>'"
shows "P (\<sigma>, l)"
proof -
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'"
by (rule oreachable_weakenE)
(erule weakenS, erule weakenU)
with assms(1-2) show ?thesis using assms(4-5)
by (rule onl_oinvariant_sterms)
qed
lemma otrans_from_sterms:
assumes "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
and "wellformed \<Gamma>"
shows "\<exists>p'\<in>sterms \<Gamma> p. ((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
using assms by (induction p rule: sterms_pinduct [OF \<open>wellformed \<Gamma>\<close>]) auto
lemma otrans_from_sterms':
assumes "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
and "wellformed \<Gamma>"
and "p' \<in> sterms \<Gamma> p"
shows "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
using assms by (induction p rule: sterms_pinduct [OF \<open>wellformed \<Gamma>\<close>]) auto
lemma otrans_to_dterms:
assumes "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
and "wellformed \<Gamma>"
shows "\<forall>r\<in>sterms \<Gamma> q. r \<in> dterms \<Gamma> p"
using assms by (induction q) auto
theorem cterms_includes_sterms_of_oseq_reachable:
assumes "wellformed \<Gamma>"
and "control_within \<Gamma> (init A)"
and "trans A = oseqp_sos \<Gamma> i"
shows "\<Union>(sterms \<Gamma> ` snd ` oreachable A S U) \<subseteq> cterms \<Gamma>"
proof
fix qs
assume "qs \<in> \<Union>(sterms \<Gamma> ` snd ` oreachable A S U)"
then obtain \<xi> and q where *: "(\<xi>, q) \<in> oreachable A S U"
and **: "qs \<in> sterms \<Gamma> q" by auto
from * have "\<And>x. x \<in> sterms \<Gamma> q \<Longrightarrow> x \<in> cterms \<Gamma>"
proof (induction rule: oreachable_pair_induct)
fix \<sigma> p q
assume "(\<sigma>, p) \<in> init A"
and "q \<in> sterms \<Gamma> p"
from \<open>control_within \<Gamma> (init A)\<close> and \<open>(\<sigma>, p) \<in> init A\<close>
obtain pn where "p \<in> subterms (\<Gamma> pn)" by auto
with \<open>wellformed \<Gamma>\<close> show "q \<in> cterms \<Gamma>" using \<open>q\<in>sterms \<Gamma> p\<close>
by (rule subterms_sterms_in_cterms)
next
fix p \<sigma> a \<sigma>' q x
assume "(\<sigma>, p) \<in> oreachable A S U"
and IH: "\<And>x. x \<in> sterms \<Gamma> p \<Longrightarrow> x \<in> cterms \<Gamma>"
and "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
and "x \<in> sterms \<Gamma> q"
from this(3) and \<open>trans A = oseqp_sos \<Gamma> i\<close>
have step: "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp
from step \<open>wellformed \<Gamma>\<close> obtain ps
where ps: "ps \<in> sterms \<Gamma> p"
and step': "((\<sigma>, ps), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
by (rule otrans_from_sterms [THEN bexE])
from ps have "ps \<in> cterms \<Gamma>" by (rule IH)
moreover from step' \<open>wellformed \<Gamma>\<close> \<open>x \<in> sterms \<Gamma> q\<close> have "x \<in> dterms \<Gamma> ps"
by (rule otrans_to_dterms [rule_format])
ultimately show "x \<in> cterms \<Gamma>" by (rule ctermsDI)
qed
thus "qs \<in> cterms \<Gamma>" using ** .
qed
corollary oseq_reachable_in_cterms:
assumes "wellformed \<Gamma>"
and "control_within \<Gamma> (init A)"
and "trans A = oseqp_sos \<Gamma> i"
and "(\<sigma>, p) \<in> oreachable A S U"
and "p' \<in> sterms \<Gamma> p"
shows "p' \<in> cterms \<Gamma>"
using assms(1-3)
proof (rule cterms_includes_sterms_of_oseq_reachable [THEN subsetD])
from assms(4-5) show "p' \<in> \<Union>(sterms \<Gamma> ` snd ` oreachable A S U)"
by (auto elim!: rev_bexI)
qed
lemma oseq_invariant_ctermI:
assumes wf: "wellformed \<Gamma>"
and cw: "control_within \<Gamma> (init A)"
and sl: "simple_labels \<Gamma>"
and sp: "trans A = oseqp_sos \<Gamma> i"
and init: "\<And>\<sigma> p l. \<lbrakk>
(\<sigma>, p) \<in> init A;
l\<in>labels \<Gamma> p
\<rbrakk> \<Longrightarrow> P (\<sigma>, l)"
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk>
(\<sigma>, p) \<in> oreachable A S U;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)"
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp. \<lbrakk>
p\<in>cterms \<Gamma>;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A;
l'\<in>labels \<Gamma> q;
(\<sigma>, pp)\<in>oreachable A S U;
p\<in>sterms \<Gamma> pp;
(\<sigma>', q)\<in>oreachable A S U;
S \<sigma> \<sigma>' a
\<rbrakk> \<Longrightarrow> P (\<sigma>', l')"
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
proof
fix \<sigma> p l
assume "(\<sigma>, p) \<in> init A"
and *: "l \<in> labels \<Gamma> p"
with init show "P (\<sigma>, l)" by auto
next
fix \<sigma> p a \<sigma>' q l'
assume sr: "(\<sigma>, p) \<in> oreachable A S U"
and pl: "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)"
and tr: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
and A6: "l' \<in> labels \<Gamma> q"
and "S \<sigma> \<sigma>' a"
thus "P (\<sigma>', l')"
proof -
from sr and tr and \<open>S \<sigma> \<sigma>' a\<close> have A7: "(\<sigma>', q) \<in> oreachable A S U"
by - (rule oreachable_local')
from tr and sp have tr': "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp
then obtain p' where "p' \<in> sterms \<Gamma> p"
and A4: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
by (blast dest: otrans_from_sterms [OF _ wf])
from wf cw sp sr this(1) have A1: "p'\<in>cterms \<Gamma>"
by (rule oseq_reachable_in_cterms)
from labels_not_empty [OF wf] obtain ll where A2: "ll\<in>labels \<Gamma> p'"
by blast
with \<open>p'\<in>sterms \<Gamma> p\<close> have "ll\<in>labels \<Gamma> p"
by (rule labels_sterms_labels [OF wf])
with pl have A3: "P (\<sigma>, ll)" by simp
from sr \<open>p'\<in>sterms \<Gamma> p\<close>
obtain pp where A7: "(\<sigma>, pp)\<in>oreachable A S U"
and A8: "p'\<in>sterms \<Gamma> pp"
by auto
from sr tr \<open>S \<sigma> \<sigma>' a\<close> have A9: "(\<sigma>', q)\<in>oreachable A S U"
by - (rule oreachable_local')
from sp and \<open>((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i\<close>
have A5: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" by simp
from A1 A2 A3 A4 A5 A6 A7 A8 A9 \<open>S \<sigma> \<sigma>' a\<close> show ?thesis by (rule local)
qed
next
fix \<sigma> \<sigma>' p l
assume sr: "(\<sigma>, p) \<in> oreachable A S U"
and "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)"
and "U \<sigma> \<sigma>'"
show "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)"
proof
fix l
assume "l\<in>labels \<Gamma> p"
with \<open>\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)\<close> have "P (\<sigma>, l)" ..
with sr and \<open>l\<in>labels \<Gamma> p\<close>
show "P (\<sigma>', l)" using \<open>U \<sigma> \<sigma>'\<close> by (rule other)
qed
qed
lemma oseq_invariant_ctermsI:
assumes wf: "wellformed \<Gamma>"
and cw: "control_within \<Gamma> (init A)"
and sl: "simple_labels \<Gamma>"
and sp: "trans A = oseqp_sos \<Gamma> i"
and init: "\<And>\<sigma> p l. \<lbrakk>
(\<sigma>, p) \<in> init A;
l\<in>labels \<Gamma> p
\<rbrakk> \<Longrightarrow> P (\<sigma>, l)"
and other: "\<And>\<sigma> \<sigma>' p l. \<lbrakk>
wellformed \<Gamma>;
(\<sigma>, p) \<in> oreachable A S U;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)"
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp pn. \<lbrakk>
wellformed \<Gamma>;
p\<in>ctermsl (\<Gamma> pn);
not_call p;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A;
l'\<in>labels \<Gamma> q;
(\<sigma>, pp)\<in>oreachable A S U;
p\<in>sterms \<Gamma> pp;
(\<sigma>', q)\<in>oreachable A S U;
S \<sigma> \<sigma>' a
\<rbrakk> \<Longrightarrow> P (\<sigma>', l')"
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
proof (rule oseq_invariant_ctermI [OF wf cw sl sp])
fix \<sigma> p l
assume "(\<sigma>, p) \<in> init A"
and "l \<in> labels \<Gamma> p"
thus "P (\<sigma>, l)" by (rule init)
next
fix \<sigma> \<sigma>' p l
assume "(\<sigma>, p) \<in> oreachable A S U"
and "l \<in> labels \<Gamma> p"
and "P (\<sigma>, l)"
and "U \<sigma> \<sigma>'"
with wf show "P (\<sigma>', l)" by (rule other)
next
fix p l \<sigma> a q l' \<sigma>' pp
assume "p \<in> cterms \<Gamma>"
and otherassms: "l \<in> labels \<Gamma> p"
"P (\<sigma>, l)"
"((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
"((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
"l' \<in> labels \<Gamma> q"
"(\<sigma>, pp) \<in> oreachable A S U"
"p \<in> sterms \<Gamma> pp"
"(\<sigma>', q) \<in> oreachable A S U"
"S \<sigma> \<sigma>' a"
from this(1) obtain pn where "p \<in> ctermsl(\<Gamma> pn)"
and "not_call p"
unfolding cterms_def' [OF wf] by auto
with wf show "P (\<sigma>', l')"
using otherassms by (rule local)
qed
subsection "Open step invariants via labelled control terms"
lemma onll_ostep_invariantI [intro]:
assumes *: "\<And>\<sigma> p l a \<sigma>' p' l'. \<lbrakk> (\<sigma>, p)\<in>oreachable A S U;
((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A;
S \<sigma> \<sigma>' a;
l \<in>labels \<Gamma> p;
l'\<in>labels \<Gamma> p' \<rbrakk>
\<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))"
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
proof
fix \<sigma> p \<sigma>' p' a
assume "(\<sigma>, p) \<in> oreachable A S U"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
hence "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))" by (auto elim!: *)
thus "onll \<Gamma> P ((\<sigma>, p), a, (\<sigma>', p'))" ..
qed
lemma onll_ostep_invariantE [elim]:
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and "(\<sigma>, p) \<in> oreachable A S U"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and lp: "l \<in>labels \<Gamma> p"
and lp': "l'\<in>labels \<Gamma> p'"
shows "P ((\<sigma>, l), a, (\<sigma>', l'))"
proof -
from assms(1-4) have "onll \<Gamma> P ((\<sigma>, p), a, (\<sigma>', p'))" ..
with lp lp' show "P ((\<sigma>, l), a, (\<sigma>', l'))" by auto
qed
lemma onll_ostep_invariantD [dest]:
assumes "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and "(\<sigma>, p) \<in> oreachable A S U"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
shows "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))"
using assms by auto
lemma onll_ostep_invariant_weakenD [dest]:
assumes "A \<Turnstile>\<^sub>A (S', U' \<rightarrow>) onll \<Gamma> P"
and "(\<sigma>, p) \<in> oreachable A S U"
and "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S' \<sigma> \<sigma>' a"
and weakenS: "\<And>s s' a. S s s' a \<Longrightarrow> S' s s' a"
and weakenU: "\<And>s s'. U s s' \<Longrightarrow> U' s s'"
shows "\<forall>l\<in>labels \<Gamma> p. \<forall>l'\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))"
proof -
from \<open>(\<sigma>, p) \<in> oreachable A S U\<close> have "(\<sigma>, p) \<in> oreachable A S' U'"
by (rule oreachable_weakenE)
(erule weakenS, erule weakenU)
with \<open>A \<Turnstile>\<^sub>A (S', U' \<rightarrow>) onll \<Gamma> P\<close> show ?thesis
using \<open>((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A\<close> and \<open>S' \<sigma> \<sigma>' a\<close> ..
qed
lemma onll_ostep_to_invariantI [intro]:
assumes sinv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> Q"
and wf: "wellformed \<Gamma>"
and init: "\<And>\<sigma> l p. \<lbrakk> (\<sigma>, p) \<in> init A; l\<in>labels \<Gamma> p \<rbrakk> \<Longrightarrow> P (\<sigma>, l)"
and other: "\<And>\<sigma> \<sigma>' p l.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
U \<sigma> \<sigma>' \<rbrakk> \<Longrightarrow> P (\<sigma>', l)"
and local: "\<And>\<sigma> p l \<sigma>' l' a.
\<lbrakk> (\<sigma>, p) \<in> oreachable A S U;
l\<in>labels \<Gamma> p;
P (\<sigma>, l);
Q ((\<sigma>, l), a, (\<sigma>', l'));
S \<sigma> \<sigma>' a\<rbrakk> \<Longrightarrow> P (\<sigma>', l')"
shows "A \<Turnstile> (S, U \<rightarrow>) onl \<Gamma> P"
proof
fix \<sigma> p l
assume "(\<sigma>, p) \<in> init A" and "l\<in>labels \<Gamma> p"
thus "P (\<sigma>, l)" by (rule init)
next
fix \<sigma> p a \<sigma>' p' l'
assume sr: "(\<sigma>, p) \<in> oreachable A S U"
and lp: "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)"
and tr: "((\<sigma>, p), a, (\<sigma>', p')) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and lp': "l' \<in> labels \<Gamma> p'"
show "P (\<sigma>', l')"
proof -
from lp obtain l where "l\<in>labels \<Gamma> p" and "P (\<sigma>, l)"
using labels_not_empty [OF wf] by auto
from sinv sr tr \<open>S \<sigma> \<sigma>' a\<close> this(1) lp' have "Q ((\<sigma>, l), a, (\<sigma>', l'))" ..
with sr \<open>l\<in>labels \<Gamma> p\<close> \<open>P (\<sigma>, l)\<close> show "P (\<sigma>', l')" using \<open>S \<sigma> \<sigma>' a\<close> by (rule local)
qed
next
fix \<sigma> \<sigma>' p l
assume "(\<sigma>, p) \<in> oreachable A S U"
and "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)"
and "U \<sigma> \<sigma>'"
show "\<forall>l\<in>labels \<Gamma> p. P (\<sigma>', l)"
proof
fix l
assume "l\<in>labels \<Gamma> p"
with \<open>\<forall>l\<in>labels \<Gamma> p. P (\<sigma>, l)\<close> have "P (\<sigma>, l)" ..
with \<open>(\<sigma>, p) \<in> oreachable A S U\<close> and \<open>l\<in>labels \<Gamma> p\<close>
show "P (\<sigma>', l)" using \<open>U \<sigma> \<sigma>'\<close> by (rule other)
qed
qed
lemma onll_ostep_invariant_sterms:
assumes wf: "wellformed \<Gamma>"
and si: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and sr: "(\<sigma>, p) \<in> oreachable A S U"
and sos: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and "l'\<in>labels \<Gamma> q"
and "p'\<in>sterms \<Gamma> p"
and "l\<in>labels \<Gamma> p'"
shows "P ((\<sigma>, l), a, (\<sigma>', l'))"
proof -
from wf \<open>p'\<in>sterms \<Gamma> p\<close> \<open>l\<in>labels \<Gamma> p'\<close> have "l\<in>labels \<Gamma> p"
by (rule labels_sterms_labels)
with si sr sos \<open>S \<sigma> \<sigma>' a\<close> show "P ((\<sigma>, l), a, (\<sigma>', l'))" using \<open>l'\<in>labels \<Gamma> q\<close> ..
qed
lemma oseq_step_invariant_sterms:
assumes inv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and wf: "wellformed \<Gamma>"
and sp: "trans A = oseqp_sos \<Gamma> i"
and "l'\<in>labels \<Gamma> q"
and sr: "(\<sigma>, p) \<in> oreachable A S U"
and tr: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and "p'\<in>sterms \<Gamma> p"
shows "\<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))"
proof
from assms(3, 6) have "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp
hence "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
using wf \<open>p'\<in>sterms \<Gamma> p\<close> by (rule otrans_from_sterms')
with assms(3) have trp: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A" by simp
fix l assume "l \<in> labels \<Gamma> p'"
with wf inv sr trp \<open>S \<sigma> \<sigma>' a\<close> \<open>l'\<in>labels \<Gamma> q\<close> \<open>p'\<in>sterms \<Gamma> p\<close>
show "P ((\<sigma>, l), a, (\<sigma>', l'))"
by - (erule(7) onll_ostep_invariant_sterms)
qed
lemma oseq_step_invariant_sterms_weaken:
assumes inv: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and wf: "wellformed \<Gamma>"
and sp: "trans A = oseqp_sos \<Gamma> i"
and "l'\<in>labels \<Gamma> q"
and sr: "(\<sigma>, p) \<in> oreachable A S' U'"
and tr: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A"
and "S' \<sigma> \<sigma>' a"
and "p'\<in>sterms \<Gamma> p"
and weakenS: "\<And>\<sigma> \<sigma>' a. S' \<sigma> \<sigma>' a \<Longrightarrow> S \<sigma> \<sigma>' a"
and weakenU: "\<And>\<sigma> \<sigma>'. U' \<sigma> \<sigma>' \<Longrightarrow> U \<sigma> \<sigma>'"
shows "\<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))"
proof -
from \<open>S' \<sigma> \<sigma>' a\<close> have "S \<sigma> \<sigma>' a" by (rule weakenS)
from \<open>(\<sigma>, p) \<in> oreachable A S' U'\<close>
have Ir: "(\<sigma>, p) \<in> oreachable A S U"
by (rule oreachable_weakenE)
(erule weakenS, erule weakenU)
with assms(1-4) show ?thesis
using tr \<open>S \<sigma> \<sigma>' a\<close> \<open>p'\<in>sterms \<Gamma> p\<close>
by (rule oseq_step_invariant_sterms)
qed
lemma onll_ostep_invariant_any_sterms:
assumes wf: "wellformed \<Gamma>"
and si: "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
and sr: "(\<sigma>, p) \<in> oreachable A S U"
and sos: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and "l'\<in>labels \<Gamma> q"
shows "\<forall>p'\<in>sterms \<Gamma> p. \<forall>l\<in>labels \<Gamma> p'. P ((\<sigma>, l), a, (\<sigma>', l'))"
by (intro ballI) (rule onll_ostep_invariant_sterms [OF assms])
lemma oseq_step_invariant_ctermI [intro]:
assumes wf: "wellformed \<Gamma>"
and cw: "control_within \<Gamma> (init A)"
and sl: "simple_labels \<Gamma>"
and sp: "trans A = oseqp_sos \<Gamma> i"
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp. \<lbrakk>
p\<in>cterms \<Gamma>;
l\<in>labels \<Gamma> p;
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A;
l'\<in>labels \<Gamma> q;
(\<sigma>, pp) \<in> oreachable A S U;
p\<in>sterms \<Gamma> pp;
(\<sigma>', q) \<in> oreachable A S U;
S \<sigma> \<sigma>' a
\<rbrakk> \<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))"
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
proof
fix \<sigma> p l a \<sigma>' q l'
assume sr: "(\<sigma>, p) \<in> oreachable A S U"
and tr: "((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
and "S \<sigma> \<sigma>' a"
and pl: "l \<in> labels \<Gamma> p"
and A5: "l' \<in> labels \<Gamma> q"
from this(2) and sp have "((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i" by simp
then obtain p' where "p' \<in> sterms \<Gamma> p"
and A3: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
by (blast dest: otrans_from_sterms [OF _ wf])
from this(2) and sp have A4: "((\<sigma>, p'), a, (\<sigma>', q)) \<in> trans A" by simp
from wf cw sp sr \<open>p'\<in>sterms \<Gamma> p\<close> have A1: "p'\<in>cterms \<Gamma>"
by (rule oseq_reachable_in_cterms)
from sr \<open>p'\<in>sterms \<Gamma> p\<close>
obtain pp where A6: "(\<sigma>, pp)\<in>oreachable A S U"
and A7: "p'\<in>sterms \<Gamma> pp"
by auto
from sr tr \<open>S \<sigma> \<sigma>' a\<close> have A8: "(\<sigma>', q)\<in>oreachable A S U"
by - (erule(2) oreachable_local')
from wf cw sp sr have "\<exists>pn. p \<in> subterms (\<Gamma> pn)"
by (rule oreachable_subterms)
with sl wf have "\<forall>p'\<in>sterms \<Gamma> p. l \<in> labels \<Gamma> p'"
using pl by (rule simple_labels_in_sterms)
with \<open>p' \<in> sterms \<Gamma> p\<close> have "l \<in> labels \<Gamma> p'" by simp
with A1 show "P ((\<sigma>, l), a, (\<sigma>', l'))" using A3 A4 A5 A6 A7 A8 \<open>S \<sigma> \<sigma>' a\<close>
by (rule local)
qed
lemma oseq_step_invariant_ctermsI [intro]:
assumes wf: "wellformed \<Gamma>"
and "control_within \<Gamma> (init A)"
and "simple_labels \<Gamma>"
and "trans A = oseqp_sos \<Gamma> i"
and local: "\<And>p l \<sigma> a q l' \<sigma>' pp pn. \<lbrakk>
wellformed \<Gamma>;
p\<in>ctermsl (\<Gamma> pn);
not_call p;
l\<in>labels \<Gamma> p;
((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i;
((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A;
l'\<in>labels \<Gamma> q;
(\<sigma>, pp) \<in> oreachable A S U;
p\<in>sterms \<Gamma> pp;
(\<sigma>', q) \<in> oreachable A S U;
S \<sigma> \<sigma>' a
\<rbrakk> \<Longrightarrow> P ((\<sigma>, l), a, (\<sigma>', l'))"
shows "A \<Turnstile>\<^sub>A (S, U \<rightarrow>) onll \<Gamma> P"
using assms(1-4) proof (rule oseq_step_invariant_ctermI)
fix p l \<sigma> a q l' \<sigma>' pp
assume "p \<in> cterms \<Gamma>"
and otherassms: "l \<in> labels \<Gamma> p"
"((\<sigma>, p), a, (\<sigma>', q)) \<in> oseqp_sos \<Gamma> i"
"((\<sigma>, p), a, (\<sigma>', q)) \<in> trans A"
"l' \<in> labels \<Gamma> q"
"(\<sigma>, pp) \<in> oreachable A S U"
"p \<in> sterms \<Gamma> pp"
"(\<sigma>', q) \<in> oreachable A S U"
"S \<sigma> \<sigma>' a"
from this(1) obtain pn where "p \<in> ctermsl(\<Gamma> pn)"
and "not_call p"
unfolding cterms_def' [OF wf] by auto
with wf show "P ((\<sigma>, l), a, (\<sigma>', l'))"
using otherassms by (rule local)
qed
lemma open_seqp_action [elim]:
assumes "wellformed \<Gamma>"
and "((\<sigma> i, p), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
shows "((\<sigma>, p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
proof -
from assms obtain ps where "ps\<in>sterms \<Gamma> p"
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
by - (drule trans_from_sterms, auto)
thus ?thesis
proof (induction p)
fix p1 p2
assume "\<lbrakk> ps \<in> sterms \<Gamma> p1; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk>
\<Longrightarrow> ((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and "\<lbrakk> ps \<in> sterms \<Gamma> p2; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk>
\<Longrightarrow> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and "ps \<in> sterms \<Gamma> (p1 \<oplus> p2)"
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
with assms(1) show "((\<sigma>, p1 \<oplus> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
by simp (metis oseqp_sos.ochoiceT1 oseqp_sos.ochoiceT2)
next
fix l fip fmsg p1 p2
assume IH1: "\<lbrakk> ps \<in> sterms \<Gamma> p1; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk>
\<Longrightarrow> ((\<sigma>, p1), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and IH2: "\<lbrakk> ps \<in> sterms \<Gamma> p2; ((\<sigma> i, ps), a, \<sigma>' i, p') \<in> seqp_sos \<Gamma> \<rbrakk>
\<Longrightarrow> ((\<sigma>, p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
and "ps \<in> sterms \<Gamma> ({l}unicast(fip, fmsg). p1 \<triangleright> p2)"
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
from this(3-4) have "((\<sigma> i, {l}unicast(fip, fmsg). p1 \<triangleright> p2), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
by simp
thus "((\<sigma>, {l}unicast(fip, fmsg). p1 \<triangleright> p2), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
proof (rule seqp_unicastTE)
assume "a = unicast (fip (\<sigma> i)) (fmsg (\<sigma> i))"
and "\<sigma>' i = \<sigma> i"
and "p' = p1"
thus ?thesis by auto
next
assume "a = \<not>unicast (fip (\<sigma> i))"
and "\<sigma>' i = \<sigma> i"
and "p' = p2"
thus ?thesis by auto
qed
next
fix p
assume "ps \<in> sterms \<Gamma> (call(p))"
and "((\<sigma> i, ps), a, (\<sigma>' i, p')) \<in> seqp_sos \<Gamma>"
with assms(1) have "((\<sigma>, ps), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
by (cases ps) auto
with assms(1) \<open>ps \<in> sterms \<Gamma> (call(p))\<close> have "((\<sigma>, \<Gamma> p), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i"
by - (rule otrans_from_sterms', simp_all)
thus "((\<sigma>, call(p)), a, (\<sigma>', p')) \<in> oseqp_sos \<Gamma> i" by auto
qed auto
qed
end